root/drivers/spi/spi-bcm-qspi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. has_bspi
  2. bcm_qspi_read
  3. bcm_qspi_write
  4. bcm_qspi_bspi_busy_poll
  5. bcm_qspi_bspi_ver_three
  6. bcm_qspi_bspi_flush_prefetch_buffers
  7. bcm_qspi_bspi_lr_is_fifo_empty
  8. bcm_qspi_bspi_lr_read_fifo
  9. bcm_qspi_bspi_lr_start
  10. bcm_qspi_bspi_lr_clear
  11. bcm_qspi_bspi_lr_data_read
  12. bcm_qspi_bspi_set_xfer_params
  13. bcm_qspi_bspi_set_flex_mode
  14. bcm_qspi_bspi_set_override
  15. bcm_qspi_bspi_set_mode
  16. bcm_qspi_enable_bspi
  17. bcm_qspi_disable_bspi
  18. bcm_qspi_chip_select
  19. bcm_qspi_hw_set_parms
  20. bcm_qspi_update_parms
  21. bcm_qspi_setup
  22. bcm_qspi_mspi_transfer_is_last
  23. update_qspi_trans_byte_count
  24. read_rxram_slot_u8
  25. read_rxram_slot_u16
  26. read_from_hw
  27. write_txram_slot_u8
  28. write_txram_slot_u16
  29. read_cdram_slot
  30. write_cdram_slot
  31. write_to_hw
  32. bcm_qspi_bspi_exec_mem_op
  33. bcm_qspi_transfer_one
  34. bcm_qspi_mspi_exec_mem_op
  35. bcm_qspi_exec_mem_op
  36. bcm_qspi_cleanup
  37. bcm_qspi_mspi_l2_isr
  38. bcm_qspi_bspi_lr_l2_isr
  39. bcm_qspi_bspi_lr_err_l2_isr
  40. bcm_qspi_l1_isr
  41. bcm_qspi_bspi_init
  42. bcm_qspi_hw_init
  43. bcm_qspi_hw_uninit
  44. bcm_qspi_probe
  45. bcm_qspi_remove
  46. bcm_qspi_suspend
  47. bcm_qspi_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4  *
   5  * Copyright 2016 Broadcom
   6  */
   7 
   8 #include <linux/clk.h>
   9 #include <linux/delay.h>
  10 #include <linux/device.h>
  11 #include <linux/init.h>
  12 #include <linux/interrupt.h>
  13 #include <linux/io.h>
  14 #include <linux/ioport.h>
  15 #include <linux/kernel.h>
  16 #include <linux/module.h>
  17 #include <linux/of.h>
  18 #include <linux/of_irq.h>
  19 #include <linux/platform_device.h>
  20 #include <linux/slab.h>
  21 #include <linux/spi/spi.h>
  22 #include <linux/spi/spi-mem.h>
  23 #include <linux/sysfs.h>
  24 #include <linux/types.h>
  25 #include "spi-bcm-qspi.h"
  26 
  27 #define DRIVER_NAME "bcm_qspi"
  28 
  29 
  30 /* BSPI register offsets */
  31 #define BSPI_REVISION_ID                        0x000
  32 #define BSPI_SCRATCH                            0x004
  33 #define BSPI_MAST_N_BOOT_CTRL                   0x008
  34 #define BSPI_BUSY_STATUS                        0x00c
  35 #define BSPI_INTR_STATUS                        0x010
  36 #define BSPI_B0_STATUS                          0x014
  37 #define BSPI_B0_CTRL                            0x018
  38 #define BSPI_B1_STATUS                          0x01c
  39 #define BSPI_B1_CTRL                            0x020
  40 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
  41 #define BSPI_FLEX_MODE_ENABLE                   0x028
  42 #define BSPI_BITS_PER_CYCLE                     0x02c
  43 #define BSPI_BITS_PER_PHASE                     0x030
  44 #define BSPI_CMD_AND_MODE_BYTE                  0x034
  45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
  46 #define BSPI_BSPI_XOR_VALUE                     0x03c
  47 #define BSPI_BSPI_XOR_ENABLE                    0x040
  48 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
  49 #define BSPI_BSPI_PIO_IODIR                     0x048
  50 #define BSPI_BSPI_PIO_DATA                      0x04c
  51 
  52 /* RAF register offsets */
  53 #define BSPI_RAF_START_ADDR                     0x100
  54 #define BSPI_RAF_NUM_WORDS                      0x104
  55 #define BSPI_RAF_CTRL                           0x108
  56 #define BSPI_RAF_FULLNESS                       0x10c
  57 #define BSPI_RAF_WATERMARK                      0x110
  58 #define BSPI_RAF_STATUS                 0x114
  59 #define BSPI_RAF_READ_DATA                      0x118
  60 #define BSPI_RAF_WORD_CNT                       0x11c
  61 #define BSPI_RAF_CURR_ADDR                      0x120
  62 
  63 /* Override mode masks */
  64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
  65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
  66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
  67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
  68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
  69 
  70 #define BSPI_ADDRLEN_3BYTES                     3
  71 #define BSPI_ADDRLEN_4BYTES                     4
  72 
  73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
  74 
  75 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
  76 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
  77 
  78 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
  79 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
  80 
  81 #define BSPI_READ_LENGTH                        256
  82 
  83 /* MSPI register offsets */
  84 #define MSPI_SPCR0_LSB                          0x000
  85 #define MSPI_SPCR0_MSB                          0x004
  86 #define MSPI_SPCR1_LSB                          0x008
  87 #define MSPI_SPCR1_MSB                          0x00c
  88 #define MSPI_NEWQP                              0x010
  89 #define MSPI_ENDQP                              0x014
  90 #define MSPI_SPCR2                              0x018
  91 #define MSPI_MSPI_STATUS                        0x020
  92 #define MSPI_CPTQP                              0x024
  93 #define MSPI_SPCR3                              0x028
  94 #define MSPI_TXRAM                              0x040
  95 #define MSPI_RXRAM                              0x0c0
  96 #define MSPI_CDRAM                              0x140
  97 #define MSPI_WRITE_LOCK                 0x180
  98 
  99 #define MSPI_MASTER_BIT                 BIT(7)
 100 
 101 #define MSPI_NUM_CDRAM                          16
 102 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
 103 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
 104 #define MSPI_CDRAM_PCS                          0xf
 105 
 106 #define MSPI_SPCR2_SPE                          BIT(6)
 107 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
 108 
 109 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
 110 
 111 #define INTR_BASE_BIT_SHIFT                     0x02
 112 #define INTR_COUNT                              0x07
 113 
 114 #define NUM_CHIPSELECT                          4
 115 #define QSPI_SPBR_MIN                           8U
 116 #define QSPI_SPBR_MAX                           255U
 117 
 118 #define OPCODE_DIOR                             0xBB
 119 #define OPCODE_QIOR                             0xEB
 120 #define OPCODE_DIOR_4B                          0xBC
 121 #define OPCODE_QIOR_4B                          0xEC
 122 
 123 #define MAX_CMD_SIZE                            6
 124 
 125 #define ADDR_4MB_MASK                           GENMASK(22, 0)
 126 
 127 /* stop at end of transfer, no other reason */
 128 #define TRANS_STATUS_BREAK_NONE         0
 129 /* stop at end of spi_message */
