root/drivers/spi/spi-bcm2835.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bcm2835_debugfs_create
  2. bcm2835_debugfs_remove
  3. bcm2835_debugfs_create
  4. bcm2835_debugfs_remove
  5. bcm2835_rd
  6. bcm2835_wr
  7. bcm2835_rd_fifo
  8. bcm2835_wr_fifo
  9. bcm2835_rd_fifo_count
  10. bcm2835_wr_fifo_count
  11. bcm2835_wait_tx_fifo_empty
  12. bcm2835_rd_fifo_blind
  13. bcm2835_wr_fifo_blind
  14. bcm2835_spi_reset_hw
  15. bcm2835_spi_interrupt
  16. bcm2835_spi_transfer_one_irq
  17. bcm2835_spi_transfer_prologue
  18. bcm2835_spi_undo_prologue
  19. bcm2835_spi_dma_rx_done
  20. bcm2835_spi_dma_tx_done
  21. bcm2835_spi_prepare_sg
  22. bcm2835_spi_transfer_one_dma
  23. bcm2835_spi_can_dma
  24. bcm2835_dma_release
  25. bcm2835_dma_init
  26. bcm2835_spi_transfer_one_poll
  27. bcm2835_spi_transfer_one
  28. bcm2835_spi_prepare_message
  29. bcm2835_spi_handle_err
  30. chip_match_name
  31. bcm2835_spi_setup
  32. bcm2835_spi_probe
  33. bcm2835_spi_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Driver for Broadcom BCM2835 SPI Controllers
   4  *
   5  * Copyright (C) 2012 Chris Boot
   6  * Copyright (C) 2013 Stephen Warren
   7  * Copyright (C) 2015 Martin Sperl
   8  *
   9  * This driver is inspired by:
  10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12  */
  13 
  14 #include <linux/clk.h>
  15 #include <linux/completion.h>
  16 #include <linux/debugfs.h>
  17 #include <linux/delay.h>
  18 #include <linux/dma-mapping.h>
  19 #include <linux/dmaengine.h>
  20 #include <linux/err.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/io.h>
  23 #include <linux/kernel.h>
  24 #include <linux/module.h>
  25 #include <linux/of.h>
  26 #include <linux/of_address.h>
  27 #include <linux/of_device.h>
  28 #include <linux/gpio/consumer.h>
  29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
  30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
  31 #include <linux/of_irq.h>
  32 #include <linux/spi/spi.h>
  33 
  34 /* SPI register offsets */
  35 #define BCM2835_SPI_CS                  0x00
  36 #define BCM2835_SPI_FIFO                0x04
  37 #define BCM2835_SPI_CLK                 0x08
  38 #define BCM2835_SPI_DLEN                0x0c
  39 #define BCM2835_SPI_LTOH                0x10
  40 #define BCM2835_SPI_DC                  0x14
  41 
  42 /* Bitfields in CS */
  43 #define BCM2835_SPI_CS_LEN_LONG         0x02000000
  44 #define BCM2835_SPI_CS_DMA_LEN          0x01000000
  45 #define BCM2835_SPI_CS_CSPOL2           0x00800000
  46 #define BCM2835_SPI_CS_CSPOL1           0x00400000
  47 #define BCM2835_SPI_CS_CSPOL0           0x00200000
  48 #define BCM2835_SPI_CS_RXF              0x00100000
  49 #define BCM2835_SPI_CS_RXR              0x00080000
  50 #define BCM2835_SPI_CS_TXD              0x00040000
  51 #define BCM2835_SPI_CS_RXD              0x00020000
  52 #define BCM2835_SPI_CS_DONE             0x00010000
  53 #define BCM2835_SPI_CS_LEN              0x00002000
  54 #define BCM2835_SPI_CS_REN              0x00001000
  55 #define BCM2835_SPI_CS_ADCS             0x00000800
  56 #define BCM2835_SPI_CS_INTR             0x00000400
  57 #define BCM2835_SPI_CS_INTD             0x00000200
  58 #define BCM2835_SPI_CS_DMAEN            0x00000100
  59 #define BCM2835_SPI_CS_TA               0x00000080
  60 #define BCM2835_SPI_CS_CSPOL            0x00000040
  61 #define BCM2835_SPI_CS_CLEAR_RX         0x00000020
  62 #define BCM2835_SPI_CS_CLEAR_TX         0x00000010
  63 #define BCM2835_SPI_CS_CPOL             0x00000008
  64 #define BCM2835_SPI_CS_CPHA             0x00000004
  65 #define BCM2835_SPI_CS_CS_10            0x00000002
  66 #define BCM2835_SPI_CS_CS_01            0x00000001
  67 
  68 #define BCM2835_SPI_FIFO_SIZE           64
  69 #define BCM2835_SPI_FIFO_SIZE_3_4       48
  70 #define BCM2835_SPI_DMA_MIN_LENGTH      96
  71 #define BCM2835_SPI_NUM_CS              3   /* raise as necessary */
  72 #define BCM2835_SPI_MODE_BITS   (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  73                                 | SPI_NO_CS | SPI_3WIRE)
  74 
  75 #define DRV_NAME        "spi-bcm2835"
  76 
  77 /* define polling limits */
  78 unsigned int polling_limit_us = 30;
  79 module_param(polling_limit_us, uint, 0664);
  80 MODULE_PARM_DESC(polling_limit_us,
  81                  "time in us to run a transfer in polling mode\n");
  82 
  83 /**
  84  * struct bcm2835_spi - BCM2835 SPI controller
  85  * @regs: base address of register map
  86  * @clk: core clock, divided to calculate serial clock
  87  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  88  * @tfr: SPI transfer currently processed
  89  * @tx_buf: pointer whence next transmitted byte is read
  90  * @rx_buf: pointer where next received byte is written
  91  * @tx_len: remaining bytes to transmit
  92  * @rx_len: remaining bytes to receive
  93  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  94  *      length is not a multiple of 4 (to overcome hardware limitation)
  95  * @rx_prologue: bytes received without DMA if first RX sglist entry's
  96  *      length is not a multiple of 4 (to overcome hardware limitation)
  97  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
  98  * @prepare_cs: precalculated CS register value for ->prepare_message()
  99  *      (uses slave-specific clock polarity and phase settings)
 100  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 101  *      unloading the module
 102  * @count_transfer_polling: count of how often polling mode is used
 103  * @count_transfer_irq: count of how often interrupt mode is used
 104  * @count_transfer_irq_after_polling: count of how often we fall back to
 105  *      interrupt mode after starting in polling mode.
