root/drivers/spi/spi-topcliff-pch.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pch_spi_writereg
  2. pch_spi_readreg
  3. pch_spi_setclr_reg
  4. pch_spi_set_master_mode
  5. pch_spi_clear_fifo
  6. pch_spi_handler_sub
  7. pch_spi_handler
  8. pch_spi_set_baud_rate
  9. pch_spi_set_bits_per_word
  10. pch_spi_setup_transfer
  11. pch_spi_reset
  12. pch_spi_transfer
  13. pch_spi_select_chip
  14. pch_spi_set_tx
  15. pch_spi_nomore_transfer
  16. pch_spi_set_ir
  17. pch_spi_copy_rx_data
  18. pch_spi_copy_rx_data_for_dma
  19. pch_spi_start_transfer
  20. pch_dma_rx_complete
  21. pch_spi_filter
  22. pch_spi_request_dma
  23. pch_spi_release_dma
  24. pch_spi_handle_dma
  25. pch_spi_process_messages
  26. pch_spi_free_resources
  27. pch_spi_get_resources
  28. pch_free_dma_buf
  29. pch_alloc_dma_buf
  30. pch_spi_pd_probe
  31. pch_spi_pd_remove
  32. pch_spi_pd_suspend
  33. pch_spi_pd_resume
  34. pch_spi_probe
  35. pch_spi_remove
  36. pch_spi_suspend
  37. pch_spi_resume
  38. pch_spi_init
  39. pch_spi_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4  *
   5  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   6  */
   7 
   8 #include <linux/delay.h>
   9 #include <linux/pci.h>
  10 #include <linux/wait.h>
  11 #include <linux/spi/spi.h>
  12 #include <linux/interrupt.h>
  13 #include <linux/sched.h>
  14 #include <linux/spi/spidev.h>
  15 #include <linux/module.h>
  16 #include <linux/device.h>
  17 #include <linux/platform_device.h>
  18 
  19 #include <linux/dmaengine.h>
  20 #include <linux/pch_dma.h>
  21 
  22 /* Register offsets */
  23 #define PCH_SPCR                0x00    /* SPI control register */
  24 #define PCH_SPBRR               0x04    /* SPI baud rate register */
  25 #define PCH_SPSR                0x08    /* SPI status register */
  26 #define PCH_SPDWR               0x0C    /* SPI write data register */
  27 #define PCH_SPDRR               0x10    /* SPI read data register */
  28 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
  29 #define PCH_SRST                0x1C    /* SPI reset register */
  30 #define PCH_ADDRESS_SIZE        0x20
  31 
  32 #define PCH_SPSR_TFD            0x000007C0
  33 #define PCH_SPSR_RFD            0x0000F800
  34 
  35 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
  36 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
  37 
  38 #define PCH_RX_THOLD            7
  39 #define PCH_RX_THOLD_MAX        15
  40 
  41 #define PCH_TX_THOLD            2
  42 
  43 #define PCH_MAX_BAUDRATE        5000000
  44 #define PCH_MAX_FIFO_DEPTH      16
  45 
  46 #define STATUS_RUNNING          1
  47 #define STATUS_EXITING          2
  48 #define PCH_SLEEP_TIME          10
  49 
  50 #define SSN_LOW                 0x02U
  51 #define SSN_HIGH                0x03U
  52 #define SSN_NO_CONTROL          0x00U
  53 #define PCH_MAX_CS              0xFF
  54 #define PCI_DEVICE_ID_GE_SPI    0x8816
  55 
  56 #define SPCR_SPE_BIT            (1 << 0)
  57 #define SPCR_MSTR_BIT           (1 << 1)
  58 #define SPCR_LSBF_BIT           (1 << 4)
  59 #define SPCR_CPHA_BIT           (1 << 5)
  60 #define SPCR_CPOL_BIT           (1 << 6)
  61 #define SPCR_TFIE_BIT           (1 << 8)
  62 #define SPCR_RFIE_BIT           (1 << 9)
  63 #define SPCR_FIE_BIT            (1 << 10)
  64 #define SPCR_ORIE_BIT           (1 << 11)
  65 #define SPCR_MDFIE_BIT          (1 << 12)
  66 #define SPCR_FICLR_BIT          (1 << 24)
  67 #define SPSR_TFI_BIT            (1 << 0)
  68 #define SPSR_RFI_BIT            (1 << 1)
  69 #define SPSR_FI_BIT             (1 << 2)
  70 #define SPSR_ORF_BIT            (1 << 3)
  71 #define SPBRR_SIZE_BIT          (1 << 10)
  72 
  73 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75 
  76 #define SPCR_RFIC_FIELD         20
  77 #define SPCR_TFIC_FIELD         16
  78 
  79 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
  80 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
  81 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
  82 
  83 #define PCH_CLOCK_HZ            50000000
  84 #define PCH_MAX_SPBR            1023
  85 
  86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  87 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
  88 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
  89 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
  90 
  91 /*
  92  * Set the number of SPI instance max
  93  * Intel EG20T PCH :            1ch
  94  * LAPIS Semiconductor ML7213 IOH :     2ch
  95  * LAPIS Semiconductor ML7223 IOH :     1ch
  96  * LAPIS Semiconductor ML7831 IOH :     1ch
  97 */
  98 #define PCH_SPI_MAX_DEV                 2
  99 
 100 #define PCH_BUF_SIZE            4096
 101 #define PCH_DMA_TRANS_SIZE      12
 102 
 103 static int use_dma = 1;
 104 
 105 struct pch_spi_dma_ctrl {
 106         struct dma_async_tx_descriptor  *desc_tx;
 107         struct dma_async_tx_descriptor  *desc_rx;
 108         struct pch_dma_slave            param_tx;
 109         struct pch_dma_slave            param_rx;
 110         struct dma_chan         *chan_tx;
 111         struct dma_chan         *chan_rx;
 112         struct scatterlist              *sg_tx_p;
 113         struct scatterlist              *sg_rx_p;
 114         struct scatterlist              sg_tx;
 115         struct scatterlist              sg_rx;
 116         int                             nent;
 117         void                            *tx_buf_virt;
 118         void                            *rx_buf_virt;
 119         dma_addr_t                      tx_buf_dma;
 120         dma_addr_t                      rx_buf_dma;
 121 };
 122 /**
 123  * struct pch_spi_data - Holds the SPI channel specific details
 124  * @io_remap_addr:              The remapped PCI base address
 125  * @master:                     Pointer to the SPI master structure
 126  * @work:                       Reference to work queue handler
 127  * @wait:                       Wait queue for waking up upon receiving an
 128  *                              interrupt.