 130 #define TRANS_STATUS_BREAK_EOM                  1
 131 /* stop at end of spi_transfer if delay */
 132 #define TRANS_STATUS_BREAK_DELAY                2
 133 /* stop at end of spi_transfer if cs_change */
 134 #define TRANS_STATUS_BREAK_CS_CHANGE            4
 135 /* stop if we run out of bytes */
 136 #define TRANS_STATUS_BREAK_NO_BYTES             8
 137 
 138 /* events that make us stop filling TX slots */
 139 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
 140                                TRANS_STATUS_BREAK_DELAY |               \
 141                                TRANS_STATUS_BREAK_CS_CHANGE)
 142 
 143 /* events that make us deassert CS */
 144 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
 145                                      TRANS_STATUS_BREAK_CS_CHANGE)
 146 
 147 struct bcm_qspi_parms {
 148         u32 speed_hz;
 149         u8 mode;
 150         u8 bits_per_word;
 151 };
 152 
 153 struct bcm_xfer_mode {
 154         bool flex_mode;
 155         unsigned int width;
 156         unsigned int addrlen;
 157         unsigned int hp;
 158 };
 159 
 160 enum base_type {
 161         MSPI,
 162         BSPI,
 163         CHIP_SELECT,
 164         BASEMAX,
 165 };
 166 
 167 enum irq_source {
 168         SINGLE_L2,
 169         MUXED_L1,
 170 };
 171 
 172 struct bcm_qspi_irq {
 173         const char *irq_name;
 174         const irq_handler_t irq_handler;
 175         int irq_source;
 176         u32 mask;
 177 };
 178 
 179 struct bcm_qspi_dev_id {
 180         const struct bcm_qspi_irq *irqp;
 181         void *dev;
 182 };
 183 
 184 
 185 struct qspi_trans {
 186         struct spi_transfer *trans;
 187         int byte;
 188         bool mspi_last_trans;
 189 };
 190 
 191 struct bcm_qspi {
 192         struct platform_device *pdev;
 193         struct spi_master *master;
 194         struct clk *clk;
 195         u32 base_clk;
 196         u32 max_speed_hz;
 197         void __iomem *base[BASEMAX];
 198 
 199         /* Some SoCs provide custom interrupt status register(s) */
 200         struct bcm_qspi_soc_intc        *soc_intc;
 201 
 202         struct bcm_qspi_parms last_parms;
 203         struct qspi_trans  trans_pos;
 204         int curr_cs;
 205         int bspi_maj_rev;
 206         int bspi_min_rev;
 207         int bspi_enabled;
 208         const struct spi_mem_op *bspi_rf_op;
 209         u32 bspi_rf_op_idx;
 210         u32 bspi_rf_op_len;
 211         u32 bspi_rf_op_status;
 212         struct bcm_xfer_mode xfer_mode;
 213         u32 s3_strap_override_ctrl;
 214         bool bspi_mode;
 215         bool big_endian;
 216         int num_irqs;
 217         struct bcm_qspi_dev_id *dev_ids;
 218         struct completion mspi_done;
 219         struct completion bspi_done;
 220 };
 221 
 222 static inline bool has_bspi(struct bcm_qspi *qspi)
 223 {
 224         return qspi->bspi_mode;
 225 }
 226 
 227 /* Read qspi controller register*/
 228 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 229                                 unsigned int offset)
 230 {
 231         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 232 }
 233 
 234 /* Write qspi controller register*/
 235 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 236                                   unsigned int offset, unsigned int data)
 237 {
 238         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 239 }
 240 
 241 /* BSPI helpers */
 242 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 243 {
 244         int i;
 245 
 246         /* this should normally finish within 10us */
 247         for (i = 0; i < 1000; i++) {
 248                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 249                         return 0;
 250                 udelay(1);
 251         }
 252         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 253         return -EIO;
 254 }
 255 
 256 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 257 {
 258         if (qspi->bspi_maj_rev < 4)
 259                 return true;
 260         return false;
 261 }
 262 
 263 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 264 {
 265         bcm_qspi_bspi_busy_poll(qspi);
 266         /* Force rising edge for the b0/b1 'flush' field */
 267         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 268         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 269         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 270         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 271 }
 272 
 273 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 274 {
 275         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 276                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 277 }
 278 
 279 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 280 {
 281         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 282 
 283         /* BSPI v3 LR is LE only, convert data to host endianness */
 284         if (bcm_qspi_bspi_ver_three(qspi))
 285                 data = le32_to_cpu(data);
 286 
 287         return data;
 288 }
 289 
 290 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 291 {
 292         bcm_qspi_bspi_busy_poll(qspi);
 293         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 294                        BSPI_RAF_CTRL_START_MASK);
 295 }
 296 
 297 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 298 {
 299         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 300                        BSPI_RAF_CTRL_CLEAR_MASK);
 301         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 302 }
 303 
 304 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 305 {
 306         u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 307         u32 data = 0;
 308 
 309         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 310                 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 311         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 312                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
 313                 if (likely(qspi->bspi_rf_op_len >= 4) &&
 314                     IS_ALIGNED((uintptr_t)buf, 4)) {
 315                         buf[qspi->bspi_rf_op_idx++] = data;
 316                         qspi->bspi_rf_op_len -= 4;
 317                 } else {
 318                         /* Read out remaining bytes, make sure*/
 319                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 320 
 321                         data = cpu_to_le32(data);
 322                         while (qspi->bspi_rf_op_len) {
 323                                 *cbuf++ = (u8)data;
 324                                 data >>= 8;
 325                                 qspi->bspi_rf_op_len--;
 326                         }