 106  *      These are counted as well in @count_transfer_polling and
 107  *      @count_transfer_irq
 108  * @count_transfer_dma: count how often dma mode is used
 109  * @chip_select: SPI slave currently selected
 110  *      (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 111  * @tx_dma_active: whether a TX DMA descriptor is in progress
 112  * @rx_dma_active: whether a RX DMA descriptor is in progress
 113  *      (used by bcm2835_spi_dma_tx_done() to handle a race)
 114  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 115  *      (cyclically copies from zero page to TX FIFO)
 116  * @fill_tx_addr: bus address of zero page
 117  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 118  *      (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 119  * @clear_rx_addr: bus address of @clear_rx_cs
 120  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 121  *      (uses slave-specific clock polarity and phase settings)
 122  */
 123 struct bcm2835_spi {
 124         void __iomem *regs;
 125         struct clk *clk;
 126         int irq;
 127         struct spi_transfer *tfr;
 128         const u8 *tx_buf;
 129         u8 *rx_buf;
 130         int tx_len;
 131         int rx_len;
 132         int tx_prologue;
 133         int rx_prologue;
 134         unsigned int tx_spillover;
 135         u32 prepare_cs[BCM2835_SPI_NUM_CS];
 136 
 137         struct dentry *debugfs_dir;
 138         u64 count_transfer_polling;
 139         u64 count_transfer_irq;
 140         u64 count_transfer_irq_after_polling;
 141         u64 count_transfer_dma;
 142 
 143         u8 chip_select;
 144         unsigned int tx_dma_active;
 145         unsigned int rx_dma_active;
 146         struct dma_async_tx_descriptor *fill_tx_desc;
 147         dma_addr_t fill_tx_addr;
 148         struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
 149         dma_addr_t clear_rx_addr;
 150         u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
 151 };
 152 
 153 #if defined(CONFIG_DEBUG_FS)
 154 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 155                                    const char *dname)
 156 {
 157         char name[64];
 158         struct dentry *dir;
 159 
 160         /* get full name */
 161         snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 162 
 163         /* the base directory */
 164         dir = debugfs_create_dir(name, NULL);
 165         bs->debugfs_dir = dir;
 166 
 167         /* the counters */
 168         debugfs_create_u64("count_transfer_polling", 0444, dir,
 169                            &bs->count_transfer_polling);
 170         debugfs_create_u64("count_transfer_irq", 0444, dir,
 171                            &bs->count_transfer_irq);
 172         debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 173                            &bs->count_transfer_irq_after_polling);
 174         debugfs_create_u64("count_transfer_dma", 0444, dir,
 175                            &bs->count_transfer_dma);
 176 }
 177 
 178 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 179 {
 180         debugfs_remove_recursive(bs->debugfs_dir);
 181         bs->debugfs_dir = NULL;
 182 }
 183 #else
 184 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 185                                    const char *dname)
 186 {
 187 }
 188 
 189 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 190 {
 191 }
 192 #endif /* CONFIG_DEBUG_FS */
 193 
 194 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
 195 {
 196         return readl(bs->regs + reg);
 197 }
 198 
 199 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
 200 {
 201         writel(val, bs->regs + reg);
 202 }
 203 
 204 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 205 {
 206         u8 byte;
 207 
 208         while ((bs->rx_len) &&
 209                (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 210                 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 211                 if (bs->rx_buf)
 212                         *bs->rx_buf++ = byte;
 213                 bs->rx_len--;
 214         }
 215 }
 216 
 217 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 218 {
 219         u8 byte;
 220 
 221         while ((bs->tx_len) &&
 222                (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 223                 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 224                 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 225                 bs->tx_len--;
 226         }
 227 }
 228 
 229 /**
 230  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 231  * @bs: BCM2835 SPI controller
 232  * @count: bytes to read from RX FIFO
 233  *
 234  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 235  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 236  * in the CS register is set (such that a read from the FIFO register receives
 237  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 238  */
 239 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 240 {
 241         u32 val;
 242         int len;
 243 
 244         bs->rx_len -= count;
 245 
 246         while (count > 0) {
 247                 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 248                 len = min(count, 4);
 249                 memcpy(bs->rx_buf, &val, len);
 250                 bs->rx_buf += len;
 251                 count -= 4;
 252         }
 253 }
 254 
 255 /**
 256  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 257  * @bs: BCM2835 SPI controller
 258  * @count: bytes to write to TX FIFO
 259  *
 260  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 261  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 262  * in the CS register is set (such that a write to the FIFO register transmits
 263  * 32-bit instead of just 8-bit).
 264  */
 265 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 266 {
 267         u32 val;
 268         int len;
 269 
 270         bs->tx_len -= count;
 271 
 272         while (count > 0) {
 273                 if (bs->tx_buf) {
 274                         len = min(count, 4);
 275                         memcpy(&val, bs->tx_buf, len);
 276                         bs->tx_buf += len;
 277                 } else {
 278                         val = 0;
 279                 }
 280                 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 281                 count -= 4;
 282         }
 283 }
 284 
 285 /**
 286  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 287  * @bs: BCM2835 SPI controller
 288  *
 289  * The caller must ensure that the RX FIFO can accommodate as many bytes
 290  * as have been written to the TX FIFO:  Transmission is halted once the
 291  * RX FIFO is full, causing this function to spin forever.