 129  * @transfer_complete:          Status of SPI Transfer
 130  * @bcurrent_msg_processing:    Status flag for message processing
 131  * @lock:                       Lock for protecting this structure
 132  * @queue:                      SPI Message queue
 133  * @status:                     Status of the SPI driver
 134  * @bpw_len:                    Length of data to be transferred in bits per
 135  *                              word
 136  * @transfer_active:            Flag showing active transfer
 137  * @tx_index:                   Transmit data count; for bookkeeping during
 138  *                              transfer
 139  * @rx_index:                   Receive data count; for bookkeeping during
 140  *                              transfer
 141  * @tx_buff:                    Buffer for data to be transmitted
 142  * @rx_index:                   Buffer for Received data
 143  * @n_curnt_chip:               The chip number that this SPI driver currently
 144  *                              operates on
 145  * @current_chip:               Reference to the current chip that this SPI
 146  *                              driver currently operates on
 147  * @current_msg:                The current message that this SPI driver is
 148  *                              handling
 149  * @cur_trans:                  The current transfer that this SPI driver is
 150  *                              handling
 151  * @board_dat:                  Reference to the SPI device data structure
 152  * @plat_dev:                   platform_device structure
 153  * @ch:                         SPI channel number
 154  * @irq_reg_sts:                Status of IRQ registration
 155  */
 156 struct pch_spi_data {
 157         void __iomem *io_remap_addr;
 158         unsigned long io_base_addr;
 159         struct spi_master *master;
 160         struct work_struct work;
 161         wait_queue_head_t wait;
 162         u8 transfer_complete;
 163         u8 bcurrent_msg_processing;
 164         spinlock_t lock;
 165         struct list_head queue;
 166         u8 status;
 167         u32 bpw_len;
 168         u8 transfer_active;
 169         u32 tx_index;
 170         u32 rx_index;
 171         u16 *pkt_tx_buff;
 172         u16 *pkt_rx_buff;
 173         u8 n_curnt_chip;
 174         struct spi_device *current_chip;
 175         struct spi_message *current_msg;
 176         struct spi_transfer *cur_trans;
 177         struct pch_spi_board_data *board_dat;
 178         struct platform_device  *plat_dev;
 179         int ch;
 180         struct pch_spi_dma_ctrl dma;
 181         int use_dma;
 182         u8 irq_reg_sts;
 183         int save_total_len;
 184 };
 185 
 186 /**
 187  * struct pch_spi_board_data - Holds the SPI device specific details
 188  * @pdev:               Pointer to the PCI device
 189  * @suspend_sts:        Status of suspend
 190  * @num:                The number of SPI device instance
 191  */
 192 struct pch_spi_board_data {
 193         struct pci_dev *pdev;
 194         u8 suspend_sts;
 195         int num;
 196 };
 197 
 198 struct pch_pd_dev_save {
 199         int num;
 200         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 201         struct pch_spi_board_data *board_dat;
 202 };
 203 
 204 static const struct pci_device_id pch_spi_pcidev_id[] = {
 205         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 206         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 207         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 208         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 209         { }
 210 };
 211 
 212 /**
 213  * pch_spi_writereg() - Performs  register writes
 214  * @master:     Pointer to struct spi_master.
 215  * @idx:        Register offset.
 216  * @val:        Value to be written to register.
 217  */
 218 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 219 {
 220         struct pch_spi_data *data = spi_master_get_devdata(master);
 221         iowrite32(val, (data->io_remap_addr + idx));
 222 }
 223 
 224 /**
 225  * pch_spi_readreg() - Performs register reads
 226  * @master:     Pointer to struct spi_master.
 227  * @idx:        Register offset.
 228  */
 229 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 230 {
 231         struct pch_spi_data *data = spi_master_get_devdata(master);
 232         return ioread32(data->io_remap_addr + idx);
 233 }
 234 
 235 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 236                                       u32 set, u32 clr)
 237 {
 238         u32 tmp = pch_spi_readreg(master, idx);
 239         tmp = (tmp & ~clr) | set;
 240         pch_spi_writereg(master, idx, tmp);
 241 }
 242 
 243 static void pch_spi_set_master_mode(struct spi_master *master)
 244 {
 245         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 246 }
 247 
 248 /**
 249  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 250  * @master:     Pointer to struct spi_master.
 251  */
 252 static void pch_spi_clear_fifo(struct spi_master *master)
 253 {
 254         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 255         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 256 }
 257 
 258 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 259                                 void __iomem *io_remap_addr)
 260 {
 261         u32 n_read, tx_index, rx_index, bpw_len;
 262         u16 *pkt_rx_buffer, *pkt_tx_buff;
 263         int read_cnt;
 264         u32 reg_spcr_val;
 265         void __iomem *spsr;
 266         void __iomem *spdrr;
 267         void __iomem *spdwr;
 268 
 269         spsr = io_remap_addr + PCH_SPSR;
 270         iowrite32(reg_spsr_val, spsr);
 271 
 272         if (data->transfer_active) {
 273                 rx_index = data->rx_index;
 274                 tx_index = data->tx_index;
 275                 bpw_len = data->bpw_len;
 276                 pkt_rx_buffer = data->pkt_rx_buff;
 277                 pkt_tx_buff = data->pkt_tx_buff;
 278 
 279                 spdrr = io_remap_addr + PCH_SPDRR;
 280                 spdwr = io_remap_addr + PCH_SPDWR;
 281 
 282                 n_read = PCH_READABLE(reg_spsr_val);
 283 
 284                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 285                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 286                         if (tx_index < bpw_len)
 287                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
 288                 }
 289 
 290                 /* disable RFI if not needed */
 291                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 292                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 293                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 294 
 295                         /* reset rx threshold */
 296                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 297                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 298 
 299                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 300                 }
 301 
 302                 /* update counts */
 303                 data->tx_index = tx_index;
 304                 data->rx_index = rx_index;
 305 
 306                 /* if transfer complete interrupt */
 307                 if (reg_spsr_val & SPSR_FI_BIT) {
 308                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 309                                 /* disable interrupts */
 310                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 311                                                    PCH_ALL);
 312 
 313                                 /* transfer is completed;
 314                                    inform pch_spi_process_messages */
 315                                 data->transfer_complete = true;
 316                                 data->transfer_active = false;
 317                                 wake_up(&data->wait);
 318                         } else {
 319                                 dev_vdbg(&data->master->dev,
 320                                         "%s : Transfer is not completed",
 321                                         __func__);
 322                         }
 323                 }
 324         }
 325 }
 326 
 327 /**
 328  * pch_spi_handler() - Interrupt handler
 329  * @irq:        The interrupt number.
 330  * @dev_id:     Pointer to struct pch_spi_board_data.
 331  */
 332 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 333 {
 334         u32 reg_spsr_val;
 335         void __iomem *spsr;
 336         void __iomem *io_remap_addr;
 337         irqreturn_t ret = IRQ_NONE;
 338         struct pch_spi_data *data = dev_id;
 339         struct pch_spi_board_data *board_dat = data->board_dat;
 340 
 341         if (board_dat->suspend_sts) {
 342                 dev_dbg(&board_dat->pdev->dev,
 343                         "%s returning due to suspend\n", __func__);
 344                 return IRQ_NONE;
 345         }
 346 
 347         io_remap_addr = data->io_remap_addr;
 348         spsr = io_remap_addr + PCH_SPSR;
 349 
 350         reg_spsr_val = ioread32(spsr);
 351 
 352         if (reg_spsr_val & SPSR_ORF_BIT) {
 353                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 354                 if (data->current_msg->complete) {
 355                         data->transfer_complete = true;
 356                         data->current_msg->status = -EIO;
 357                         data->current_msg->complete(data->current_msg->context);
 358                         data->bcurrent_msg_processing = false;
 359                         data->current_msg = NULL;
 360                         data->cur_trans = NULL;
 361                 }
 362         }
 363 
 364         if (data->use_dma)
 365                 return IRQ_NONE;
 366 
 367         /* Check if the interrupt is for SPI device */
 368         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 369                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 370                 ret = IRQ_HANDLED;
 371         }
 372 
 373         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 374                 __func__, ret);
 375 
 376         return ret;
 377 }
 378 
 379 /**
 380  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 381  * @master:     Pointer to struct spi_master.