 327                 }
 328         }
 329 }
 330 
 331 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 332                                           int bpp, int bpc, int flex_mode)
 333 {
 334         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 335         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 336         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 337         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 338         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 339 }
 340 
 341 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 342                                        const struct spi_mem_op *op, int hp)
 343 {
 344         int bpc = 0, bpp = 0;
 345         u8 command = op->cmd.opcode;
 346         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 347         int addrlen = op->addr.nbytes;
 348         int flex_mode = 1;
 349 
 350         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 351                 width, addrlen, hp);
 352 
 353         if (addrlen == BSPI_ADDRLEN_4BYTES)
 354                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
 355 
 356         bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 357 
 358         switch (width) {
 359         case SPI_NBITS_SINGLE:
 360                 if (addrlen == BSPI_ADDRLEN_3BYTES)
 361                         /* default mode, does not need flex_cmd */
 362                         flex_mode = 0;
 363                 break;
 364         case SPI_NBITS_DUAL:
 365                 bpc = 0x00000001;
 366                 if (hp) {
 367                         bpc |= 0x00010100; /* address and mode are 2-bit */
 368                         bpp = BSPI_BPP_MODE_SELECT_MASK;
 369                 }
 370                 break;
 371         case SPI_NBITS_QUAD:
 372                 bpc = 0x00000002;
 373                 if (hp) {
 374                         bpc |= 0x00020200; /* address and mode are 4-bit */
 375                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
 376                 }
 377                 break;
 378         default:
 379                 return -EINVAL;
 380         }
 381 
 382         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 383 
 384         return 0;
 385 }
 386 
 387 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 388                                       const struct spi_mem_op *op, int hp)
 389 {
 390         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 391         int addrlen = op->addr.nbytes;
 392         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 393 
 394         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 395                 width, addrlen, hp);
 396 
 397         switch (width) {
 398         case SPI_NBITS_SINGLE:
 399                 /* clear quad/dual mode */
 400                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 401                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 402                 break;
 403         case SPI_NBITS_QUAD:
 404                 /* clear dual mode and set quad mode */
 405                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 406                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 407                 break;
 408         case SPI_NBITS_DUAL:
 409                 /* clear quad mode set dual mode */
 410                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 411                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 412                 break;
 413         default:
 414                 return -EINVAL;
 415         }
 416 
 417         if (addrlen == BSPI_ADDRLEN_4BYTES)
 418                 /* set 4byte mode*/
 419                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 420         else
 421                 /* clear 4 byte mode */
 422                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 423 
 424         /* set the override mode */
 425         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 426         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 427         bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 428 
 429         return 0;
 430 }
 431 
 432 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 433                                   const struct spi_mem_op *op, int hp)
 434 {
 435         int error = 0;
 436         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 437         int addrlen = op->addr.nbytes;
 438 
 439         /* default mode */
 440         qspi->xfer_mode.flex_mode = true;
 441 
 442         if (!bcm_qspi_bspi_ver_three(qspi)) {
 443                 u32 val, mask;
 444 
 445                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 446                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 447                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 448                         qspi->xfer_mode.flex_mode = false;
 449                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 450                         error = bcm_qspi_bspi_set_override(qspi, op, hp);
 451                 }
 452         }
 453 
 454         if (qspi->xfer_mode.flex_mode)
 455                 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 456 
 457         if (error) {
 458                 dev_warn(&qspi->pdev->dev,
 459                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 460                          width, addrlen, hp);
 461         } else if (qspi->xfer_mode.width != width ||
 462                    qspi->xfer_mode.addrlen != addrlen ||
 463                    qspi->xfer_mode.hp != hp) {
 464                 qspi->xfer_mode.width = width;
 465                 qspi->xfer_mode.addrlen = addrlen;
 466                 qspi->xfer_mode.hp = hp;
 467                 dev_dbg(&qspi->pdev->dev,
 468                         "cs:%d %d-lane output, %d-byte address%s\n",
 469                         qspi->curr_cs,
 470                         qspi->xfer_mode.width,
 471                         qspi->xfer_mode.addrlen,
 472                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 473         }
 474 
 475         return error;
 476 }
 477 
 478 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 479 {
 480         if (!has_bspi(qspi))
 481                 return;
 482 
 483         qspi->bspi_enabled = 1;
 484         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 485                 return;
 486 
 487         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 488         udelay(1);
 489         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 490         udelay(1);
 491 }
 492 
 493 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 494 {
 495         if (!has_bspi(qspi))