 292  */
 293 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 294 {
 295         while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 296                 cpu_relax();
 297 }
 298 
 299 /**
 300  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 301  * @bs: BCM2835 SPI controller
 302  * @count: bytes available for reading in RX FIFO
 303  */
 304 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 305 {
 306         u8 val;
 307 
 308         count = min(count, bs->rx_len);
 309         bs->rx_len -= count;
 310 
 311         while (count) {
 312                 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 313                 if (bs->rx_buf)
 314                         *bs->rx_buf++ = val;
 315                 count--;
 316         }
 317 }
 318 
 319 /**
 320  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 321  * @bs: BCM2835 SPI controller
 322  * @count: bytes available for writing in TX FIFO
 323  */
 324 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 325 {
 326         u8 val;
 327 
 328         count = min(count, bs->tx_len);
 329         bs->tx_len -= count;
 330 
 331         while (count) {
 332                 val = bs->tx_buf ? *bs->tx_buf++ : 0;
 333                 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 334                 count--;
 335         }
 336 }
 337 
 338 static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
 339 {
 340         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 341         u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 342 
 343         /* Disable SPI interrupts and transfer */
 344         cs &= ~(BCM2835_SPI_CS_INTR |
 345                 BCM2835_SPI_CS_INTD |
 346                 BCM2835_SPI_CS_DMAEN |
 347                 BCM2835_SPI_CS_TA);
 348         /*
 349          * Transmission sometimes breaks unless the DONE bit is written at the
 350          * end of every transfer.  The spec says it's a RO bit.  Either the
 351          * spec is wrong and the bit is actually of type RW1C, or it's a
 352          * hardware erratum.
 353          */
 354         cs |= BCM2835_SPI_CS_DONE;
 355         /* and reset RX/TX FIFOS */
 356         cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 357 
 358         /* and reset the SPI_HW */
 359         bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 360         /* as well as DLEN */
 361         bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 362 }
 363 
 364 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 365 {
 366         struct spi_controller *ctlr = dev_id;
 367         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 368         u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 369 
 370         /*
 371          * An interrupt is signaled either if DONE is set (TX FIFO empty)
 372          * or if RXR is set (RX FIFO >= ¾ full).
 373          */
 374         if (cs & BCM2835_SPI_CS_RXF)
 375                 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 376         else if (cs & BCM2835_SPI_CS_RXR)
 377                 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 378 
 379         if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 380                 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 381 
 382         /* Read as many bytes as possible from FIFO */
 383         bcm2835_rd_fifo(bs);
 384         /* Write as many bytes as possible to FIFO */
 385         bcm2835_wr_fifo(bs);
 386 
 387         if (!bs->rx_len) {
 388                 /* Transfer complete - reset SPI HW */
 389                 bcm2835_spi_reset_hw(ctlr);
 390                 /* wake up the framework */
 391                 complete(&ctlr->xfer_completion);
 392         }
 393 
 394         return IRQ_HANDLED;
 395 }
 396 
 397 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 398                                         struct spi_device *spi,
 399                                         struct spi_transfer *tfr,
 400                                         u32 cs, bool fifo_empty)
 401 {
 402         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 403 
 404         /* update usage statistics */
 405         bs->count_transfer_irq++;
 406 
 407         /*
 408          * Enable HW block, but with interrupts still disabled.
 409          * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 410          */
 411         bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 412 
 413         /* fill TX FIFO as much as possible */
 414         if (fifo_empty)
 415                 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 416         bcm2835_wr_fifo(bs);
 417 
 418         /* enable interrupts */
 419         cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 420         bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 421 
 422         /* signal that we need to wait for completion */
 423         return 1;
 424 }
 425 
 426 /**
 427  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 428  * @ctlr: SPI master controller
 429  * @tfr: SPI transfer
 430  * @bs: BCM2835 SPI controller
 431  * @cs: CS register
 432  *
 433  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 434  * Only the final write access is permitted to transmit less than 4 bytes, the
 435  * SPI controller deduces its intended size from the DLEN register.
 436  *
 437  * If a TX or RX sglist contains multiple entries, one per page, and the first
 438  * entry starts in the middle of a page, that first entry's length may not be
 439  * a multiple of 4.  Subsequent entries are fine because they span an entire
 440  * page, hence do have a length that's a multiple of 4.
 441  *
 442  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 443  * because they are contiguous in physical memory and therefore not split on
 444  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 445  * buffers.
 446  *
 447  * The DMA engine is incapable of combining sglist entries into a continuous
 448  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 449  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 450  * entry is rounded up by throwing away received bytes.
 451  *
 452  * Overcome this limitation by transferring the first few bytes without DMA:
 453  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 454  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 455  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 456  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 457  *
 458  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 459  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 460  * Caution, the additional 4 bytes spill over to the second TX sglist entry
 461  * if the length of the first is *exactly* 1.
 462  *
 463  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 464  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 465  *
 466  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 467  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 468  * the width but also garbles the FIFO's contents.  The prologue must therefore
 469  * be transmitted in 32-bit width to ensure that the following DMA transfer can
 470  * pick up the residue in the RX FIFO in ungarbled form.