 382  * @speed_hz:   Baud rate.
 383  */
 384 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 385 {
 386         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 387 
 388         /* if baud rate is less than we can support limit it */
 389         if (n_spbr > PCH_MAX_SPBR)
 390                 n_spbr = PCH_MAX_SPBR;
 391 
 392         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 393 }
 394 
 395 /**
 396  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 397  * @master:             Pointer to struct spi_master.
 398  * @bits_per_word:      Bits per word for SPI transfer.
 399  */
 400 static void pch_spi_set_bits_per_word(struct spi_master *master,
 401                                       u8 bits_per_word)
 402 {
 403         if (bits_per_word == 8)
 404                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 405         else
 406                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 407 }
 408 
 409 /**
 410  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 411  * @spi:        Pointer to struct spi_device.
 412  */
 413 static void pch_spi_setup_transfer(struct spi_device *spi)
 414 {
 415         u32 flags = 0;
 416 
 417         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 418                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 419                 spi->max_speed_hz);
 420         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 421 
 422         /* set bits per word */
 423         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 424 
 425         if (!(spi->mode & SPI_LSB_FIRST))
 426                 flags |= SPCR_LSBF_BIT;
 427         if (spi->mode & SPI_CPOL)
 428                 flags |= SPCR_CPOL_BIT;
 429         if (spi->mode & SPI_CPHA)
 430                 flags |= SPCR_CPHA_BIT;
 431         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 432                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 433 
 434         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 435         pch_spi_clear_fifo(spi->master);
 436 }
 437 
 438 /**
 439  * pch_spi_reset() - Clears SPI registers
 440  * @master:     Pointer to struct spi_master.
 441  */
 442 static void pch_spi_reset(struct spi_master *master)
 443 {
 444         /* write 1 to reset SPI */
 445         pch_spi_writereg(master, PCH_SRST, 0x1);
 446 
 447         /* clear reset */
 448         pch_spi_writereg(master, PCH_SRST, 0x0);
 449 }
 450 
 451 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 452 {
 453 
 454         struct spi_transfer *transfer;
 455         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 456         int retval;
 457         unsigned long flags;
 458 
 459         spin_lock_irqsave(&data->lock, flags);
 460         /* validate Tx/Rx buffers and Transfer length */
 461         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 462                 if (!transfer->tx_buf && !transfer->rx_buf) {
 463                         dev_err(&pspi->dev,
 464                                 "%s Tx and Rx buffer NULL\n", __func__);
 465                         retval = -EINVAL;
 466                         goto err_return_spinlock;
 467                 }
 468 
 469                 if (!transfer->len) {
 470                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
 471                                 __func__);
 472                         retval = -EINVAL;
 473                         goto err_return_spinlock;
 474                 }
 475 
 476                 dev_dbg(&pspi->dev,
 477                         "%s Tx/Rx buffer valid. Transfer length valid\n",
 478                         __func__);
 479         }
 480         spin_unlock_irqrestore(&data->lock, flags);
 481 
 482         /* We won't process any messages if we have been asked to terminate */
 483         if (data->status == STATUS_EXITING) {
 484                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 485                 retval = -ESHUTDOWN;
 486                 goto err_out;
 487         }
 488 
 489         /* If suspended ,return -EINVAL */
 490         if (data->board_dat->suspend_sts) {
 491                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 492                 retval = -EINVAL;
 493                 goto err_out;
 494         }
 495 
 496         /* set status of message */
 497         pmsg->actual_length = 0;
 498         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 499 
 500         pmsg->status = -EINPROGRESS;
 501         spin_lock_irqsave(&data->lock, flags);
 502         /* add message to queue */
 503         list_add_tail(&pmsg->queue, &data->queue);
 504         spin_unlock_irqrestore(&data->lock, flags);
 505 
 506         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 507 
 508         schedule_work(&data->work);
 509         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 510 
 511         retval = 0;
 512 
 513 err_out:
 514         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 515         return retval;
 516 err_return_spinlock:
 517         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 518         spin_unlock_irqrestore(&data->lock, flags);
 519         return retval;
 520 }
 521 
 522 static inline void pch_spi_select_chip(struct pch_spi_data *data,
 523                                        struct spi_device *pspi)
 524 {
 525         if (data->current_chip != NULL) {
 526                 if (pspi->chip_select != data->n_curnt_chip) {
 527                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 528                         data->current_chip = NULL;
 529                 }
 530         }
 531 
 532         data->current_chip = pspi;
 533 
 534         data->n_curnt_chip = data->current_chip->chip_select;
 535 
 536         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 537         pch_spi_setup_transfer(pspi);
 538 }
 539 
 540 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 541 {
 542         int size;
 543         u32 n_writes;
 544         int j;
 545         struct spi_message *pmsg, *tmp;
 546         const u8 *tx_buf;
 547         const u16 *tx_sbuf;
 548 
 549         /* set baud rate if needed */
 550         if (data->cur_trans->speed_hz) {
 551                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 552                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 553         }
 554 
 555         /* set bits per word if needed */
 556         if (data->cur_trans->bits_per_word &&
 557             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 558                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 559                 pch_spi_set_bits_per_word(data->master,
 560                                           data->cur_trans->bits_per_word);
 561                 *bpw = data->cur_trans->bits_per_word;
 562         } else {
 563                 *bpw = data->current_msg->spi->bits_per_word;
 564         }
 565 
 566         /* reset Tx/Rx index */
 567         data->tx_index = 0;
 568         data->rx_index = 0;
 569 
 570         data->bpw_len = data->cur_trans->len / (*bpw / 8);
 571 
 572         /* find alloc size */
 573         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 574 
 575         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 576         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 577         if (data->pkt_tx_buff != NULL) {
 578                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 579                 if (!data->pkt_rx_buff)
 580                         kfree(data->pkt_tx_buff);
 581         }
 582 
 583         if (!data->pkt_rx_buff) {
 584                 /* flush queue and set status of all transfers to -ENOMEM */
 585                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 586                         pmsg->status = -ENOMEM;
 587 
 588                         if (pmsg->complete)
 589                                 pmsg->complete(pmsg->context);
 590 
 591                         /* delete from queue */
 592                         list_del_init(&pmsg->queue);
 593                 }
 594                 return;
 595         }
 596 
 597         /* copy Tx Data */
 598         if (data->cur_trans->tx_buf != NULL) {
 599                 if (*bpw == 8) {
 600                         tx_buf = data->cur_trans->tx_buf;
 601                         for (j = 0; j < data->bpw_len; j++)
 602                                 data->pkt_tx_buff[j] = *tx_buf++;
 603                 } else {
 604                         tx_sbuf = data->cur_trans->tx_buf;
 605                         for (j = 0; j < data->bpw_len; j++)
 606                                 data->pkt_tx_buff[j] = *tx_sbuf++;
 607                 }
 608         }
 609 
 610         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 611         n_writes = data->bpw_len;
 612         if (n_writes > PCH_MAX_FIFO_DEPTH)
 613                 n_writes = PCH_MAX_FIFO_DEPTH;
 614 