 496                 return;
 497 
 498         qspi->bspi_enabled = 0;
 499         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 500                 return;
 501 
 502         bcm_qspi_bspi_busy_poll(qspi);
 503         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 504         udelay(1);
 505 }
 506 
 507 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 508 {
 509         u32 rd = 0;
 510         u32 wr = 0;
 511 
 512         if (qspi->base[CHIP_SELECT]) {
 513                 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 514                 wr = (rd & ~0xff) | (1 << cs);
 515                 if (rd == wr)
 516                         return;
 517                 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 518                 usleep_range(10, 20);
 519         }
 520 
 521         dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 522         qspi->curr_cs = cs;
 523 }
 524 
 525 /* MSPI helpers */
 526 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 527                                   const struct bcm_qspi_parms *xp)
 528 {
 529         u32 spcr, spbr = 0;
 530 
 531         if (xp->speed_hz)
 532                 spbr = qspi->base_clk / (2 * xp->speed_hz);
 533 
 534         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 535         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 536 
 537         spcr = MSPI_MASTER_BIT;
 538         /* for 16 bit the data should be zero */
 539         if (xp->bits_per_word != 16)
 540                 spcr |= xp->bits_per_word << 2;
 541         spcr |= xp->mode & 3;
 542         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 543 
 544         qspi->last_parms = *xp;
 545 }
 546 
 547 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 548                                   struct spi_device *spi,
 549                                   struct spi_transfer *trans)
 550 {
 551         struct bcm_qspi_parms xp;
 552 
 553         xp.speed_hz = trans->speed_hz;
 554         xp.bits_per_word = trans->bits_per_word;
 555         xp.mode = spi->mode;
 556 
 557         bcm_qspi_hw_set_parms(qspi, &xp);
 558 }
 559 
 560 static int bcm_qspi_setup(struct spi_device *spi)
 561 {
 562         struct bcm_qspi_parms *xp;
 563 
 564         if (spi->bits_per_word > 16)
 565                 return -EINVAL;
 566 
 567         xp = spi_get_ctldata(spi);
 568         if (!xp) {
 569                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 570                 if (!xp)
 571                         return -ENOMEM;
 572                 spi_set_ctldata(spi, xp);
 573         }
 574         xp->speed_hz = spi->max_speed_hz;
 575         xp->mode = spi->mode;
 576 
 577         if (spi->bits_per_word)
 578                 xp->bits_per_word = spi->bits_per_word;
 579         else
 580                 xp->bits_per_word = 8;
 581 
 582         return 0;
 583 }
 584 
 585 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 586                                            struct qspi_trans *qt)
 587 {
 588         if (qt->mspi_last_trans &&
 589             spi_transfer_is_last(qspi->master, qt->trans))
 590                 return true;
 591         else
 592                 return false;
 593 }
 594 
 595 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 596                                         struct qspi_trans *qt, int flags)
 597 {
 598         int ret = TRANS_STATUS_BREAK_NONE;
 599 
 600         /* count the last transferred bytes */
 601         if (qt->trans->bits_per_word <= 8)
 602                 qt->byte++;
 603         else
 604                 qt->byte += 2;
 605 
 606         if (qt->byte >= qt->trans->len) {
 607                 /* we're at the end of the spi_transfer */
 608                 /* in TX mode, need to pause for a delay or CS change */
 609                 if (qt->trans->delay_usecs &&
 610                     (flags & TRANS_STATUS_BREAK_DELAY))
 611                         ret |= TRANS_STATUS_BREAK_DELAY;
 612                 if (qt->trans->cs_change &&
 613                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 614                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 615                 if (ret)
 616                         goto done;
 617 
 618                 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 619                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 620                         ret = TRANS_STATUS_BREAK_EOM;
 621                 else
 622                         ret = TRANS_STATUS_BREAK_NO_BYTES;
 623 
 624                 qt->trans = NULL;
 625         }
 626 
 627 done:
 628         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 629                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 630         return ret;
 631 }
 632 
 633 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 634 {
 635         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 636 
 637         /* mask out reserved bits */
 638         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 639 }
 640 
 641 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 642 {
 643         u32 reg_offset = MSPI_RXRAM;
 644         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 645         u32 msb_offset = reg_offset + (slot << 3);
 646 
 647         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 648                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 649 }
 650 
 651 static void read_from_hw(struct bcm_qspi *qspi, int slots)
 652 {
 653         struct qspi_trans tp;
 654         int slot;
 655 
 656         bcm_qspi_disable_bspi(qspi);
 657 
 658         if (slots > MSPI_NUM_CDRAM) {
 659                 /* should never happen */
 660                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 661                 return;
 662         }
 663 
 664         tp = qspi->trans_pos;
 665 
 666         for (slot = 0; slot < slots; slot++) {
 667                 if (tp.trans->bits_per_word <= 8) {
 668                         u8 *buf = tp.trans->rx_buf;
 669 
 670                         if (buf)
 671                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 672                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 673                                 buf ? buf[tp.byte] : 0x0);
 674                 } else {
 675                         u16 *buf = tp.trans->rx_buf;
 676 
 677                         if (buf)
 678                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 679                                                                       slot);
 680                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 681                                 buf ? buf[tp.byte / 2] : 0x0);
 682                 }
 683 