 471  */
 472 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 473                                           struct spi_transfer *tfr,
 474                                           struct bcm2835_spi *bs,
 475                                           u32 cs)
 476 {
 477         int tx_remaining;
 478 
 479         bs->tfr          = tfr;
 480         bs->tx_prologue  = 0;
 481         bs->rx_prologue  = 0;
 482         bs->tx_spillover = false;
 483 
 484         if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 485                 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 486 
 487         if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 488                 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 489 
 490                 if (bs->rx_prologue > bs->tx_prologue) {
 491                         if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 492                                 bs->tx_prologue  = bs->rx_prologue;
 493                         } else {
 494                                 bs->tx_prologue += 4;
 495                                 bs->tx_spillover =
 496                                         !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 497                         }
 498                 }
 499         }
 500 
 501         /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 502         if (!bs->tx_prologue)
 503                 return;
 504 
 505         /* Write and read RX prologue.  Adjust first entry in RX sglist. */
 506         if (bs->rx_prologue) {
 507                 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 508                 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 509                                                   | BCM2835_SPI_CS_DMAEN);
 510                 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 511                 bcm2835_wait_tx_fifo_empty(bs);
 512                 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 513                 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 514                                                   | BCM2835_SPI_CS_CLEAR_TX
 515                                                   | BCM2835_SPI_CS_DONE);
 516 
 517                 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 518                                            sg_dma_address(&tfr->rx_sg.sgl[0]),
 519                                            bs->rx_prologue, DMA_FROM_DEVICE);
 520 
 521                 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 522                 sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 523         }
 524 
 525         if (!bs->tx_buf)
 526                 return;
 527 
 528         /*
 529          * Write remaining TX prologue.  Adjust first entry in TX sglist.
 530          * Also adjust second entry if prologue spills over to it.
 531          */
 532         tx_remaining = bs->tx_prologue - bs->rx_prologue;
 533         if (tx_remaining) {
 534                 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 535                 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 536                                                   | BCM2835_SPI_CS_DMAEN);
 537                 bcm2835_wr_fifo_count(bs, tx_remaining);
 538                 bcm2835_wait_tx_fifo_empty(bs);
 539                 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 540                                                   | BCM2835_SPI_CS_DONE);
 541         }
 542 
 543         if (likely(!bs->tx_spillover)) {
 544                 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 545                 sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 546         } else {
 547                 sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 548                 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 549                 sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 550         }
 551 }
 552 
 553 /**
 554  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 555  * @bs: BCM2835 SPI controller
 556  *
 557  * Undo changes which were made to an SPI transfer's sglist when transmitting
 558  * the prologue.  This is necessary to ensure the same memory ranges are
 559  * unmapped that were originally mapped.
 560  */
 561 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 562 {
 563         struct spi_transfer *tfr = bs->tfr;
 564 
 565         if (!bs->tx_prologue)
 566                 return;
 567 
 568         if (bs->rx_prologue) {
 569                 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 570                 sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 571         }
 572 
 573         if (!bs->tx_buf)
 574                 goto out;
 575 
 576         if (likely(!bs->tx_spillover)) {
 577                 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 578                 sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 579         } else {
 580                 sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 581                 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 582                 sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 583         }
 584 out:
 585         bs->tx_prologue = 0;
 586 }
 587 
 588 /**
 589  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 590  * @data: SPI master controller
 591  *
 592  * Used for bidirectional and RX-only transfers.
 593  */
 594 static void bcm2835_spi_dma_rx_done(void *data)
 595 {
 596         struct spi_controller *ctlr = data;
 597         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 598 
 599         /* terminate tx-dma as we do not have an irq for it
 600          * because when the rx dma will terminate and this callback
 601          * is called the tx-dma must have finished - can't get to this
 602          * situation otherwise...
 603          */
 604         dmaengine_terminate_async(ctlr->dma_tx);
 605         bs->tx_dma_active = false;
 606         bs->rx_dma_active = false;
 607         bcm2835_spi_undo_prologue(bs);
 608 
 609         /* reset fifo and HW */
 610         bcm2835_spi_reset_hw(ctlr);
 611 
 612         /* and mark as completed */;
 613         complete(&ctlr->xfer_completion);
 614 }
 615 
 616 /**
 617  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 618  * @data: SPI master controller
 619  *
 620  * Used for TX-only transfers.
 621  */
 622 static void bcm2835_spi_dma_tx_done(void *data)
 623 {
 624         struct spi_controller *ctlr = data;
 625         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 626 
 627         /* busy-wait for TX FIFO to empty */
 628         while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 629                 bcm2835_wr(bs, BCM2835_SPI_CS,
 630                            bs->clear_rx_cs[bs->chip_select]);
 631 
 632         bs->tx_dma_active = false;
 633         smp_wmb();
 634 
 635         /*
 636          * In case of a very short transfer, RX DMA may not have been
 637          * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 638          * to terminate it immediately after issuing.
 639          */
 640         if (cmpxchg(&bs->rx_dma_active, true, false))
 641                 dmaengine_terminate_async(ctlr->dma_rx);
 642 
 643         bcm2835_spi_undo_prologue(bs);
 644         bcm2835_spi_reset_hw(ctlr);
 645         complete(&ctlr->xfer_completion);
 646 }
 647 
 648 /**
 649  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 650  * @ctlr: SPI master controller
 651  * @spi: SPI slave
 652  * @tfr: SPI transfer
 653  * @bs: BCM2835 SPI controller
 654  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 655  *
 656  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 657  * Return 0 on success or a negative error number.