 615         dev_dbg(&data->master->dev,
 616                 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 617                 __func__);
 618         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 619 
 620         for (j = 0; j < n_writes; j++)
 621                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 622 
 623         /* update tx_index */
 624         data->tx_index = j;
 625 
 626         /* reset transfer complete flag */
 627         data->transfer_complete = false;
 628         data->transfer_active = true;
 629 }
 630 
 631 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 632 {
 633         struct spi_message *pmsg, *tmp;
 634         dev_dbg(&data->master->dev, "%s called\n", __func__);
 635         /* Invoke complete callback
 636          * [To the spi core..indicating end of transfer] */
 637         data->current_msg->status = 0;
 638 
 639         if (data->current_msg->complete) {
 640                 dev_dbg(&data->master->dev,
 641                         "%s:Invoking callback of SPI core\n", __func__);
 642                 data->current_msg->complete(data->current_msg->context);
 643         }
 644 
 645         /* update status in global variable */
 646         data->bcurrent_msg_processing = false;
 647 
 648         dev_dbg(&data->master->dev,
 649                 "%s:data->bcurrent_msg_processing = false\n", __func__);
 650 
 651         data->current_msg = NULL;
 652         data->cur_trans = NULL;
 653 
 654         /* check if we have items in list and not suspending
 655          * return 1 if list empty */
 656         if ((list_empty(&data->queue) == 0) &&
 657             (!data->board_dat->suspend_sts) &&
 658             (data->status != STATUS_EXITING)) {
 659                 /* We have some more work to do (either there is more tranint
 660                  * bpw;sfer requests in the current message or there are
 661                  *more messages)
 662                  */
 663                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 664                 schedule_work(&data->work);
 665         } else if (data->board_dat->suspend_sts ||
 666                    data->status == STATUS_EXITING) {
 667                 dev_dbg(&data->master->dev,
 668                         "%s suspend/remove initiated, flushing queue\n",
 669                         __func__);
 670                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 671                         pmsg->status = -EIO;
 672 
 673                         if (pmsg->complete)
 674                                 pmsg->complete(pmsg->context);
 675 
 676                         /* delete from queue */
 677                         list_del_init(&pmsg->queue);
 678                 }
 679         }
 680 }
 681 
 682 static void pch_spi_set_ir(struct pch_spi_data *data)
 683 {
 684         /* enable interrupts, set threshold, enable SPI */
 685         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 686                 /* set receive threshold to PCH_RX_THOLD */
 687                 pch_spi_setclr_reg(data->master, PCH_SPCR,
 688                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
 689                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
 690                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
 691                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
 692         else
 693                 /* set receive threshold to maximum */
 694                 pch_spi_setclr_reg(data->master, PCH_SPCR,
 695                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 696                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
 697                                    SPCR_SPE_BIT,
 698                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
 699 
 700         /* Wait until the transfer completes; go to sleep after
 701                                  initiating the transfer. */
 702         dev_dbg(&data->master->dev,
 703                 "%s:waiting for transfer to get over\n", __func__);
 704 
 705         wait_event_interruptible(data->wait, data->transfer_complete);
 706 
 707         /* clear all interrupts */
 708         pch_spi_writereg(data->master, PCH_SPSR,
 709                          pch_spi_readreg(data->master, PCH_SPSR));
 710         /* Disable interrupts and SPI transfer */
 711         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 712         /* clear FIFO */
 713         pch_spi_clear_fifo(data->master);
 714 }
 715 
 716 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 717 {
 718         int j;
 719         u8 *rx_buf;
 720         u16 *rx_sbuf;
 721 
 722         /* copy Rx Data */
 723         if (!data->cur_trans->rx_buf)
 724                 return;
 725 
 726         if (bpw == 8) {
 727                 rx_buf = data->cur_trans->rx_buf;
 728                 for (j = 0; j < data->bpw_len; j++)
 729                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 730         } else {
 731                 rx_sbuf = data->cur_trans->rx_buf;
 732                 for (j = 0; j < data->bpw_len; j++)
 733                         *rx_sbuf++ = data->pkt_rx_buff[j];
 734         }
 735 }
 736 
 737 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 738 {
 739         int j;
 740         u8 *rx_buf;
 741         u16 *rx_sbuf;
 742         const u8 *rx_dma_buf;
 743         const u16 *rx_dma_sbuf;
 744 
 745         /* copy Rx Data */
 746         if (!data->cur_trans->rx_buf)
 747                 return;
 748 
 749         if (bpw == 8) {
 750                 rx_buf = data->cur_trans->rx_buf;
 751                 rx_dma_buf = data->dma.rx_buf_virt;
 752                 for (j = 0; j < data->bpw_len; j++)
 753                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
 754                 data->cur_trans->rx_buf = rx_buf;
 755         } else {
 756                 rx_sbuf = data->cur_trans->rx_buf;
 757                 rx_dma_sbuf = data->dma.rx_buf_virt;
 758                 for (j = 0; j < data->bpw_len; j++)
 759                         *rx_sbuf++ = *rx_dma_sbuf++;
 760                 data->cur_trans->rx_buf = rx_sbuf;
 761         }
 762 }
 763 
 764 static int pch_spi_start_transfer(struct pch_spi_data *data)
 765 {
 766         struct pch_spi_dma_ctrl *dma;
 767         unsigned long flags;
 768         int rtn;
 769 
 770         dma = &data->dma;
 771 
 772         spin_lock_irqsave(&data->lock, flags);
 773 
 774         /* disable interrupts, SPI set enable */
 775         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 776 
 777         spin_unlock_irqrestore(&data->lock, flags);
 778 
 779         /* Wait until the transfer completes; go to sleep after
 780                                  initiating the transfer. */
 781         dev_dbg(&data->master->dev,
 782                 "%s:waiting for transfer to get over\n", __func__);
 783         rtn = wait_event_interruptible_timeout(data->wait,
 784                                                data->transfer_complete,
 785                                                msecs_to_jiffies(2 * HZ));
 786         if (!rtn)
 787                 dev_err(&data->master->dev,
 788                         "%s wait-event timeout\n", __func__);
 789 
 790         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 791                             DMA_FROM_DEVICE);
 792 
 793         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 794                             DMA_FROM_DEVICE);
 795         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 796 
 797         async_tx_ack(dma->desc_rx);
 798         async_tx_ack(dma->desc_tx);
 799         kfree(dma->sg_tx_p);
 800         kfree(dma->sg_rx_p);
 801 
 802         spin_lock_irqsave(&data->lock, flags);
 803 
 804         /* clear fifo threshold, disable interrupts, disable SPI transfer */
 805         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 806                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 807                            SPCR_SPE_BIT);
 808         /* clear all interrupts */
 809         pch_spi_writereg(data->master, PCH_SPSR,
 810                          pch_spi_readreg(data->master, PCH_SPSR));
 811         /* clear FIFO */
 812         pch_spi_clear_fifo(data->master);
 813 
 814         spin_unlock_irqrestore(&data->lock, flags);
 815 
 816         return rtn;
 817 }
 818 
 819 static void pch_dma_rx_complete(void *arg)
 820 {
 821         struct pch_spi_data *data = arg;
 822 
 823         /* transfer is completed;inform pch_spi_process_messages_dma */
 824         data->transfer_complete = true;
 825         wake_up_interruptible(&data->wait);
 826 }
 827 
 828 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 829 {
 830         struct pch_dma_slave *param = slave;
 831 
 832         if ((chan->chan_id == param->chan_id) &&
 833             (param->dma_dev == chan->device->dev)) {
 834                 chan->private = param;