 684                 update_qspi_trans_byte_count(qspi, &tp,
 685                                              TRANS_STATUS_BREAK_NONE);
 686         }
 687 
 688         qspi->trans_pos = tp;
 689 }
 690 
 691 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 692                                        u8 val)
 693 {
 694         u32 reg_offset = MSPI_TXRAM + (slot << 3);
 695 
 696         /* mask out reserved bits */
 697         bcm_qspi_write(qspi, MSPI, reg_offset, val);
 698 }
 699 
 700 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 701                                         u16 val)
 702 {
 703         u32 reg_offset = MSPI_TXRAM;
 704         u32 msb_offset = reg_offset + (slot << 3);
 705         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 706 
 707         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 708         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 709 }
 710 
 711 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 712 {
 713         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 714 }
 715 
 716 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 717 {
 718         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 719 }
 720 
 721 /* Return number of slots written */
 722 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 723 {
 724         struct qspi_trans tp;
 725         int slot = 0, tstatus = 0;
 726         u32 mspi_cdram = 0;
 727 
 728         bcm_qspi_disable_bspi(qspi);
 729         tp = qspi->trans_pos;
 730         bcm_qspi_update_parms(qspi, spi, tp.trans);
 731 
 732         /* Run until end of transfer or reached the max data */
 733         while (!tstatus && slot < MSPI_NUM_CDRAM) {
 734                 if (tp.trans->bits_per_word <= 8) {
 735                         const u8 *buf = tp.trans->tx_buf;
 736                         u8 val = buf ? buf[tp.byte] : 0x00;
 737 
 738                         write_txram_slot_u8(qspi, slot, val);
 739                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 740                 } else {
 741                         const u16 *buf = tp.trans->tx_buf;
 742                         u16 val = buf ? buf[tp.byte / 2] : 0x0000;
 743 
 744                         write_txram_slot_u16(qspi, slot, val);
 745                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 746                 }
 747                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
 748 
 749                 if (has_bspi(qspi))
 750                         mspi_cdram &= ~1;
 751                 else
 752                         mspi_cdram |= (~(1 << spi->chip_select) &
 753                                        MSPI_CDRAM_PCS);
 754 
 755                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 756                                 MSPI_CDRAM_BITSE_BIT);
 757 
 758                 write_cdram_slot(qspi, slot, mspi_cdram);
 759 
 760                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
 761                                                        TRANS_STATUS_BREAK_TX);
 762                 slot++;
 763         }
 764 
 765         if (!slot) {
 766                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 767                 goto done;
 768         }
 769 
 770         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 771         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 772         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 773 
 774         if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 775                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 776                         ~MSPI_CDRAM_CONT_BIT;
 777                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
 778         }
 779 
 780         if (has_bspi(qspi))
 781                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 782 
 783         /* Must flush previous writes before starting MSPI operation */
 784         mb();
 785         /* Set cont | spe | spifie */
 786         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 787 
 788 done:
 789         return slot;
 790 }
 791 
 792 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
 793                                      const struct spi_mem_op *op)
 794 {
 795         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 796         u32 addr = 0, len, rdlen, len_words, from = 0;
 797         int ret = 0;
 798         unsigned long timeo = msecs_to_jiffies(100);
 799         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 800 
 801         if (bcm_qspi_bspi_ver_three(qspi))
 802                 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
 803                         return -EIO;
 804 
 805         from = op->addr.val;
 806         bcm_qspi_chip_select(qspi, spi->chip_select);
 807         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 808 
 809         /*
 810          * when using flex mode we need to send
 811          * the upper address byte to bspi
 812          */
 813         if (bcm_qspi_bspi_ver_three(qspi) == false) {
 814                 addr = from & 0xff000000;
 815                 bcm_qspi_write(qspi, BSPI,
 816                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 817         }
 818 
 819         if (!qspi->xfer_mode.flex_mode)
 820                 addr = from;
 821         else
 822                 addr = from & 0x00ffffff;
 823 
 824         if (bcm_qspi_bspi_ver_three(qspi) == true)
 825                 addr = (addr + 0xc00000) & 0xffffff;
 826 
 827         /*
 828          * read into the entire buffer by breaking the reads
 829          * into RAF buffer read lengths
 830          */
 831         len = op->data.nbytes;
 832         qspi->bspi_rf_op_idx = 0;
 833 
 834         do {
 835                 if (len > BSPI_READ_LENGTH)
 836                         rdlen = BSPI_READ_LENGTH;
 837                 else
 838                         rdlen = len;
 839 
 840                 reinit_completion(&qspi->bspi_done);
 841                 bcm_qspi_enable_bspi(qspi);
 842                 len_words = (rdlen + 3) >> 2;
 843                 qspi->bspi_rf_op = op;
 844                 qspi->bspi_rf_op_status = 0;
 845                 qspi->bspi_rf_op_len = rdlen;
 846                 dev_dbg(&qspi->pdev->dev,
 847                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
 848                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 849                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 850                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 851                 if (qspi->soc_intc) {
 852                         /*
 853                          * clear soc MSPI and BSPI interrupts and enable
 854                          * BSPI interrupts.