 658  */
 659 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 660                                   struct spi_device *spi,
 661                                   struct spi_transfer *tfr,
 662                                   struct bcm2835_spi *bs,
 663                                   bool is_tx)
 664 {
 665         struct dma_chan *chan;
 666         struct scatterlist *sgl;
 667         unsigned int nents;
 668         enum dma_transfer_direction dir;
 669         unsigned long flags;
 670 
 671         struct dma_async_tx_descriptor *desc;
 672         dma_cookie_t cookie;
 673 
 674         if (is_tx) {
 675                 dir   = DMA_MEM_TO_DEV;
 676                 chan  = ctlr->dma_tx;
 677                 nents = tfr->tx_sg.nents;
 678                 sgl   = tfr->tx_sg.sgl;
 679                 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 680         } else {
 681                 dir   = DMA_DEV_TO_MEM;
 682                 chan  = ctlr->dma_rx;
 683                 nents = tfr->rx_sg.nents;
 684                 sgl   = tfr->rx_sg.sgl;
 685                 flags = DMA_PREP_INTERRUPT;
 686         }
 687         /* prepare the channel */
 688         desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 689         if (!desc)
 690                 return -EINVAL;
 691 
 692         /*
 693          * Completion is signaled by the RX channel for bidirectional and
 694          * RX-only transfers; else by the TX channel for TX-only transfers.
 695          */
 696         if (!is_tx) {
 697                 desc->callback = bcm2835_spi_dma_rx_done;
 698                 desc->callback_param = ctlr;
 699         } else if (!tfr->rx_buf) {
 700                 desc->callback = bcm2835_spi_dma_tx_done;
 701                 desc->callback_param = ctlr;
 702                 bs->chip_select = spi->chip_select;
 703         }
 704 
 705         /* submit it to DMA-engine */
 706         cookie = dmaengine_submit(desc);
 707 
 708         return dma_submit_error(cookie);
 709 }
 710 
 711 /**
 712  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 713  * @ctlr: SPI master controller
 714  * @spi: SPI slave
 715  * @tfr: SPI transfer
 716  * @cs: CS register
 717  *
 718  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 719  * the TX and RX DMA channel to copy between memory and FIFO register.
 720  *
 721  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 722  * memory is pointless.  However not reading the RX FIFO isn't an option either
 723  * because transmission is halted once it's full.  As a workaround, cyclically
 724  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 725  *
 726  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 727  * this is called only once, on slave registration.  A DMA descriptor to write
 728  * this value is preallocated in bcm2835_dma_init().  All that's left to do
 729  * when performing a TX-only transfer is to submit this descriptor to the RX
 730  * DMA channel.  Latency is thereby minimized.  The descriptor does not
 731  * generate any interrupts while running.  It must be terminated once the
 732  * TX DMA channel is done.
 733  *
 734  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 735  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 736  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 737  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 738  * reduction in bus traffic and thus energy consumption is achieved.
 739  *
 740  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 741  * copying from the zero page.  The DMA descriptor to do this is preallocated
 742  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 743  * done and can then be reused.
 744  *
 745  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 746  * page and utilizes the DMA controller's ability to synthesize zeroes instead
 747  * of copying them from memory.  This reduces traffic on the memory bus.  The
 748  * feature is not available on so-called "lite" channels, but normally TX DMA
 749  * is backed by a full-featured channel.
 750  *
 751  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 752  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 753  * has been counted down to zero (hardware erratum).  Thus, when the transfer
 754  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 755  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 756  * performed at the end of an RX-only transfer.
 757  */
 758 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 759                                         struct spi_device *spi,
 760                                         struct spi_transfer *tfr,
 761                                         u32 cs)
 762 {
 763         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 764         dma_cookie_t cookie;
 765         int ret;
 766 
 767         /* update usage statistics */
 768         bs->count_transfer_dma++;
 769 
 770         /*
 771          * Transfer first few bytes without DMA if length of first TX or RX
 772          * sglist entry is not a multiple of 4 bytes (hardware limitation).
 773          */
 774         bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 775 
 776         /* setup tx-DMA */
 777         if (bs->tx_buf) {
 778                 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
 779         } else {
 780                 cookie = dmaengine_submit(bs->fill_tx_desc);
 781                 ret = dma_submit_error(cookie);
 782         }
 783         if (ret)
 784                 goto err_reset_hw;
 785 
 786         /* set the DMA length */
 787         bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 788 
 789         /* start the HW */
 790         bcm2835_wr(bs, BCM2835_SPI_CS,
 791                    cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 792 
 793         bs->tx_dma_active = true;
 794         smp_wmb();
 795 
 796         /* start TX early */
 797         dma_async_issue_pending(ctlr->dma_tx);
 798 
 799         /* setup rx-DMA late - to run transfers while
 800          * mapping of the rx buffers still takes place
 801          * this saves 10us or more.
 802          */
 803         if (bs->rx_buf) {
 804                 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
 805         } else {
 806                 cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
 807                 ret = dma_submit_error(cookie);
 808         }
 809         if (ret) {
 810                 /* need to reset on errors */
 811                 dmaengine_terminate_sync(ctlr->dma_tx);
 812                 bs->tx_dma_active = false;
 813                 goto err_reset_hw;
 814         }
 815 
 816         /* start rx dma late */
 817         dma_async_issue_pending(ctlr->dma_rx);
 818         bs->rx_dma_active = true;
 819         smp_mb();
 820 
 821         /*
 822          * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 823          * may run before RX DMA is issued.  Terminate RX DMA if so.