 835                 return true;
 836         } else {
 837                 return false;
 838         }
 839 }
 840 
 841 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 842 {
 843         dma_cap_mask_t mask;
 844         struct dma_chan *chan;
 845         struct pci_dev *dma_dev;
 846         struct pch_dma_slave *param;
 847         struct pch_spi_dma_ctrl *dma;
 848         unsigned int width;
 849 
 850         if (bpw == 8)
 851                 width = PCH_DMA_WIDTH_1_BYTE;
 852         else
 853                 width = PCH_DMA_WIDTH_2_BYTES;
 854 
 855         dma = &data->dma;
 856         dma_cap_zero(mask);
 857         dma_cap_set(DMA_SLAVE, mask);
 858 
 859         /* Get DMA's dev information */
 860         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 861                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 862 
 863         /* Set Tx DMA */
 864         param = &dma->param_tx;
 865         param->dma_dev = &dma_dev->dev;
 866         param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
 867         param->tx_reg = data->io_base_addr + PCH_SPDWR;
 868         param->width = width;
 869         chan = dma_request_channel(mask, pch_spi_filter, param);
 870         if (!chan) {
 871                 dev_err(&data->master->dev,
 872                         "ERROR: dma_request_channel FAILS(Tx)\n");
 873                 data->use_dma = 0;
 874                 return;
 875         }
 876         dma->chan_tx = chan;
 877 
 878         /* Set Rx DMA */
 879         param = &dma->param_rx;
 880         param->dma_dev = &dma_dev->dev;
 881         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
 882         param->rx_reg = data->io_base_addr + PCH_SPDRR;
 883         param->width = width;
 884         chan = dma_request_channel(mask, pch_spi_filter, param);
 885         if (!chan) {
 886                 dev_err(&data->master->dev,
 887                         "ERROR: dma_request_channel FAILS(Rx)\n");
 888                 dma_release_channel(dma->chan_tx);
 889                 dma->chan_tx = NULL;
 890                 data->use_dma = 0;
 891                 return;
 892         }
 893         dma->chan_rx = chan;
 894 }
 895 
 896 static void pch_spi_release_dma(struct pch_spi_data *data)
 897 {
 898         struct pch_spi_dma_ctrl *dma;
 899 
 900         dma = &data->dma;
 901         if (dma->chan_tx) {
 902                 dma_release_channel(dma->chan_tx);
 903                 dma->chan_tx = NULL;
 904         }
 905         if (dma->chan_rx) {
 906                 dma_release_channel(dma->chan_rx);
 907                 dma->chan_rx = NULL;
 908         }
 909 }
 910 
 911 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 912 {
 913         const u8 *tx_buf;
 914         const u16 *tx_sbuf;
 915         u8 *tx_dma_buf;
 916         u16 *tx_dma_sbuf;
 917         struct scatterlist *sg;
 918         struct dma_async_tx_descriptor *desc_tx;
 919         struct dma_async_tx_descriptor *desc_rx;
 920         int num;
 921         int i;
 922         int size;
 923         int rem;
 924         int head;
 925         unsigned long flags;
 926         struct pch_spi_dma_ctrl *dma;
 927 
 928         dma = &data->dma;
 929 
 930         /* set baud rate if needed */
 931         if (data->cur_trans->speed_hz) {
 932                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 933                 spin_lock_irqsave(&data->lock, flags);
 934                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 935                 spin_unlock_irqrestore(&data->lock, flags);
 936         }
 937 
 938         /* set bits per word if needed */
 939         if (data->cur_trans->bits_per_word &&
 940             (data->current_msg->spi->bits_per_word !=
 941              data->cur_trans->bits_per_word)) {
 942                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 943                 spin_lock_irqsave(&data->lock, flags);
 944                 pch_spi_set_bits_per_word(data->master,
 945                                           data->cur_trans->bits_per_word);
 946                 spin_unlock_irqrestore(&data->lock, flags);
 947                 *bpw = data->cur_trans->bits_per_word;
 948         } else {
 949                 *bpw = data->current_msg->spi->bits_per_word;
 950         }
 951         data->bpw_len = data->cur_trans->len / (*bpw / 8);
 952 
 953         if (data->bpw_len > PCH_BUF_SIZE) {
 954                 data->bpw_len = PCH_BUF_SIZE;
 955                 data->cur_trans->len -= PCH_BUF_SIZE;
 956         }
 957 
 958         /* copy Tx Data */
 959         if (data->cur_trans->tx_buf != NULL) {
 960                 if (*bpw == 8) {
 961                         tx_buf = data->cur_trans->tx_buf;
 962                         tx_dma_buf = dma->tx_buf_virt;
 963                         for (i = 0; i < data->bpw_len; i++)
 964                                 *tx_dma_buf++ = *tx_buf++;
 965                 } else {
 966                         tx_sbuf = data->cur_trans->tx_buf;
 967                         tx_dma_sbuf = dma->tx_buf_virt;
 968                         for (i = 0; i < data->bpw_len; i++)
 969                                 *tx_dma_sbuf++ = *tx_sbuf++;
 970                 }
 971         }
 972 
 973         /* Calculate Rx parameter for DMA transmitting */
 974         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 975                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 976                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 977                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 978                 } else {
 979                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 980                         rem = PCH_DMA_TRANS_SIZE;
 981                 }
 982                 size = PCH_DMA_TRANS_SIZE;
 983         } else {
 984                 num = 1;
 985                 size = data->bpw_len;
 986                 rem = data->bpw_len;
 987         }
 988         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
 989                 __func__, num, size, rem);
 990         spin_lock_irqsave(&data->lock, flags);
 991 
 992         /* set receive fifo threshold and transmit fifo threshold */
 993         pch_spi_setclr_reg(data->master, PCH_SPCR,
 994                            ((size - 1) << SPCR_RFIC_FIELD) |
 995                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 996                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 997 
 998         spin_unlock_irqrestore(&data->lock, flags);
 999 
1000         /* RX */
1001         dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1002         if (!dma->sg_rx_p)
1003                 return;
1004 
1005         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1006         /* offset, length setting */
1007         sg = dma->sg_rx_p;
1008         for (i = 0; i < num; i++, sg++) {
1009                 if (i == (num - 2)) {
1010                         sg->offset = size * i;
1011                         sg->offset = sg->offset * (*bpw / 8);
1012                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1013                                     sg->offset);
1014                         sg_dma_len(sg) = rem;
1015                 } else if (i == (num - 1)) {
1016                         sg->offset = size * (i - 1) + rem;
1017                         sg->offset = sg->offset * (*bpw / 8);
1018                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1019                                     sg->offset);
1020                         sg_dma_len(sg) = size;
1021                 } else {
1022                         sg->offset = size * i;
1023                         sg->offset = sg->offset * (*bpw / 8);
1024                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025                                     sg->offset);
1026                         sg_dma_len(sg) = size;
1027                 }
1028                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1029         }
1030         sg = dma->sg_rx_p;
1031         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1032                                         num, DMA_DEV_TO_MEM,
1033                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1034         if (!desc_rx) {
1035                 dev_err(&data->master->dev,
1036                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1037                 return;
1038         }
1039         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1040         desc_rx->callback = pch_dma_rx_complete;
1041         desc_rx->callback_param = data;
1042         dma->nent = num;
1043         dma->desc_rx = desc_rx;
1044 
1045         /* Calculate Tx parameter for DMA transmitting */
1046         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1047                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1048                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1049                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1050                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1051                 } else {