 855                          */
 856                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 857                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 858                 }
 859 
 860                 /* Must flush previous writes before starting BSPI operation */
 861                 mb();
 862                 bcm_qspi_bspi_lr_start(qspi);
 863                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 864                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 865                         ret = -ETIMEDOUT;
 866                         break;
 867                 }
 868 
 869                 /* set msg return length */
 870                 addr += rdlen;
 871                 len -= rdlen;
 872         } while (len);
 873 
 874         return ret;
 875 }
 876 
 877 static int bcm_qspi_transfer_one(struct spi_master *master,
 878                                  struct spi_device *spi,
 879                                  struct spi_transfer *trans)
 880 {
 881         struct bcm_qspi *qspi = spi_master_get_devdata(master);
 882         int slots;
 883         unsigned long timeo = msecs_to_jiffies(100);
 884 
 885         bcm_qspi_chip_select(qspi, spi->chip_select);
 886         qspi->trans_pos.trans = trans;
 887         qspi->trans_pos.byte = 0;
 888 
 889         while (qspi->trans_pos.byte < trans->len) {
 890                 reinit_completion(&qspi->mspi_done);
 891 
 892                 slots = write_to_hw(qspi, spi);
 893                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 894                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 895                         return -ETIMEDOUT;
 896                 }
 897 
 898                 read_from_hw(qspi, slots);
 899         }
 900         bcm_qspi_enable_bspi(qspi);
 901 
 902         return 0;
 903 }
 904 
 905 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
 906                                      const struct spi_mem_op *op)
 907 {
 908         struct spi_master *master = spi->master;
 909         struct bcm_qspi *qspi = spi_master_get_devdata(master);
 910         struct spi_transfer t[2];
 911         u8 cmd[6] = { };
 912         int ret, i;
 913 
 914         memset(cmd, 0, sizeof(cmd));
 915         memset(t, 0, sizeof(t));
 916 
 917         /* tx */
 918         /* opcode is in cmd[0] */
 919         cmd[0] = op->cmd.opcode;
 920         for (i = 0; i < op->addr.nbytes; i++)
 921                 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
 922 
 923         t[0].tx_buf = cmd;
 924         t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
 925         t[0].bits_per_word = spi->bits_per_word;
 926         t[0].tx_nbits = op->cmd.buswidth;
 927         /* lets mspi know that this is not last transfer */
 928         qspi->trans_pos.mspi_last_trans = false;
 929         ret = bcm_qspi_transfer_one(master, spi, &t[0]);
 930 
 931         /* rx */
 932         qspi->trans_pos.mspi_last_trans = true;
 933         if (!ret) {
 934                 /* rx */
 935                 t[1].rx_buf = op->data.buf.in;
 936                 t[1].len = op->data.nbytes;
 937                 t[1].rx_nbits =  op->data.buswidth;
 938                 t[1].bits_per_word = spi->bits_per_word;
 939                 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
 940         }
 941 
 942         return ret;
 943 }
 944 
 945 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
 946                                 const struct spi_mem_op *op)
 947 {
 948         struct spi_device *spi = mem->spi;
 949         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 950         int ret = 0;
 951         bool mspi_read = false;
 952         u32 addr = 0, len;
 953         u_char *buf;
 954 
 955         if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
 956             op->data.dir != SPI_MEM_DATA_IN)
 957                 return -ENOTSUPP;
 958 
 959         buf = op->data.buf.in;
 960         addr = op->addr.val;
 961         len = op->data.nbytes;
 962 
 963         if (bcm_qspi_bspi_ver_three(qspi) == true) {
 964                 /*
 965                  * The address coming into this function is a raw flash offset.
 966                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
 967                  * address. If it crosses a 4MB boundary, just revert back to
 968                  * using MSPI.
 969                  */
 970                 addr = (addr + 0xc00000) & 0xffffff;
 971 
 972                 if ((~ADDR_4MB_MASK & addr) ^
 973                     (~ADDR_4MB_MASK & (addr + len - 1)))
 974                         mspi_read = true;
 975         }
 976 
 977         /* non-aligned and very short transfers are handled by MSPI */
 978         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 979             len < 4)
 980                 mspi_read = true;
 981 
 982         if (mspi_read)
 983                 return bcm_qspi_mspi_exec_mem_op(spi, op);
 984 
 985         ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
 986 
 987         if (!ret)
 988                 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
 989 
 990         return ret;
 991 }
 992 
 993 static void bcm_qspi_cleanup(struct spi_device *spi)
 994 {
 995         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
 996 
 997         kfree(xp);
 998 }
 999 
1000 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1001 {
1002         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1003         struct bcm_qspi *qspi = qspi_dev_id->dev;
1004         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1005 
1006         if (status & MSPI_MSPI_STATUS_SPIF) {
1007                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1008                 /* clear interrupt */
1009                 status &= ~MSPI_MSPI_STATUS_SPIF;
1010                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1011                 if (qspi->soc_intc)
1012                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1013                 complete(&qspi->mspi_done);
1014                 return IRQ_HANDLED;
1015         }
1016 
1017         return IRQ_NONE;
1018 }
1019 
1020 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1021 {
1022         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1023         struct bcm_qspi *qspi = qspi_dev_id->dev;
1024         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1025         u32 status = qspi_dev_id->irqp->mask;
1026 
1027         if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1028                 bcm_qspi_bspi_lr_data_read(qspi);
1029                 if (qspi->bspi_rf_op_len == 0) {
1030                         qspi->bspi_rf_op = NULL;
1031                         if (qspi->soc_intc) {
1032                                 /* disable soc BSPI interrupt */
1033                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1034                                                            false);
1035                                 /* indicate done */
1036                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1037                         }
1038 
1039                         if (qspi->bspi_rf_op_status)
1040                                 bcm_qspi_bspi_lr_clear(qspi);
1041                         else
1042                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1043                 }
1044 
1045                 if (qspi->soc_intc)
1046                         /* clear soc BSPI interrupt */