 824          */
 825         if (!bs->rx_buf && !bs->tx_dma_active &&
 826             cmpxchg(&bs->rx_dma_active, true, false)) {
 827                 dmaengine_terminate_async(ctlr->dma_rx);
 828                 bcm2835_spi_reset_hw(ctlr);
 829         }
 830 
 831         /* wait for wakeup in framework */
 832         return 1;
 833 
 834 err_reset_hw:
 835         bcm2835_spi_reset_hw(ctlr);
 836         bcm2835_spi_undo_prologue(bs);
 837         return ret;
 838 }
 839 
 840 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 841                                 struct spi_device *spi,
 842                                 struct spi_transfer *tfr)
 843 {
 844         /* we start DMA efforts only on bigger transfers */
 845         if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 846                 return false;
 847 
 848         /* return OK */
 849         return true;
 850 }
 851 
 852 static void bcm2835_dma_release(struct spi_controller *ctlr,
 853                                 struct bcm2835_spi *bs)
 854 {
 855         int i;
 856 
 857         if (ctlr->dma_tx) {
 858                 dmaengine_terminate_sync(ctlr->dma_tx);
 859 
 860                 if (bs->fill_tx_desc)
 861                         dmaengine_desc_free(bs->fill_tx_desc);
 862 
 863                 if (bs->fill_tx_addr)
 864                         dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 865                                              bs->fill_tx_addr, sizeof(u32),
 866                                              DMA_TO_DEVICE,
 867                                              DMA_ATTR_SKIP_CPU_SYNC);
 868 
 869                 dma_release_channel(ctlr->dma_tx);
 870                 ctlr->dma_tx = NULL;
 871         }
 872 
 873         if (ctlr->dma_rx) {
 874                 dmaengine_terminate_sync(ctlr->dma_rx);
 875 
 876                 for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
 877                         if (bs->clear_rx_desc[i])
 878                                 dmaengine_desc_free(bs->clear_rx_desc[i]);
 879 
 880                 if (bs->clear_rx_addr)
 881                         dma_unmap_single(ctlr->dma_rx->device->dev,
 882                                          bs->clear_rx_addr,
 883                                          sizeof(bs->clear_rx_cs),
 884                                          DMA_TO_DEVICE);
 885 
 886                 dma_release_channel(ctlr->dma_rx);
 887                 ctlr->dma_rx = NULL;
 888         }
 889 }
 890 
 891 static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 892                              struct bcm2835_spi *bs)
 893 {
 894         struct dma_slave_config slave_config;
 895         const __be32 *addr;
 896         dma_addr_t dma_reg_base;
 897         int ret, i;
 898 
 899         /* base address in dma-space */
 900         addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 901         if (!addr) {
 902                 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 903                 goto err;
 904         }
 905         dma_reg_base = be32_to_cpup(addr);
 906 
 907         /* get tx/rx dma */
 908         ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
 909         if (!ctlr->dma_tx) {
 910                 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
 911                 goto err;
 912         }
 913         ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
 914         if (!ctlr->dma_rx) {
 915                 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
 916                 goto err_release;
 917         }
 918 
 919         /*
 920          * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 921          * or, in case of an RX-only transfer, cyclically copies from the zero
 922          * page to the FIFO using a preallocated, reusable descriptor.
 923          */
 924         slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 925         slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 926 
 927         ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 928         if (ret)
 929                 goto err_config;
 930 
 931         bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 932                                               ZERO_PAGE(0), 0, sizeof(u32),
 933                                               DMA_TO_DEVICE,
 934                                               DMA_ATTR_SKIP_CPU_SYNC);
 935         if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 936                 dev_err(dev, "cannot map zero page - not using DMA mode\n");
 937                 bs->fill_tx_addr = 0;
 938                 goto err_release;
 939         }
 940 
 941         bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 942                                                      bs->fill_tx_addr,
 943                                                      sizeof(u32), 0,
 944                                                      DMA_MEM_TO_DEV, 0);
 945         if (!bs->fill_tx_desc) {
 946                 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 947                 goto err_release;
 948         }
 949 
 950         ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 951         if (ret) {
 952                 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 953                 goto err_release;
 954         }
 955 
 956         /*
 957          * The RX DMA channel is used bidirectionally:  It either reads the
 958          * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 959          * precalculated value to the CS register to clear the RX FIFO.
 960          */
 961         slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 962         slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 963         slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 964         slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 965 
 966         ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 967         if (ret)
 968                 goto err_config;
 969 
 970         bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
 971                                            bs->clear_rx_cs,
 972                                            sizeof(bs->clear_rx_cs),
 973                                            DMA_TO_DEVICE);
 974         if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
 975                 dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
 976                 bs->clear_rx_addr = 0;
 977                 goto err_release;
 978         }
 979 
 980         for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
 981                 bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
 982                                            bs->clear_rx_addr + i * sizeof(u32),
 983                                            sizeof(u32), 0,
 984                                            DMA_MEM_TO_DEV, 0);
 985                 if (!bs->clear_rx_desc[i]) {
 986                         dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
 987                         goto err_release;
 988                 }
 989 
 990                 ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
 991                 if (ret) {
 992                         dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
 993                         goto err_release;
 994                 }
 995         }
 996 
 997         /* all went well, so set can_dma */
 998         ctlr->can_dma = bcm2835_spi_can_dma;
 999 
1000         return;
1001 
1002 err_config:
1003         dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1004                 ret);
1005 err_release:
1006         bcm2835_dma_release(ctlr, bs);
1007 err:
1008         return;
1009 }
1010 
1011 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1012                                          struct spi_device *spi,
1013                                          struct spi_transfer *tfr,
1014                                          u32 cs)
1015 {
1016         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1017         unsigned long timeout;
1018 
1019         /* update usage statistics */
1020         bs->count_transfer_polling++;
1021 
1022         /* enable HW block without interrupts */
1023         bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1024 
1025         /* fill in the fifo before timeout calculations