1052                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1053                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1054                               PCH_DMA_TRANS_SIZE - head;
1055                 }
1056                 size = PCH_DMA_TRANS_SIZE;
1057         } else {
1058                 num = 1;
1059                 size = data->bpw_len;
1060                 rem = data->bpw_len;
1061                 head = 0;
1062         }
1063 
1064         dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1065         if (!dma->sg_tx_p)
1066                 return;
1067 
1068         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1069         /* offset, length setting */
1070         sg = dma->sg_tx_p;
1071         for (i = 0; i < num; i++, sg++) {
1072                 if (i == 0) {
1073                         sg->offset = 0;
1074                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1075                                     sg->offset);
1076                         sg_dma_len(sg) = size + head;
1077                 } else if (i == (num - 1)) {
1078                         sg->offset = head + size * i;
1079                         sg->offset = sg->offset * (*bpw / 8);
1080                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1081                                     sg->offset);
1082                         sg_dma_len(sg) = rem;
1083                 } else {
1084                         sg->offset = head + size * i;
1085                         sg->offset = sg->offset * (*bpw / 8);
1086                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1087                                     sg->offset);
1088                         sg_dma_len(sg) = size;
1089                 }
1090                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1091         }
1092         sg = dma->sg_tx_p;
1093         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1094                                         sg, num, DMA_MEM_TO_DEV,
1095                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1096         if (!desc_tx) {
1097                 dev_err(&data->master->dev,
1098                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1099                 return;
1100         }
1101         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1102         desc_tx->callback = NULL;
1103         desc_tx->callback_param = data;
1104         dma->nent = num;
1105         dma->desc_tx = desc_tx;
1106 
1107         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1108 
1109         spin_lock_irqsave(&data->lock, flags);
1110         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1111         desc_rx->tx_submit(desc_rx);
1112         desc_tx->tx_submit(desc_tx);
1113         spin_unlock_irqrestore(&data->lock, flags);
1114 
1115         /* reset transfer complete flag */
1116         data->transfer_complete = false;
1117 }
1118 
1119 static void pch_spi_process_messages(struct work_struct *pwork)
1120 {
1121         struct spi_message *pmsg, *tmp;
1122         struct pch_spi_data *data;
1123         int bpw;
1124 
1125         data = container_of(pwork, struct pch_spi_data, work);
1126         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1127 
1128         spin_lock(&data->lock);
1129         /* check if suspend has been initiated;if yes flush queue */
1130         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1131                 dev_dbg(&data->master->dev,
1132                         "%s suspend/remove initiated, flushing queue\n", __func__);
1133                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1134                         pmsg->status = -EIO;
1135 
1136                         if (pmsg->complete) {
1137                                 spin_unlock(&data->lock);
1138                                 pmsg->complete(pmsg->context);
1139                                 spin_lock(&data->lock);
1140                         }
1141 
1142                         /* delete from queue */
1143                         list_del_init(&pmsg->queue);
1144                 }
1145 
1146                 spin_unlock(&data->lock);
1147                 return;
1148         }
1149 
1150         data->bcurrent_msg_processing = true;
1151         dev_dbg(&data->master->dev,
1152                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1153 
1154         /* Get the message from the queue and delete it from there. */
1155         data->current_msg = list_entry(data->queue.next, struct spi_message,
1156                                         queue);
1157 
1158         list_del_init(&data->current_msg->queue);
1159 
1160         data->current_msg->status = 0;
1161 
1162         pch_spi_select_chip(data, data->current_msg->spi);
1163 
1164         spin_unlock(&data->lock);
1165 
1166         if (data->use_dma)
1167                 pch_spi_request_dma(data,
1168                                     data->current_msg->spi->bits_per_word);
1169         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1170         do {
1171                 int cnt;
1172                 /* If we are already processing a message get the next
1173                 transfer structure from the message otherwise retrieve
1174                 the 1st transfer request from the message. */
1175                 spin_lock(&data->lock);
1176                 if (data->cur_trans == NULL) {
1177                         data->cur_trans =
1178                                 list_entry(data->current_msg->transfers.next,
1179                                            struct spi_transfer, transfer_list);
1180                         dev_dbg(&data->master->dev,
1181                                 "%s :Getting 1st transfer message\n",
1182                                 __func__);
1183                 } else {
1184                         data->cur_trans =
1185                                 list_entry(data->cur_trans->transfer_list.next,
1186                                            struct spi_transfer, transfer_list);
1187                         dev_dbg(&data->master->dev,
1188                                 "%s :Getting next transfer message\n",
1189                                 __func__);
1190                 }
1191                 spin_unlock(&data->lock);
1192 
1193                 if (!data->cur_trans->len)
1194                         goto out;
1195                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1196                 data->save_total_len = data->cur_trans->len;
1197                 if (data->use_dma) {
1198                         int i;
1199                         char *save_rx_buf = data->cur_trans->rx_buf;
1200                         for (i = 0; i < cnt; i ++) {
1201                                 pch_spi_handle_dma(data, &bpw);
1202                                 if (!pch_spi_start_transfer(data)) {
1203                                         data->transfer_complete = true;
1204                                         data->current_msg->status = -EIO;
1205                                         data->current_msg->complete
1206                                                    (data->current_msg->context);
1207                                         data->bcurrent_msg_processing = false;
1208                                         data->current_msg = NULL;
1209                                         data->cur_trans = NULL;
1210                                         goto out;
1211                                 }
1212                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1213                         }
1214                         data->cur_trans->rx_buf = save_rx_buf;
1215                 } else {
1216                         pch_spi_set_tx(data, &bpw);
1217                         pch_spi_set_ir(data);
1218                         pch_spi_copy_rx_data(data, bpw);
1219                         kfree(data->pkt_rx_buff);
1220                         data->pkt_rx_buff = NULL;
1221                         kfree(data->pkt_tx_buff);
1222                         data->pkt_tx_buff = NULL;
1223                 }
1224                 /* increment message count */
1225                 data->cur_trans->len = data->save_total_len;
1226                 data->current_msg->actual_length += data->cur_trans->len;
1227 
1228                 dev_dbg(&data->master->dev,
1229                         "%s:data->current_msg->actual_length=%d\n",
1230                         __func__, data->current_msg->actual_length);
1231 
1232                 /* check for delay */
1233                 if (data->cur_trans->delay_usecs) {
1234                         dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1235                                 __func__, data->cur_trans->delay_usecs);