1047                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1048         }
1049 
1050         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1051         if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1052                 complete(&qspi->bspi_done);
1053 
1054         return IRQ_HANDLED;
1055 }
1056 
1057 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1058 {
1059         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1060         struct bcm_qspi *qspi = qspi_dev_id->dev;
1061         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1062 
1063         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1064         qspi->bspi_rf_op_status = -EIO;
1065         if (qspi->soc_intc)
1066                 /* clear soc interrupt */
1067                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1068 
1069         complete(&qspi->bspi_done);
1070         return IRQ_HANDLED;
1071 }
1072 
1073 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1074 {
1075         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1076         struct bcm_qspi *qspi = qspi_dev_id->dev;
1077         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1078         irqreturn_t ret = IRQ_NONE;
1079 
1080         if (soc_intc) {
1081                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1082 
1083                 if (status & MSPI_DONE)
1084                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1085                 else if (status & BSPI_DONE)
1086                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1087                 else if (status & BSPI_ERR)
1088                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1089         }
1090 
1091         return ret;
1092 }
1093 
1094 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1095         {
1096                 .irq_name = "spi_lr_fullness_reached",
1097                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1098                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1099         },
1100         {
1101                 .irq_name = "spi_lr_session_aborted",
1102                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1103                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1104         },
1105         {
1106                 .irq_name = "spi_lr_impatient",
1107                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1108                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1109         },
1110         {
1111                 .irq_name = "spi_lr_session_done",
1112                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1113                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1114         },
1115 #ifdef QSPI_INT_DEBUG
1116         /* this interrupt is for debug purposes only, dont request irq */
1117         {
1118                 .irq_name = "spi_lr_overread",
1119                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1120                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1121         },
1122 #endif
1123         {
1124                 .irq_name = "mspi_done",
1125                 .irq_handler = bcm_qspi_mspi_l2_isr,
1126                 .mask = INTR_MSPI_DONE_MASK,
1127         },
1128         {
1129                 .irq_name = "mspi_halted",
1130                 .irq_handler = bcm_qspi_mspi_l2_isr,
1131                 .mask = INTR_MSPI_HALTED_MASK,
1132         },
1133         {
1134                 /* single muxed L1 interrupt source */
1135                 .irq_name = "spi_l1_intr",
1136                 .irq_handler = bcm_qspi_l1_isr,
1137                 .irq_source = MUXED_L1,
1138                 .mask = QSPI_INTERRUPTS_ALL,
1139         },
1140 };
1141 
1142 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1143 {
1144         u32 val = 0;
1145 
1146         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1147         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1148         qspi->bspi_min_rev = val & 0xff;
1149         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1150                 /* Force mapping of BSPI address -> flash offset */
1151                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1152                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1153         }
1154         qspi->bspi_enabled = 1;
1155         bcm_qspi_disable_bspi(qspi);
1156         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1157         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1158 }
1159 
1160 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1161 {
1162         struct bcm_qspi_parms parms;
1163 
1164         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1165         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1166         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1167         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1168         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1169 
1170         parms.mode = SPI_MODE_3;
1171         parms.bits_per_word = 8;
1172         parms.speed_hz = qspi->max_speed_hz;
1173         bcm_qspi_hw_set_parms(qspi, &parms);
1174 
1175         if (has_bspi(qspi))
1176                 bcm_qspi_bspi_init(qspi);
1177 }
1178 
1179 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1180 {
1181         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1182         if (has_bspi(qspi))
1183                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1184 
1185 }
1186 
1187 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1188         .exec_op = bcm_qspi_exec_mem_op,
1189 };
1190 
1191 static const struct of_device_id bcm_qspi_of_match[] = {
1192         { .compatible = "brcm,spi-bcm-qspi" },
1193         {},
1194 };
1195 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1196 
1197 int bcm_qspi_probe(struct platform_device *pdev,
1198                    struct bcm_qspi_soc_intc *soc_intc)
1199 {
1200         struct device *dev = &pdev->dev;
1201         struct bcm_qspi *qspi;
1202         struct spi_master *master;
1203         struct resource *res;
1204         int irq, ret = 0, num_ints = 0;
1205         u32 val;
1206         const char *name = NULL;
1207         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1208 
1209         /* We only support device-tree instantiation */
1210         if (!dev->of_node)
1211                 return -ENODEV;
1212 
1213         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1214                 return -ENODEV;
1215 
1216         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1217         if (!master) {
1218                 dev_err(dev, "error allocating spi_master\n");
1219                 return -ENOMEM;
1220         }
1221 
1222         qspi = spi_master_get_devdata(master);
1223 
1224         qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1225         if (IS_ERR(qspi->clk))
1226                 return PTR_ERR(qspi->clk);
1227 
1228         qspi->pdev = pdev;
1229         qspi->trans_pos.trans = NULL;
1230         qspi->trans_pos.byte = 0;
1231         qspi->trans_pos.mspi_last_trans = true;
1232         qspi->master = master;
1233 
1234         master->bus_num = -1;
1235         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1236         master->setup = bcm_qspi_setup;
1237         master->transfer_one = bcm_qspi_transfer_one;
1238         master->mem_ops = &bcm_qspi_mem_ops;
1239         master->cleanup = bcm_qspi_cleanup;
1240         master->dev.of_node = dev->of_node;
1241         master->num_chipselect = NUM_CHIPSELECT;
1242 
1243         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1244 
1245         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1246                 master->num_chipselect = val;
1247 
1248         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1249         if (!res)
1250                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1251                                                    "mspi");
1252 
1253         if (res) {
1254                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1255                 if (IS_ERR(qspi->base[MSPI])) {
1256                         ret = PTR_ERR(qspi->base[MSPI]);
1257                         goto qspi_resource_err;
1258                 }
1259         } else {
1260                 goto qspi_resource_err;
1261         }
1262 
1263         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1264         if (res) {
1265                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1266                 if (IS_ERR(qspi->base[BSPI])) {
1267                         ret = PTR_ERR(qspi->base[BSPI]);
1268                         goto qspi_resource_err;
1269                 }
1270                 qspi->bspi_mode = true;
1271         } else {
1272                 qspi->bspi_mode = false;
1273         }
1274 
1275         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1276 
1277         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1278         if (res) {
1279                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1280                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1281                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1282                         goto qspi_resource_err;
1283                 }
1284         }
1285 
1286         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1287                                 GFP_KERNEL);
1288         if (!qspi->dev_ids) {
1289                 ret = -ENOMEM;
1290                 goto qspi_resource_err;
1291         }
1292 
1293         for (val = 0; val < num_irqs; val++) {
1294                 irq = -1;
1295                 name = qspi_irq_tab[val].irq_name;
1296                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1297                         /* get the l2 interrupts */
1298                         irq = platform_get_irq_byname(pdev, name);
1299                 } else if (!num_ints && soc_intc) {
1300                         /* all mspi, bspi intrs muxed to one L1 intr */
1301                         irq = platform_get_irq(pdev, 0);
1302                 }
1303 
1304                 if (irq  >= 0) {
1305                         ret = devm_request_irq(&pdev->dev, irq,
1306                                                qspi_irq_tab[val].irq_handler, 0,
1307                                                name,
1308                                                &qspi->dev_ids[val]);
1309                         if (ret < 0) {
1310                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1311                                 goto qspi_probe_err;
1312                         }
1313 
1314                         qspi->dev_ids[val].dev = qspi;
1315                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1316                         num_ints++;
1317                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1318                                 qspi_irq_tab[val].irq_name,
1319                                 irq);
1320                 }
1321         }
1322 
1323         if (!num_ints) {
1324                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1325                 ret = -EINVAL;
1326                 goto qspi_probe_err;
1327         }
1328 
1329         /*
1330          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1331          * in specific ways
1332          */
1333         if (soc_intc) {
1334                 qspi->soc_intc = soc_intc;
1335                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1336         } else {
1337                 qspi->soc_intc = NULL;
1338         }
1339 
1340         ret = clk_prepare_enable(qspi->clk);
1341         if (ret) {
1342                 dev_err(dev, "failed to prepare clock\n");
1343                 goto qspi_probe_err;
1344         }
1345 
1346         qspi->base_clk = clk_get_rate(qspi->clk);
1347         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1348 
1349         bcm_qspi_hw_init(qspi);
1350         init_completion(&qspi->mspi_done);
1351         init_completion(&qspi->bspi_done);
1352         qspi->curr_cs = -1;
1353 
1354         platform_set_drvdata(pdev, qspi);
1355 
1356         qspi->xfer_mode.width = -1;
1357         qspi->xfer_mode.addrlen = -1;
1358         qspi->xfer_mode.hp = -1;
1359 
1360         ret = devm_spi_register_master(&pdev->dev, master);
1361         if (ret < 0) {
1362                 dev_err(dev, "can't register master\n");
1363                 goto qspi_reg_err;
1364         }
1365 
1366         return 0;
1367 
1368 qspi_reg_err:
1369         bcm_qspi_hw_uninit(qspi);
1370         clk_disable_unprepare(qspi->clk);
1371 qspi_probe_err:
1372         kfree(qspi->dev_ids);
1373 qspi_resource_err:
1374         spi_master_put(master);
1375         return ret;
1376 }
1377 /* probe function to be called by SoC specific platform driver probe */
1378 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1379 
1380 int bcm_qspi_remove(struct platform_device *pdev)
1381 {
1382         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1383 
1384         bcm_qspi_hw_uninit(qspi);
1385         clk_disable_unprepare(qspi->clk);
1386         kfree(qspi->dev_ids);
1387         spi_unregister_master(qspi->master);
1388 
1389         return 0;
1390 }
1391 /* function to be called by SoC specific platform driver remove() */
1392 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1393 
1394 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1395 {
1396         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1397 
1398         /* store the override strap value */
1399         if (!bcm_qspi_bspi_ver_three(qspi))
1400                 qspi->s3_strap_override_ctrl =
1401                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1402 
1403         spi_master_suspend(qspi->master);
1404         clk_disable(qspi->clk);
1405         bcm_qspi_hw_uninit(qspi);
1406 
1407         return 0;
1408 };
1409 
1410 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1411 {
1412         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1413         int ret = 0;
1414 
1415         bcm_qspi_hw_init(qspi);
1416         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1417         if (qspi->soc_intc)
1418                 /* enable MSPI interrupt */
1419                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1420                                                  true);
1421 
1422         ret = clk_enable(qspi->clk);
1423         if (!ret)
1424                 spi_master_resume(qspi->master);
1425 
1426         return ret;
1427 }
1428 
1429 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1430 
1431 /* pm_ops to be called by SoC specific platform driver */
1432 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1433 
1434 MODULE_AUTHOR("Kamal Dasu");
1435 MODULE_DESCRIPTION("Broadcom QSPI driver");
1436 MODULE_LICENSE("GPL v2");
1437 MODULE_ALIAS("platform:" DRIVER_NAME);

/* [<][>][^][v][top][bottom][index][help] */