1026          * if we are interrupted here, then the data is
1027          * getting transferred by the HW while we are interrupted
1028          */
1029         bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1030 
1031         /* set the timeout to at least 2 jiffies */
1032         timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1033 
1034         /* loop until finished the transfer */
1035         while (bs->rx_len) {
1036                 /* fill in tx fifo with remaining data */
1037                 bcm2835_wr_fifo(bs);
1038 
1039                 /* read from fifo as much as possible */
1040                 bcm2835_rd_fifo(bs);
1041 
1042                 /* if there is still data pending to read
1043                  * then check the timeout
1044                  */
1045                 if (bs->rx_len && time_after(jiffies, timeout)) {
1046                         dev_dbg_ratelimited(&spi->dev,
1047                                             "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1048                                             jiffies - timeout,
1049                                             bs->tx_len, bs->rx_len);
1050                         /* fall back to interrupt mode */
1051 
1052                         /* update usage statistics */
1053                         bs->count_transfer_irq_after_polling++;
1054 
1055                         return bcm2835_spi_transfer_one_irq(ctlr, spi,
1056                                                             tfr, cs, false);
1057                 }
1058         }
1059 
1060         /* Transfer complete - reset SPI HW */
1061         bcm2835_spi_reset_hw(ctlr);
1062         /* and return without waiting for completion */
1063         return 0;
1064 }
1065 
1066 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1067                                     struct spi_device *spi,
1068                                     struct spi_transfer *tfr)
1069 {
1070         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1071         unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
1072         unsigned long hz_per_byte, byte_limit;
1073         u32 cs = bs->prepare_cs[spi->chip_select];
1074 
1075         /* set clock */
1076         spi_hz = tfr->speed_hz;
1077         clk_hz = clk_get_rate(bs->clk);
1078 
1079         if (spi_hz >= clk_hz / 2) {
1080                 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1081         } else if (spi_hz) {
1082                 /* CDIV must be a multiple of two */
1083                 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1084                 cdiv += (cdiv % 2);
1085 
1086                 if (cdiv >= 65536)
1087                         cdiv = 0; /* 0 is the slowest we can go */
1088         } else {
1089                 cdiv = 0; /* 0 is the slowest we can go */
1090         }
1091         spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1092         bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1093 
1094         /* handle all the 3-wire mode */
1095         if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1096                 cs |= BCM2835_SPI_CS_REN;
1097 
1098         /* set transmit buffers and length */
1099         bs->tx_buf = tfr->tx_buf;
1100         bs->rx_buf = tfr->rx_buf;
1101         bs->tx_len = tfr->len;
1102         bs->rx_len = tfr->len;
1103 
1104         /* Calculate the estimated time in us the transfer runs.  Note that
1105          * there is 1 idle clocks cycles after each byte getting transferred
1106          * so we have 9 cycles/byte.  This is used to find the number of Hz
1107          * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1108          * per 300,000 Hz of bus clock.
1109          */
1110         hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1111         byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
1112 
1113         /* run in polling mode for short transfers */
1114         if (tfr->len < byte_limit)
1115                 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1116 
1117         /* run in dma mode if conditions are right
1118          * Note that unlike poll or interrupt mode DMA mode does not have
1119          * this 1 idle clock cycle pattern but runs the spi clock without gaps
1120          */
1121         if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1122                 return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1123 
1124         /* run in interrupt-mode */
1125         return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1126 }
1127 
1128 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1129                                        struct spi_message *msg)
1130 {
1131         struct spi_device *spi = msg->spi;
1132         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1133         int ret;
1134 
1135         if (ctlr->can_dma) {
1136                 /*
1137                  * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1138                  * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1139                  * aligned) if the limit is exceeded.
1140                  */
1141                 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1142                                                   GFP_KERNEL | GFP_DMA);
1143                 if (ret)
1144                         return ret;
1145         }
1146 
1147         /*
1148          * Set up clock polarity before spi_transfer_one_message() asserts
1149          * chip select to avoid a gratuitous clock signal edge.
1150          */
1151         bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1152 
1153         return 0;
1154 }
1155 
1156 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1157                                    struct spi_message *msg)
1158 {
1159         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1160 
1161         /* if an error occurred and we have an active dma, then terminate */
1162         dmaengine_terminate_sync(ctlr->dma_tx);
1163         bs->tx_dma_active = false;
1164         dmaengine_terminate_sync(ctlr->dma_rx);
1165         bs->rx_dma_active = false;
1166         bcm2835_spi_undo_prologue(bs);
1167 
1168         /* and reset */
1169         bcm2835_spi_reset_hw(ctlr);
1170 }
1171 
1172 static int chip_match_name(struct gpio_chip *chip, void *data)
1173 {
1174         return !strcmp(chip->label, data);
1175 }
1176 
1177 static int bcm2835_spi_setup(struct spi_device *spi)
1178 {
1179         struct spi_controller *ctlr = spi->controller;
1180         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1181         struct gpio_chip *chip;
1182         enum gpio_lookup_flags lflags;
1183         u32 cs;
1184 
1185         /*
1186          * Precalculate SPI slave's CS register value for ->prepare_message():
1187          * The driver always uses software-controlled GPIO chip select, hence
1188          * set the hardware-controlled native chip select to an invalid value
1189          * to prevent it from interfering.
1190          */
1191         cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1192         if (spi->mode & SPI_CPOL)
1193                 cs |= BCM2835_SPI_CS_CPOL;
1194         if (spi->mode & SPI_CPHA)
1195                 cs |= BCM2835_SPI_CS_CPHA;
1196         bs->prepare_cs[spi->chip_select] = cs;
1197 
1198         /*
1199          * Precalculate SPI slave's CS register value to clear RX FIFO
1200          * in case of a TX-only DMA transfer.
1201          */
1202         if (ctlr->dma_rx) {
1203                 bs->clear_rx_cs[spi->chip_select] = cs |
1204                                                     BCM2835_SPI_CS_TA |
1205                                                     BCM2835_SPI_CS_DMAEN |
1206                                                     BCM2835_SPI_CS_CLEAR_RX;
1207                 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1208                                            bs->clear_rx_addr,
1209                                            sizeof(bs->clear_rx_cs),
1210                                            DMA_TO_DEVICE);
1211         }
1212 
1213         /*
1214          * sanity checking the native-chipselects
1215          */
1216         if (spi->mode & SPI_NO_CS)
1217                 return 0;
1218         /*
1219          * The SPI core has successfully requested the CS GPIO line from the
1220          * device tree, so we are done.