1236                         udelay(data->cur_trans->delay_usecs);
1237                 }
1238 
1239                 spin_lock(&data->lock);
1240 
1241                 /* No more transfer in this message. */
1242                 if ((data->cur_trans->transfer_list.next) ==
1243                     &(data->current_msg->transfers)) {
1244                         pch_spi_nomore_transfer(data);
1245                 }
1246 
1247                 spin_unlock(&data->lock);
1248 
1249         } while (data->cur_trans != NULL);
1250 
1251 out:
1252         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1253         if (data->use_dma)
1254                 pch_spi_release_dma(data);
1255 }
1256 
1257 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1258                                    struct pch_spi_data *data)
1259 {
1260         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1261 
1262         flush_work(&data->work);
1263 }
1264 
1265 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1266                                  struct pch_spi_data *data)
1267 {
1268         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1269 
1270         /* reset PCH SPI h/w */
1271         pch_spi_reset(data->master);
1272         dev_dbg(&board_dat->pdev->dev,
1273                 "%s pch_spi_reset invoked successfully\n", __func__);
1274 
1275         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1276 
1277         return 0;
1278 }
1279 
1280 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1281                              struct pch_spi_data *data)
1282 {
1283         struct pch_spi_dma_ctrl *dma;
1284 
1285         dma = &data->dma;
1286         if (dma->tx_buf_dma)
1287                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1288                                   dma->tx_buf_virt, dma->tx_buf_dma);
1289         if (dma->rx_buf_dma)
1290                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291                                   dma->rx_buf_virt, dma->rx_buf_dma);
1292 }
1293 
1294 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1295                               struct pch_spi_data *data)
1296 {
1297         struct pch_spi_dma_ctrl *dma;
1298         int ret;
1299 
1300         dma = &data->dma;
1301         ret = 0;
1302         /* Get Consistent memory for Tx DMA */
1303         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1304                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1305         if (!dma->tx_buf_virt)
1306                 ret = -ENOMEM;
1307 
1308         /* Get Consistent memory for Rx DMA */
1309         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1310                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1311         if (!dma->rx_buf_virt)
1312                 ret = -ENOMEM;
1313 
1314         return ret;
1315 }
1316 
1317 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1318 {
1319         int ret;
1320         struct spi_master *master;
1321         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1322         struct pch_spi_data *data;
1323 
1324         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1325 
1326         master = spi_alloc_master(&board_dat->pdev->dev,
1327                                   sizeof(struct pch_spi_data));
1328         if (!master) {
1329                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1330                         plat_dev->id);
1331                 return -ENOMEM;
1332         }
1333 
1334         data = spi_master_get_devdata(master);
1335         data->master = master;
1336 
1337         platform_set_drvdata(plat_dev, data);
1338 
1339         /* baseaddress + address offset) */
1340         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1341                                          PCH_ADDRESS_SIZE * plat_dev->id;
1342         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1343         if (!data->io_remap_addr) {
1344                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1345                 ret = -ENOMEM;
1346                 goto err_pci_iomap;
1347         }
1348         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1349 
1350         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1351                 plat_dev->id, data->io_remap_addr);
1352 
1353         /* initialize members of SPI master */
1354         master->num_chipselect = PCH_MAX_CS;
1355         master->transfer = pch_spi_transfer;
1356         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1357         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1358         master->max_speed_hz = PCH_MAX_BAUDRATE;
1359 
1360         data->board_dat = board_dat;
1361         data->plat_dev = plat_dev;
1362         data->n_curnt_chip = 255;
1363         data->status = STATUS_RUNNING;
1364         data->ch = plat_dev->id;
1365         data->use_dma = use_dma;
1366 
1367         INIT_LIST_HEAD(&data->queue);
1368         spin_lock_init(&data->lock);
1369         INIT_WORK(&data->work, pch_spi_process_messages);
1370         init_waitqueue_head(&data->wait);
1371 
1372         ret = pch_spi_get_resources(board_dat, data);
1373         if (ret) {
1374                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1375                 goto err_spi_get_resources;
1376         }
1377 
1378         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1379                           IRQF_SHARED, KBUILD_MODNAME, data);
1380         if (ret) {
1381                 dev_err(&plat_dev->dev,
1382                         "%s request_irq failed\n", __func__);
1383                 goto err_request_irq;
1384         }
1385         data->irq_reg_sts = true;
1386 
1387         pch_spi_set_master_mode(master);
1388 
1389         if (use_dma) {
1390                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1391                 ret = pch_alloc_dma_buf(board_dat, data);
1392                 if (ret)
1393                         goto err_spi_register_master;
1394         }
1395 
1396         ret = spi_register_master(master);
1397         if (ret != 0) {
1398                 dev_err(&plat_dev->dev,
1399                         "%s spi_register_master FAILED\n", __func__);
1400                 goto err_spi_register_master;
1401         }
1402 
1403         return 0;
1404 
1405 err_spi_register_master:
1406         pch_free_dma_buf(board_dat, data);
1407         free_irq(board_dat->pdev->irq, data);
1408 err_request_irq:
1409         pch_spi_free_resources(board_dat, data);
1410 err_spi_get_resources:
1411         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1412 err_pci_iomap:
1413         spi_master_put(master);
1414 
1415         return ret;
1416 }
1417 
1418 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1419 {
1420         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1421         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1422         int count;
1423         unsigned long flags;
1424 
1425         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1426                 __func__, plat_dev->id, board_dat->pdev->irq);
1427 
1428         if (use_dma)
1429                 pch_free_dma_buf(board_dat, data);
1430 
1431         /* check for any pending messages; no action is taken if the queue
1432          * is still full; but at least we tried.  Unload anyway */
1433         count = 500;
1434         spin_lock_irqsave(&data->lock, flags);
1435         data->status = STATUS_EXITING;
1436         while ((list_empty(&data->queue) == 0) && --count) {
1437                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1438                         __func__);
1439                 spin_unlock_irqrestore(&data->lock, flags);
1440                 msleep(PCH_SLEEP_TIME);
1441                 spin_lock_irqsave(&data->lock, flags);
1442         }
1443         spin_unlock_irqrestore(&data->lock, flags);
1444 
1445         pch_spi_free_resources(board_dat, data);
1446         /* disable interrupts & free IRQ */
1447         if (data->irq_reg_sts) {
1448                 /* disable interrupts */
1449                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1450                 data->irq_reg_sts = false;
1451                 free_irq(board_dat->pdev->irq, data);
1452         }
1453 
1454         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1455         spi_unregister_master(data->master);
1456 
1457         return 0;
1458 }
1459 #ifdef CONFIG_PM
1460 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1461                               pm_message_t state)
1462 {
1463         u8 count;
1464         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1465         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1466 
1467         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1468 
1469         if (!board_dat) {
1470                 dev_err(&pd_dev->dev,
1471                         "%s pci_get_drvdata returned NULL\n", __func__);
1472                 return -EFAULT;
1473         }
1474 
1475         /* check if the current message is processed:
1476            Only after thats done the transfer will be suspended */
1477         count = 255;
1478         while ((--count) > 0) {
1479                 if (!(data->bcurrent_msg_processing))
1480                         break;
1481                 msleep(PCH_SLEEP_TIME);
1482         }
1483 
1484         /* Free IRQ */
1485         if (data->irq_reg_sts) {
1486                 /* disable all interrupts */
1487                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1488                 pch_spi_reset(data->master);
1489                 free_irq(board_dat->pdev->irq, data);
1490 
1491                 data->irq_reg_sts = false;
1492                 dev_dbg(&pd_dev->dev,
1493                         "%s free_irq invoked successfully.\n", __func__);
1494         }
1495 
1496         return 0;
1497 }
1498 
1499 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1500 {
1501         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1502         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1503         int retval;
1504 
1505         if (!board_dat) {
1506                 dev_err(&pd_dev->dev,
1507                         "%s pci_get_drvdata returned NULL\n", __func__);
1508                 return -EFAULT;
1509         }
1510 
1511         if (!data->irq_reg_sts) {
1512                 /* register IRQ */
1513                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1514                                      IRQF_SHARED, KBUILD_MODNAME, data);
1515                 if (retval < 0) {
1516                         dev_err(&pd_dev->dev,
1517                                 "%s request_irq failed\n", __func__);
1518                         return retval;
1519                 }
1520 
1521                 /* reset PCH SPI h/w */
1522                 pch_spi_reset(data->master);
1523                 pch_spi_set_master_mode(data->master);
1524                 data->irq_reg_sts = true;
1525         }
1526         return 0;
1527 }
1528 #else
1529 #define pch_spi_pd_suspend NULL
1530 #define pch_spi_pd_resume NULL
1531 #endif
1532 
1533 static struct platform_driver pch_spi_pd_driver = {
1534         .driver = {
1535                 .name = "pch-spi",
1536         },
1537         .probe = pch_spi_pd_probe,
1538         .remove = pch_spi_pd_remove,
1539         .suspend = pch_spi_pd_suspend,
1540         .resume = pch_spi_pd_resume
1541 };
1542 
1543 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1544 {
1545         struct pch_spi_board_data *board_dat;
1546         struct platform_device *pd_dev = NULL;
1547         int retval;
1548         int i;
1549         struct pch_pd_dev_save *pd_dev_save;
1550 
1551         pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1552         if (!pd_dev_save)
1553                 return -ENOMEM;
1554 
1555         board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1556         if (!board_dat) {
1557                 retval = -ENOMEM;
1558                 goto err_no_mem;
1559         }
1560 
1561         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1562         if (retval) {
1563                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1564                 goto pci_request_regions;
1565         }
1566 
1567         board_dat->pdev = pdev;
1568         board_dat->num = id->driver_data;
1569         pd_dev_save->num = id->driver_data;
1570         pd_dev_save->board_dat = board_dat;
1571 
1572         retval = pci_enable_device(pdev);
1573         if (retval) {
1574                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1575                 goto pci_enable_device;
1576         }
1577 
1578         for (i = 0; i < board_dat->num; i++) {
1579                 pd_dev = platform_device_alloc("pch-spi", i);
1580                 if (!pd_dev) {
1581                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1582                         retval = -ENOMEM;
1583                         goto err_platform_device;
1584                 }
1585                 pd_dev_save->pd_save[i] = pd_dev;
1586                 pd_dev->dev.parent = &pdev->dev;
1587 
1588                 retval = platform_device_add_data(pd_dev, board_dat,
1589                                                   sizeof(*board_dat));
1590                 if (retval) {
1591                         dev_err(&pdev->dev,
1592                                 "platform_device_add_data failed\n");
1593                         platform_device_put(pd_dev);
1594                         goto err_platform_device;
1595                 }
1596 
1597                 retval = platform_device_add(pd_dev);
1598                 if (retval) {
1599                         dev_err(&pdev->dev, "platform_device_add failed\n");
1600                         platform_device_put(pd_dev);
1601                         goto err_platform_device;
1602                 }
1603         }
1604 
1605         pci_set_drvdata(pdev, pd_dev_save);
1606 
1607         return 0;
1608 
1609 err_platform_device:
1610         while (--i >= 0)
1611                 platform_device_unregister(pd_dev_save->pd_save[i]);
1612         pci_disable_device(pdev);
1613 pci_enable_device:
1614         pci_release_regions(pdev);
1615 pci_request_regions:
1616         kfree(board_dat);
1617 err_no_mem:
1618         kfree(pd_dev_save);
1619 
1620         return retval;
1621 }
1622 
1623 static void pch_spi_remove(struct pci_dev *pdev)
1624 {
1625         int i;
1626         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1627 
1628         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1629 
1630         for (i = 0; i < pd_dev_save->num; i++)
1631                 platform_device_unregister(pd_dev_save->pd_save[i]);
1632 
1633         pci_disable_device(pdev);
1634         pci_release_regions(pdev);
1635         kfree(pd_dev_save->board_dat);
1636         kfree(pd_dev_save);
1637 }
1638 
1639 #ifdef CONFIG_PM
1640 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1641 {
1642         int retval;
1643         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1644 
1645         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1646 
1647         pd_dev_save->board_dat->suspend_sts = true;
1648 
1649         /* save config space */
1650         retval = pci_save_state(pdev);
1651         if (retval == 0) {
1652                 pci_enable_wake(pdev, PCI_D3hot, 0);
1653                 pci_disable_device(pdev);
1654                 pci_set_power_state(pdev, PCI_D3hot);
1655         } else {
1656                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1657         }
1658 
1659         return retval;
1660 }
1661 
1662 static int pch_spi_resume(struct pci_dev *pdev)
1663 {
1664         int retval;
1665         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1666         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1667 
1668         pci_set_power_state(pdev, PCI_D0);
1669         pci_restore_state(pdev);
1670 
1671         retval = pci_enable_device(pdev);
1672         if (retval < 0) {
1673                 dev_err(&pdev->dev,
1674                         "%s pci_enable_device failed\n", __func__);
1675         } else {
1676                 pci_enable_wake(pdev, PCI_D3hot, 0);
1677 
1678                 /* set suspend status to false */
1679                 pd_dev_save->board_dat->suspend_sts = false;
1680         }
1681 
1682         return retval;
1683 }
1684 #else
1685 #define pch_spi_suspend NULL
1686 #define pch_spi_resume NULL
1687 
1688 #endif
1689 
1690 static struct pci_driver pch_spi_pcidev_driver = {
1691         .name = "pch_spi",
1692         .id_table = pch_spi_pcidev_id,
1693         .probe = pch_spi_probe,
1694         .remove = pch_spi_remove,
1695         .suspend = pch_spi_suspend,
1696         .resume = pch_spi_resume,
1697 };
1698 
1699 static int __init pch_spi_init(void)
1700 {
1701         int ret;
1702         ret = platform_driver_register(&pch_spi_pd_driver);
1703         if (ret)
1704                 return ret;
1705 
1706         ret = pci_register_driver(&pch_spi_pcidev_driver);
1707         if (ret) {
1708                 platform_driver_unregister(&pch_spi_pd_driver);
1709                 return ret;
1710         }
1711 
1712         return 0;
1713 }
1714 module_init(pch_spi_init);
1715 
1716 static void __exit pch_spi_exit(void)
1717 {
1718         pci_unregister_driver(&pch_spi_pcidev_driver);
1719         platform_driver_unregister(&pch_spi_pd_driver);
1720 }
1721 module_exit(pch_spi_exit);
1722 
1723 module_param(use_dma, int, 0644);
1724 MODULE_PARM_DESC(use_dma,
1725                  "to use DMA for data transfers pass 1 else 0; default 1");
1726 
1727 MODULE_LICENSE("GPL");
1728 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1729 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1730 

/* [<][>][^][v][top][bottom][index][help] */