1221          */
1222         if (spi->cs_gpiod)
1223                 return 0;
1224         if (spi->chip_select > 1) {
1225                 /* error in the case of native CS requested with CS > 1
1226                  * officially there is a CS2, but it is not documented
1227                  * which GPIO is connected with that...
1228                  */
1229                 dev_err(&spi->dev,
1230                         "setup: only two native chip-selects are supported\n");
1231                 return -EINVAL;
1232         }
1233 
1234         /*
1235          * Translate native CS to GPIO
1236          *
1237          * FIXME: poking around in the gpiolib internals like this is
1238          * not very good practice. Find a way to locate the real problem
1239          * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1240          * sometimes not assigned correctly? Erroneous device trees?
1241          */
1242 
1243         /* get the gpio chip for the base */
1244         chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1245         if (!chip)
1246                 return 0;
1247 
1248         /*
1249          * Retrieve the corresponding GPIO line used for CS.
1250          * The inversion semantics will be handled by the GPIO core
1251          * code, so we pass GPIOS_OUT_LOW for "unasserted" and
1252          * the correct flag for inversion semantics. The SPI_CS_HIGH
1253          * on spi->mode cannot be checked for polarity in this case
1254          * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1255          */
1256         if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1257                 lflags = GPIO_ACTIVE_HIGH;
1258         else
1259                 lflags = GPIO_ACTIVE_LOW;
1260         spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1261                                                   DRV_NAME,
1262                                                   lflags,
1263                                                   GPIOD_OUT_LOW);
1264         if (IS_ERR(spi->cs_gpiod))
1265                 return PTR_ERR(spi->cs_gpiod);
1266 
1267         /* and set up the "mode" and level */
1268         dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1269                  spi->chip_select);
1270 
1271         return 0;
1272 }
1273 
1274 static int bcm2835_spi_probe(struct platform_device *pdev)
1275 {
1276         struct spi_controller *ctlr;
1277         struct bcm2835_spi *bs;
1278         int err;
1279 
1280         ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1281                                                   dma_get_cache_alignment()));
1282         if (!ctlr)
1283                 return -ENOMEM;
1284 
1285         platform_set_drvdata(pdev, ctlr);
1286 
1287         ctlr->use_gpio_descriptors = true;
1288         ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1289         ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1290         ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1291         ctlr->setup = bcm2835_spi_setup;
1292         ctlr->transfer_one = bcm2835_spi_transfer_one;
1293         ctlr->handle_err = bcm2835_spi_handle_err;
1294         ctlr->prepare_message = bcm2835_spi_prepare_message;
1295         ctlr->dev.of_node = pdev->dev.of_node;
1296 
1297         bs = spi_controller_get_devdata(ctlr);
1298 
1299         bs->regs = devm_platform_ioremap_resource(pdev, 0);
1300         if (IS_ERR(bs->regs)) {
1301                 err = PTR_ERR(bs->regs);
1302                 goto out_controller_put;
1303         }
1304 
1305         bs->clk = devm_clk_get(&pdev->dev, NULL);
1306         if (IS_ERR(bs->clk)) {
1307                 err = PTR_ERR(bs->clk);
1308                 dev_err(&pdev->dev, "could not get clk: %d\n", err);
1309                 goto out_controller_put;
1310         }
1311 
1312         bs->irq = platform_get_irq(pdev, 0);
1313         if (bs->irq <= 0) {
1314                 err = bs->irq ? bs->irq : -ENODEV;
1315                 goto out_controller_put;
1316         }
1317 
1318         clk_prepare_enable(bs->clk);
1319 
1320         bcm2835_dma_init(ctlr, &pdev->dev, bs);
1321 
1322         /* initialise the hardware with the default polarities */
1323         bcm2835_wr(bs, BCM2835_SPI_CS,
1324                    BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1325 
1326         err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1327                                dev_name(&pdev->dev), ctlr);
1328         if (err) {
1329                 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1330                 goto out_clk_disable;
1331         }
1332 
1333         err = spi_register_controller(ctlr);
1334         if (err) {
1335                 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1336                         err);
1337                 goto out_clk_disable;
1338         }
1339 
1340         bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1341 
1342         return 0;
1343 
1344 out_clk_disable:
1345         clk_disable_unprepare(bs->clk);
1346 out_controller_put:
1347         spi_controller_put(ctlr);
1348         return err;
1349 }
1350 
1351 static int bcm2835_spi_remove(struct platform_device *pdev)
1352 {
1353         struct spi_controller *ctlr = platform_get_drvdata(pdev);
1354         struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1355 
1356         bcm2835_debugfs_remove(bs);
1357 
1358         spi_unregister_controller(ctlr);
1359 
1360         /* Clear FIFOs, and disable the HW block */
1361         bcm2835_wr(bs, BCM2835_SPI_CS,
1362                    BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1363 
1364         clk_disable_unprepare(bs->clk);
1365 
1366         bcm2835_dma_release(ctlr, bs);
1367 
1368         return 0;
1369 }
1370 
1371 static const struct of_device_id bcm2835_spi_match[] = {
1372         { .compatible = "brcm,bcm2835-spi", },
1373         {}
1374 };
1375 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1376 
1377 static struct platform_driver bcm2835_spi_driver = {
1378         .driver         = {
1379                 .name           = DRV_NAME,
1380                 .of_match_table = bcm2835_spi_match,
1381         },
1382         .probe          = bcm2835_spi_probe,
1383         .remove         = bcm2835_spi_remove,
1384 };
1385 module_platform_driver(bcm2835_spi_driver);
1386 
1387 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1388 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1389 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */