root/drivers/spi/spi-qup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. spi_qup_is_flag_set
  2. spi_qup_is_dma_xfer
  3. spi_qup_len
  4. spi_qup_is_valid_state
  5. spi_qup_set_state
  6. spi_qup_read_from_fifo
  7. spi_qup_read
  8. spi_qup_write_to_fifo
  9. spi_qup_dma_done
  10. spi_qup_write
  11. spi_qup_prep_sg
  12. spi_qup_dma_terminate
  13. spi_qup_sgl_get_nents_len
  14. spi_qup_do_dma
  15. spi_qup_do_pio
  16. spi_qup_data_pending
  17. spi_qup_qup_irq
  18. spi_qup_io_prep
  19. spi_qup_io_config
  20. spi_qup_transfer_one
  21. spi_qup_can_dma
  22. spi_qup_release_dma
  23. spi_qup_init_dma
  24. spi_qup_set_cs
  25. spi_qup_probe
  26. spi_qup_pm_suspend_runtime
  27. spi_qup_pm_resume_runtime
  28. spi_qup_suspend
  29. spi_qup_resume
  30. spi_qup_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
   4  */
   5 
   6 #include <linux/clk.h>
   7 #include <linux/delay.h>
   8 #include <linux/err.h>
   9 #include <linux/interrupt.h>
  10 #include <linux/io.h>
  11 #include <linux/list.h>
  12 #include <linux/module.h>
  13 #include <linux/of.h>
  14 #include <linux/of_device.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/pm_runtime.h>
  17 #include <linux/spi/spi.h>
  18 #include <linux/dmaengine.h>
  19 #include <linux/dma-mapping.h>
  20 
  21 #define QUP_CONFIG                      0x0000
  22 #define QUP_STATE                       0x0004
  23 #define QUP_IO_M_MODES                  0x0008
  24 #define QUP_SW_RESET                    0x000c
  25 #define QUP_OPERATIONAL                 0x0018
  26 #define QUP_ERROR_FLAGS                 0x001c
  27 #define QUP_ERROR_FLAGS_EN              0x0020
  28 #define QUP_OPERATIONAL_MASK            0x0028
  29 #define QUP_HW_VERSION                  0x0030
  30 #define QUP_MX_OUTPUT_CNT               0x0100
  31 #define QUP_OUTPUT_FIFO                 0x0110
  32 #define QUP_MX_WRITE_CNT                0x0150
  33 #define QUP_MX_INPUT_CNT                0x0200
  34 #define QUP_MX_READ_CNT                 0x0208
  35 #define QUP_INPUT_FIFO                  0x0218
  36 
  37 #define SPI_CONFIG                      0x0300
  38 #define SPI_IO_CONTROL                  0x0304
  39 #define SPI_ERROR_FLAGS                 0x0308
  40 #define SPI_ERROR_FLAGS_EN              0x030c
  41 
  42 /* QUP_CONFIG fields */
  43 #define QUP_CONFIG_SPI_MODE             (1 << 8)
  44 #define QUP_CONFIG_CLOCK_AUTO_GATE      BIT(13)
  45 #define QUP_CONFIG_NO_INPUT             BIT(7)
  46 #define QUP_CONFIG_NO_OUTPUT            BIT(6)
  47 #define QUP_CONFIG_N                    0x001f
  48 
  49 /* QUP_STATE fields */
  50 #define QUP_STATE_VALID                 BIT(2)
  51 #define QUP_STATE_RESET                 0
  52 #define QUP_STATE_RUN                   1
  53 #define QUP_STATE_PAUSE                 3
  54 #define QUP_STATE_MASK                  3
  55 #define QUP_STATE_CLEAR                 2
  56 
  57 #define QUP_HW_VERSION_2_1_1            0x20010001
  58 
  59 /* QUP_IO_M_MODES fields */
  60 #define QUP_IO_M_PACK_EN                BIT(15)
  61 #define QUP_IO_M_UNPACK_EN              BIT(14)
  62 #define QUP_IO_M_INPUT_MODE_MASK_SHIFT  12
  63 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
  64 #define QUP_IO_M_INPUT_MODE_MASK        (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
  65 #define QUP_IO_M_OUTPUT_MODE_MASK       (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
  66 
  67 #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x)   (((x) & (0x03 << 0)) >> 0)
  68 #define QUP_IO_M_OUTPUT_FIFO_SIZE(x)    (((x) & (0x07 << 2)) >> 2)
  69 #define QUP_IO_M_INPUT_BLOCK_SIZE(x)    (((x) & (0x03 << 5)) >> 5)
  70 #define QUP_IO_M_INPUT_FIFO_SIZE(x)     (((x) & (0x07 << 7)) >> 7)
  71 
  72 #define QUP_IO_M_MODE_FIFO              0
  73 #define QUP_IO_M_MODE_BLOCK             1
  74 #define QUP_IO_M_MODE_DMOV              2
  75 #define QUP_IO_M_MODE_BAM               3
  76 
  77 /* QUP_OPERATIONAL fields */
  78 #define QUP_OP_IN_BLOCK_READ_REQ        BIT(13)
  79 #define QUP_OP_OUT_BLOCK_WRITE_REQ      BIT(12)
  80 #define QUP_OP_MAX_INPUT_DONE_FLAG      BIT(11)
  81 #define QUP_OP_MAX_OUTPUT_DONE_FLAG     BIT(10)
  82 #define QUP_OP_IN_SERVICE_FLAG          BIT(9)
  83 #define QUP_OP_OUT_SERVICE_FLAG         BIT(8)
  84 #define QUP_OP_IN_FIFO_FULL             BIT(7)
  85 #define QUP_OP_OUT_FIFO_FULL            BIT(6)
  86 #define QUP_OP_IN_FIFO_NOT_EMPTY        BIT(5)
  87 #define QUP_OP_OUT_FIFO_NOT_EMPTY       BIT(4)
  88 
  89 /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
  90 #define QUP_ERROR_OUTPUT_OVER_RUN       BIT(5)
  91 #define QUP_ERROR_INPUT_UNDER_RUN       BIT(4)
  92 #define QUP_ERROR_OUTPUT_UNDER_RUN      BIT(3)
  93 #define QUP_ERROR_INPUT_OVER_RUN        BIT(2)
  94 
  95 /* SPI_CONFIG fields */
  96 #define SPI_CONFIG_HS_MODE              BIT(10)
  97 #define SPI_CONFIG_INPUT_FIRST          BIT(9)
  98 #define SPI_CONFIG_LOOPBACK             BIT(8)
  99 
 100 /* SPI_IO_CONTROL fields */
 101 #define SPI_IO_C_FORCE_CS               BIT(11)
 102 #define SPI_IO_C_CLK_IDLE_HIGH          BIT(10)
 103 #define SPI_IO_C_MX_CS_MODE             BIT(8)
 104 #define SPI_IO_C_CS_N_POLARITY_0        BIT(4)
 105 #define SPI_IO_C_CS_SELECT(x)           (((x) & 3) << 2)
 106 #define SPI_IO_C_CS_SELECT_MASK         0x000c
 107 #define SPI_IO_C_TRISTATE_CS            BIT(1)
 108 #define SPI_IO_C_NO_TRI_STATE           BIT(0)
 109 
 110 /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
 111 #define SPI_ERROR_CLK_OVER_RUN          BIT(1)
 112 #define SPI_ERROR_CLK_UNDER_RUN         BIT(0)
 113 
 114 #define SPI_NUM_CHIPSELECTS             4
 115 
 116 #define SPI_MAX_XFER                    (SZ_64K - 64)
 117 
 118 /* high speed mode is when bus rate is greater then 26MHz */
 119 #define SPI_HS_MIN_RATE                 26000000
 120 #define SPI_MAX_RATE                    50000000
 121 
 122 #define SPI_DELAY_THRESHOLD             1
 123 #define SPI_DELAY_RETRY                 10
 124 
 125 struct spi_qup {
 126         void __iomem            *base;
 127         struct device           *dev;
 128         struct clk              *cclk;  /* core clock */
 129         struct clk              *iclk;  /* interface clock */
 130         int                     irq;
 131         spinlock_t              lock;
 132 
 133         int                     in_fifo_sz;
 134         int                     out_fifo_sz;
 135         int                     in_blk_sz;
 136         int                     out_blk_sz;
 137 
 138         struct spi_transfer     *xfer;
 139         struct completion       done;
 140         int                     error;
 141         int                     w_size; /* bytes per SPI word */
 142         int                     n_words;
 143         int                     tx_bytes;
 144         int                     rx_bytes;
 145         const u8                *tx_buf;
 146         u8                      *rx_buf;
 147         int                     qup_v1;
 148 
 149         int                     mode;
 150         struct dma_slave_config rx_conf;
 151         struct dma_slave_config tx_conf;
 152 };
 153 
 154 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
 155 
 156 static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
 157 {
 158         u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
 159 
 160         return (opflag & flag) != 0;
 161 }
 162 
 163 static inline bool spi_qup_is_dma_xfer(int mode)
 164 {
 165         if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
 166                 return true;
 167 
 168         return false;
 169 }
 170 
 171 /* get's the transaction size length */
 172 static inline unsigned int spi_qup_len(struct spi_qup *controller)
 173 {
 174         return controller->n_words * controller->w_size;
 175 }
 176 
 177 static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
 178 {
 179         u32 opstate = readl_relaxed(controller->base + QUP_STATE);
 180 
 181         return opstate & QUP_STATE_VALID;
 182 }
 183 
 184 static int spi_qup_set_state(struct spi_qup *controller, u32 state)
 185 {
 186         unsigned long loop;
 187         u32 cur_state;
 188 
 189         loop = 0;
 190         while (!spi_qup_is_valid_state(controller)) {
 191 
 192                 usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
 193 
 194                 if (++loop > SPI_DELAY_RETRY)
 195                         return -EIO;
 196         }
 197 
 198         if (loop)
 199                 dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
 200                         loop, state);
 201 
 202         cur_state = readl_relaxed(controller->base + QUP_STATE);
 203         /*
 204          * Per spec: for PAUSE_STATE to RESET_STATE, two writes
 205          * of (b10) are required
 206          */
 207         if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
 208             (state == QUP_STATE_RESET)) {
 209                 writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
 210                 writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
 211         } else {
 212                 cur_state &= ~QUP_STATE_MASK;
 213                 cur_state |= state;
 214                 writel_relaxed(cur_state, controller->base + QUP_STATE);
 215         }
 216 
 217         loop = 0;
 218         while (!spi_qup_is_valid_state(controller)) {
 219 
 220                 usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
 221 
 222                 if (++loop > SPI_DELAY_RETRY)
 223                         return -EIO;
 224         }
 225 
 226         return 0;
 227 }
 228 
 229 static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
 230 {
 231         u8 *rx_buf = controller->rx_buf;
 232         int i, shift, num_bytes;
 233         u32 word;
 234 
 235         for (; num_words; num_words--) {
 236 
 237                 word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
 238 
 239                 num_bytes = min_t(int, spi_qup_len(controller) -
 240                                        controller->rx_bytes,
 241                                        controller->w_size);
 242 
 243                 if (!rx_buf) {
 244                         controller->rx_bytes += num_bytes;
 245                         continue;
 246                 }
 247 
 248                 for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
 249                         /*
 250                          * The data format depends on bytes per SPI word:
 251                          *  4 bytes: 0x12345678
 252                          *  2 bytes: 0x00001234
 253                          *  1 byte : 0x00000012
 254                          */
 255                         shift = BITS_PER_BYTE;
 256                         shift *= (controller->w_size - i - 1);
 257                         rx_buf[controller->rx_bytes] = word >> shift;
 258                 }
 259         }
 260 }
 261 
 262 static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
 263 {
 264         u32 remainder, words_per_block, num_words;
 265         bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
 266 
 267         remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
 268                                  controller->w_size);
 269         words_per_block = controller->in_blk_sz >> 2;
 270 
 271         do {
 272                 /* ACK by clearing service flag */
 273                 writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
 274                                controller->base + QUP_OPERATIONAL);
 275 
 276                 if (!remainder)
 277                         goto exit;
 278 
 279                 if (is_block_mode) {
 280                         num_words = (remainder > words_per_block) ?
 281                                         words_per_block : remainder;
 282                 } else {
 283                         if (!spi_qup_is_flag_set(controller,
 284                                                  QUP_OP_IN_FIFO_NOT_EMPTY))
 285                                 break;
 286 
 287                         num_words = 1;
 288                 }
 289 
 290                 /* read up to the maximum transfer size available */
 291                 spi_qup_read_from_fifo(controller, num_words);
 292 
 293                 remainder -= num_words;
 294 
 295                 /* if block mode, check to see if next block is available */
 296                 if (is_block_mode && !spi_qup_is_flag_set(controller,
 297                                         QUP_OP_IN_BLOCK_READ_REQ))
 298                         break;
 299 
 300         } while (remainder);
 301 
 302         /*
 303          * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
 304          * reads, it has to be cleared again at the very end.  However, be sure
 305          * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
 306          * present and this is used to determine if transaction is complete
 307          */
 308 exit:
 309         if (!remainder) {
 310                 *opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
 311                 if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
 312                         writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
 313                                        controller->base + QUP_OPERATIONAL);
 314         }
 315 }
 316 
 317 static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
 318 {
 319         const u8 *tx_buf = controller->tx_buf;
 320         int i, num_bytes;
 321         u32 word, data;
 322 
 323         for (; num_words; num_words--) {
 324                 word = 0;
 325 
 326                 num_bytes = min_t(int, spi_qup_len(controller) -
 327                                        controller->tx_bytes,
 328                                        controller->w_size);
 329                 if (tx_buf)
 330                         for (i = 0; i < num_bytes; i++) {
 331                                 data = tx_buf[controller->tx_bytes + i];
 332                                 word |= data << (BITS_PER_BYTE * (3 - i));
 333                         }
 334 
 335                 controller->tx_bytes += num_bytes;
 336 
 337                 writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
 338         }
 339 }
 340 
 341 static void spi_qup_dma_done(void *data)
 342 {
 343         struct spi_qup *qup = data;
 344 
 345         complete(&qup->done);
 346 }
 347 
 348 static void spi_qup_write(struct spi_qup *controller)
 349 {
 350         bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
 351         u32 remainder, words_per_block, num_words;
 352 
 353         remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
 354                                  controller->w_size);
 355         words_per_block = controller->out_blk_sz >> 2;
 356 
 357         do {
 358                 /* ACK by clearing service flag */
 359                 writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
 360                                controller->base + QUP_OPERATIONAL);
 361 
 362                 /* make sure the interrupt is valid */
 363                 if (!remainder)
 364                         return;
 365 
 366                 if (is_block_mode) {
 367                         num_words = (remainder > words_per_block) ?
 368                                 words_per_block : remainder;
 369                 } else {
 370                         if (spi_qup_is_flag_set(controller,
 371                                                 QUP_OP_OUT_FIFO_FULL))
 372                                 break;
 373 
 374                         num_words = 1;
 375                 }
 376 
 377                 spi_qup_write_to_fifo(controller, num_words);
 378 
 379                 remainder -= num_words;
 380 
 381                 /* if block mode, check to see if next block is available */
 382                 if (is_block_mode && !spi_qup_is_flag_set(controller,
 383                                         QUP_OP_OUT_BLOCK_WRITE_REQ))
 384                         break;
 385 
 386         } while (remainder);
 387 }
 388 
 389 static int spi_qup_prep_sg(struct spi_master *master, struct scatterlist *sgl,
 390                            unsigned int nents, enum dma_transfer_direction dir,
 391                            dma_async_tx_callback callback)
 392 {
 393         struct spi_qup *qup = spi_master_get_devdata(master);
 394         unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
 395         struct dma_async_tx_descriptor *desc;
 396         struct dma_chan *chan;
 397         dma_cookie_t cookie;
 398 
 399         if (dir == DMA_MEM_TO_DEV)
 400                 chan = master->dma_tx;
 401         else
 402                 chan = master->dma_rx;
 403 
 404         desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 405         if (IS_ERR_OR_NULL(desc))
 406                 return desc ? PTR_ERR(desc) : -EINVAL;
 407 
 408         desc->callback = callback;
 409         desc->callback_param = qup;
 410 
 411         cookie = dmaengine_submit(desc);
 412 
 413         return dma_submit_error(cookie);
 414 }
 415 
 416 static void spi_qup_dma_terminate(struct spi_master *master,
 417                                   struct spi_transfer *xfer)
 418 {
 419         if (xfer->tx_buf)
 420                 dmaengine_terminate_all(master->dma_tx);
 421         if (xfer->rx_buf)
 422                 dmaengine_terminate_all(master->dma_rx);
 423 }
 424 
 425 static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
 426                                      u32 *nents)
 427 {
 428         struct scatterlist *sg;
 429         u32 total = 0;
 430 
 431         for (sg = sgl; sg; sg = sg_next(sg)) {
 432                 unsigned int len = sg_dma_len(sg);
 433 
 434                 /* check for overflow as well as limit */
 435                 if (((total + len) < total) || ((total + len) > max))
 436                         break;
 437 
 438                 total += len;
 439                 (*nents)++;
 440         }
 441 
 442         return total;
 443 }
 444 
 445 static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
 446                           unsigned long timeout)
 447 {
 448         dma_async_tx_callback rx_done = NULL, tx_done = NULL;
 449         struct spi_master *master = spi->master;
 450         struct spi_qup *qup = spi_master_get_devdata(master);
 451         struct scatterlist *tx_sgl, *rx_sgl;
 452         int ret;
 453 
 454         if (xfer->rx_buf)
 455                 rx_done = spi_qup_dma_done;
 456         else if (xfer->tx_buf)
 457                 tx_done = spi_qup_dma_done;
 458 
 459         rx_sgl = xfer->rx_sg.sgl;
 460         tx_sgl = xfer->tx_sg.sgl;
 461 
 462         do {
 463                 u32 rx_nents = 0, tx_nents = 0;
 464 
 465                 if (rx_sgl)
 466                         qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
 467                                         SPI_MAX_XFER, &rx_nents) / qup->w_size;
 468                 if (tx_sgl)
 469                         qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
 470                                         SPI_MAX_XFER, &tx_nents) / qup->w_size;
 471                 if (!qup->n_words)
 472                         return -EIO;
 473 
 474                 ret = spi_qup_io_config(spi, xfer);
 475                 if (ret)
 476                         return ret;
 477 
 478                 /* before issuing the descriptors, set the QUP to run */
 479                 ret = spi_qup_set_state(qup, QUP_STATE_RUN);
 480                 if (ret) {
 481                         dev_warn(qup->dev, "cannot set RUN state\n");
 482                         return ret;
 483                 }
 484                 if (rx_sgl) {
 485                         ret = spi_qup_prep_sg(master, rx_sgl, rx_nents,
 486                                               DMA_DEV_TO_MEM, rx_done);
 487                         if (ret)
 488                                 return ret;
 489                         dma_async_issue_pending(master->dma_rx);
 490                 }
 491 
 492                 if (tx_sgl) {
 493                         ret = spi_qup_prep_sg(master, tx_sgl, tx_nents,
 494                                               DMA_MEM_TO_DEV, tx_done);
 495                         if (ret)
 496                                 return ret;
 497 
 498                         dma_async_issue_pending(master->dma_tx);
 499                 }
 500 
 501                 if (!wait_for_completion_timeout(&qup->done, timeout))
 502                         return -ETIMEDOUT;
 503 
 504                 for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
 505                         ;
 506                 for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
 507                         ;
 508 
 509         } while (rx_sgl || tx_sgl);
 510 
 511         return 0;
 512 }
 513 
 514 static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
 515                           unsigned long timeout)
 516 {
 517         struct spi_master *master = spi->master;
 518         struct spi_qup *qup = spi_master_get_devdata(master);
 519         int ret, n_words, iterations, offset = 0;
 520 
 521         n_words = qup->n_words;
 522         iterations = n_words / SPI_MAX_XFER; /* round down */
 523         qup->rx_buf = xfer->rx_buf;
 524         qup->tx_buf = xfer->tx_buf;
 525 
 526         do {
 527                 if (iterations)
 528                         qup->n_words = SPI_MAX_XFER;
 529                 else
 530                         qup->n_words = n_words % SPI_MAX_XFER;
 531 
 532                 if (qup->tx_buf && offset)
 533                         qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
 534 
 535                 if (qup->rx_buf && offset)
 536                         qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
 537 
 538                 /*
 539                  * if the transaction is small enough, we need
 540                  * to fallback to FIFO mode
 541                  */
 542                 if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
 543                         qup->mode = QUP_IO_M_MODE_FIFO;
 544 
 545                 ret = spi_qup_io_config(spi, xfer);
 546                 if (ret)
 547                         return ret;
 548 
 549                 ret = spi_qup_set_state(qup, QUP_STATE_RUN);
 550                 if (ret) {
 551                         dev_warn(qup->dev, "cannot set RUN state\n");
 552                         return ret;
 553                 }
 554 
 555                 ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
 556                 if (ret) {
 557                         dev_warn(qup->dev, "cannot set PAUSE state\n");
 558                         return ret;
 559                 }
 560 
 561                 if (qup->mode == QUP_IO_M_MODE_FIFO)
 562                         spi_qup_write(qup);
 563 
 564                 ret = spi_qup_set_state(qup, QUP_STATE_RUN);
 565                 if (ret) {
 566                         dev_warn(qup->dev, "cannot set RUN state\n");
 567                         return ret;
 568                 }
 569 
 570                 if (!wait_for_completion_timeout(&qup->done, timeout))
 571                         return -ETIMEDOUT;
 572 
 573                 offset++;
 574         } while (iterations--);
 575 
 576         return 0;
 577 }
 578 
 579 static bool spi_qup_data_pending(struct spi_qup *controller)
 580 {
 581         unsigned int remainder_tx, remainder_rx;
 582 
 583         remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) -
 584                                     controller->tx_bytes, controller->w_size);
 585 
 586         remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) -
 587                                     controller->rx_bytes, controller->w_size);
 588 
 589         return remainder_tx || remainder_rx;
 590 }
 591 
 592 static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
 593 {
 594         struct spi_qup *controller = dev_id;
 595         u32 opflags, qup_err, spi_err;
 596         unsigned long flags;
 597         int error = 0;
 598 
 599         qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
 600         spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
 601         opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
 602 
 603         writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
 604         writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
 605 
 606         if (qup_err) {
 607                 if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
 608                         dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
 609                 if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
 610                         dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
 611                 if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
 612                         dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
 613                 if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
 614                         dev_warn(controller->dev, "INPUT_OVER_RUN\n");
 615 
 616                 error = -EIO;
 617         }
 618 
 619         if (spi_err) {
 620                 if (spi_err & SPI_ERROR_CLK_OVER_RUN)
 621                         dev_warn(controller->dev, "CLK_OVER_RUN\n");
 622                 if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
 623                         dev_warn(controller->dev, "CLK_UNDER_RUN\n");
 624 
 625                 error = -EIO;
 626         }
 627 
 628         spin_lock_irqsave(&controller->lock, flags);
 629         if (!controller->error)
 630                 controller->error = error;
 631         spin_unlock_irqrestore(&controller->lock, flags);
 632 
 633         if (spi_qup_is_dma_xfer(controller->mode)) {
 634                 writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
 635         } else {
 636                 if (opflags & QUP_OP_IN_SERVICE_FLAG)
 637                         spi_qup_read(controller, &opflags);
 638 
 639                 if (opflags & QUP_OP_OUT_SERVICE_FLAG)
 640                         spi_qup_write(controller);
 641 
 642                 if (!spi_qup_data_pending(controller))
 643                         complete(&controller->done);
 644         }
 645 
 646         if (error)
 647                 complete(&controller->done);
 648 
 649         if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) {
 650                 if (!spi_qup_is_dma_xfer(controller->mode)) {
 651                         if (spi_qup_data_pending(controller))
 652                                 return IRQ_HANDLED;
 653                 }
 654                 complete(&controller->done);
 655         }
 656 
 657         return IRQ_HANDLED;
 658 }
 659 
 660 /* set clock freq ... bits per word, determine mode */
 661 static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
 662 {
 663         struct spi_qup *controller = spi_master_get_devdata(spi->master);
 664         int ret;
 665 
 666         if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
 667                 dev_err(controller->dev, "too big size for loopback %d > %d\n",
 668                         xfer->len, controller->in_fifo_sz);
 669                 return -EIO;
 670         }
 671 
 672         ret = clk_set_rate(controller->cclk, xfer->speed_hz);
 673         if (ret) {
 674                 dev_err(controller->dev, "fail to set frequency %d",
 675                         xfer->speed_hz);
 676                 return -EIO;
 677         }
 678 
 679         controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
 680         controller->n_words = xfer->len / controller->w_size;
 681 
 682         if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
 683                 controller->mode = QUP_IO_M_MODE_FIFO;
 684         else if (spi->master->can_dma &&
 685                  spi->master->can_dma(spi->master, spi, xfer) &&
 686                  spi->master->cur_msg_mapped)
 687                 controller->mode = QUP_IO_M_MODE_BAM;
 688         else
 689                 controller->mode = QUP_IO_M_MODE_BLOCK;
 690 
 691         return 0;
 692 }
 693 
 694 /* prep qup for another spi transaction of specific type */
 695 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
 696 {
 697         struct spi_qup *controller = spi_master_get_devdata(spi->master);
 698         u32 config, iomode, control;
 699         unsigned long flags;
 700 
 701         spin_lock_irqsave(&controller->lock, flags);
 702         controller->xfer     = xfer;
 703         controller->error    = 0;
 704         controller->rx_bytes = 0;
 705         controller->tx_bytes = 0;
 706         spin_unlock_irqrestore(&controller->lock, flags);
 707 
 708 
 709         if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
 710                 dev_err(controller->dev, "cannot set RESET state\n");
 711                 return -EIO;
 712         }
 713 
 714         switch (controller->mode) {
 715         case QUP_IO_M_MODE_FIFO:
 716                 writel_relaxed(controller->n_words,
 717                                controller->base + QUP_MX_READ_CNT);
 718                 writel_relaxed(controller->n_words,
 719                                controller->base + QUP_MX_WRITE_CNT);
 720                 /* must be zero for FIFO */
 721                 writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
 722                 writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
 723                 break;
 724         case QUP_IO_M_MODE_BAM:
 725                 writel_relaxed(controller->n_words,
 726                                controller->base + QUP_MX_INPUT_CNT);
 727                 writel_relaxed(controller->n_words,
 728                                controller->base + QUP_MX_OUTPUT_CNT);
 729                 /* must be zero for BLOCK and BAM */
 730                 writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
 731                 writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
 732 
 733                 if (!controller->qup_v1) {
 734                         void __iomem *input_cnt;
 735 
 736                         input_cnt = controller->base + QUP_MX_INPUT_CNT;
 737                         /*
 738                          * for DMA transfers, both QUP_MX_INPUT_CNT and
 739                          * QUP_MX_OUTPUT_CNT must be zero to all cases but one.
 740                          * That case is a non-balanced transfer when there is
 741                          * only a rx_buf.
 742                          */
 743                         if (xfer->tx_buf)
 744                                 writel_relaxed(0, input_cnt);
 745                         else
 746                                 writel_relaxed(controller->n_words, input_cnt);
 747 
 748                         writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
 749                 }
 750                 break;
 751         case QUP_IO_M_MODE_BLOCK:
 752                 reinit_completion(&controller->done);
 753                 writel_relaxed(controller->n_words,
 754                                controller->base + QUP_MX_INPUT_CNT);
 755                 writel_relaxed(controller->n_words,
 756                                controller->base + QUP_MX_OUTPUT_CNT);
 757                 /* must be zero for BLOCK and BAM */
 758                 writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
 759                 writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
 760                 break;
 761         default:
 762                 dev_err(controller->dev, "unknown mode = %d\n",
 763                                 controller->mode);
 764                 return -EIO;
 765         }
 766 
 767         iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
 768         /* Set input and output transfer mode */
 769         iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
 770 
 771         if (!spi_qup_is_dma_xfer(controller->mode))
 772                 iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
 773         else
 774                 iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
 775 
 776         iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
 777         iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
 778 
 779         writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
 780 
 781         control = readl_relaxed(controller->base + SPI_IO_CONTROL);
 782 
 783         if (spi->mode & SPI_CPOL)
 784                 control |= SPI_IO_C_CLK_IDLE_HIGH;
 785         else
 786                 control &= ~SPI_IO_C_CLK_IDLE_HIGH;
 787 
 788         writel_relaxed(control, controller->base + SPI_IO_CONTROL);
 789 
 790         config = readl_relaxed(controller->base + SPI_CONFIG);
 791 
 792         if (spi->mode & SPI_LOOP)
 793                 config |= SPI_CONFIG_LOOPBACK;
 794         else
 795                 config &= ~SPI_CONFIG_LOOPBACK;
 796 
 797         if (spi->mode & SPI_CPHA)
 798                 config &= ~SPI_CONFIG_INPUT_FIRST;
 799         else
 800                 config |= SPI_CONFIG_INPUT_FIRST;
 801 
 802         /*
 803          * HS_MODE improves signal stability for spi-clk high rates,
 804          * but is invalid in loop back mode.
 805          */
 806         if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
 807                 config |= SPI_CONFIG_HS_MODE;
 808         else
 809                 config &= ~SPI_CONFIG_HS_MODE;
 810 
 811         writel_relaxed(config, controller->base + SPI_CONFIG);
 812 
 813         config = readl_relaxed(controller->base + QUP_CONFIG);
 814         config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
 815         config |= xfer->bits_per_word - 1;
 816         config |= QUP_CONFIG_SPI_MODE;
 817 
 818         if (spi_qup_is_dma_xfer(controller->mode)) {
 819                 if (!xfer->tx_buf)
 820                         config |= QUP_CONFIG_NO_OUTPUT;
 821                 if (!xfer->rx_buf)
 822                         config |= QUP_CONFIG_NO_INPUT;
 823         }
 824 
 825         writel_relaxed(config, controller->base + QUP_CONFIG);
 826 
 827         /* only write to OPERATIONAL_MASK when register is present */
 828         if (!controller->qup_v1) {
 829                 u32 mask = 0;
 830 
 831                 /*
 832                  * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
 833                  * status change in BAM mode
 834                  */
 835 
 836                 if (spi_qup_is_dma_xfer(controller->mode))
 837                         mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
 838 
 839                 writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
 840         }
 841 
 842         return 0;
 843 }
 844 
 845 static int spi_qup_transfer_one(struct spi_master *master,
 846                               struct spi_device *spi,
 847                               struct spi_transfer *xfer)
 848 {
 849         struct spi_qup *controller = spi_master_get_devdata(master);
 850         unsigned long timeout, flags;
 851         int ret = -EIO;
 852 
 853         ret = spi_qup_io_prep(spi, xfer);
 854         if (ret)
 855                 return ret;
 856 
 857         timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
 858         timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
 859                                      xfer->len) * 8, timeout);
 860         timeout = 100 * msecs_to_jiffies(timeout);
 861 
 862         reinit_completion(&controller->done);
 863 
 864         spin_lock_irqsave(&controller->lock, flags);
 865         controller->xfer     = xfer;
 866         controller->error    = 0;
 867         controller->rx_bytes = 0;
 868         controller->tx_bytes = 0;
 869         spin_unlock_irqrestore(&controller->lock, flags);
 870 
 871         if (spi_qup_is_dma_xfer(controller->mode))
 872                 ret = spi_qup_do_dma(spi, xfer, timeout);
 873         else
 874                 ret = spi_qup_do_pio(spi, xfer, timeout);
 875 
 876         spi_qup_set_state(controller, QUP_STATE_RESET);
 877         spin_lock_irqsave(&controller->lock, flags);
 878         if (!ret)
 879                 ret = controller->error;
 880         spin_unlock_irqrestore(&controller->lock, flags);
 881 
 882         if (ret && spi_qup_is_dma_xfer(controller->mode))
 883                 spi_qup_dma_terminate(master, xfer);
 884 
 885         return ret;
 886 }
 887 
 888 static bool spi_qup_can_dma(struct spi_master *master, struct spi_device *spi,
 889                             struct spi_transfer *xfer)
 890 {
 891         struct spi_qup *qup = spi_master_get_devdata(master);
 892         size_t dma_align = dma_get_cache_alignment();
 893         int n_words;
 894 
 895         if (xfer->rx_buf) {
 896                 if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
 897                     IS_ERR_OR_NULL(master->dma_rx))
 898                         return false;
 899                 if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
 900                         return false;
 901         }
 902 
 903         if (xfer->tx_buf) {
 904                 if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
 905                     IS_ERR_OR_NULL(master->dma_tx))
 906                         return false;
 907                 if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
 908                         return false;
 909         }
 910 
 911         n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
 912         if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
 913                 return false;
 914 
 915         return true;
 916 }
 917 
 918 static void spi_qup_release_dma(struct spi_master *master)
 919 {
 920         if (!IS_ERR_OR_NULL(master->dma_rx))
 921                 dma_release_channel(master->dma_rx);
 922         if (!IS_ERR_OR_NULL(master->dma_tx))
 923                 dma_release_channel(master->dma_tx);
 924 }
 925 
 926 static int spi_qup_init_dma(struct spi_master *master, resource_size_t base)
 927 {
 928         struct spi_qup *spi = spi_master_get_devdata(master);
 929         struct dma_slave_config *rx_conf = &spi->rx_conf,
 930                                 *tx_conf = &spi->tx_conf;
 931         struct device *dev = spi->dev;
 932         int ret;
 933 
 934         /* allocate dma resources, if available */
 935         master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
 936         if (IS_ERR(master->dma_rx))
 937                 return PTR_ERR(master->dma_rx);
 938 
 939         master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 940         if (IS_ERR(master->dma_tx)) {
 941                 ret = PTR_ERR(master->dma_tx);
 942                 goto err_tx;
 943         }
 944 
 945         /* set DMA parameters */
 946         rx_conf->direction = DMA_DEV_TO_MEM;
 947         rx_conf->device_fc = 1;
 948         rx_conf->src_addr = base + QUP_INPUT_FIFO;
 949         rx_conf->src_maxburst = spi->in_blk_sz;
 950 
 951         tx_conf->direction = DMA_MEM_TO_DEV;
 952         tx_conf->device_fc = 1;
 953         tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
 954         tx_conf->dst_maxburst = spi->out_blk_sz;
 955 
 956         ret = dmaengine_slave_config(master->dma_rx, rx_conf);
 957         if (ret) {
 958                 dev_err(dev, "failed to configure RX channel\n");
 959                 goto err;
 960         }
 961 
 962         ret = dmaengine_slave_config(master->dma_tx, tx_conf);
 963         if (ret) {
 964                 dev_err(dev, "failed to configure TX channel\n");
 965                 goto err;
 966         }
 967 
 968         return 0;
 969 
 970 err:
 971         dma_release_channel(master->dma_tx);
 972 err_tx:
 973         dma_release_channel(master->dma_rx);
 974         return ret;
 975 }
 976 
 977 static void spi_qup_set_cs(struct spi_device *spi, bool val)
 978 {
 979         struct spi_qup *controller;
 980         u32 spi_ioc;
 981         u32 spi_ioc_orig;
 982 
 983         controller = spi_master_get_devdata(spi->master);
 984         spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
 985         spi_ioc_orig = spi_ioc;
 986         if (!val)
 987                 spi_ioc |= SPI_IO_C_FORCE_CS;
 988         else
 989                 spi_ioc &= ~SPI_IO_C_FORCE_CS;
 990 
 991         if (spi_ioc != spi_ioc_orig)
 992                 writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
 993 }
 994 
 995 static int spi_qup_probe(struct platform_device *pdev)
 996 {
 997         struct spi_master *master;
 998         struct clk *iclk, *cclk;
 999         struct spi_qup *controller;
1000         struct resource *res;
1001         struct device *dev;
1002         void __iomem *base;
1003         u32 max_freq, iomode, num_cs;
1004         int ret, irq, size;
1005 
1006         dev = &pdev->dev;
1007         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1008         base = devm_ioremap_resource(dev, res);
1009         if (IS_ERR(base))
1010                 return PTR_ERR(base);
1011 
1012         irq = platform_get_irq(pdev, 0);
1013         if (irq < 0)
1014                 return irq;
1015 
1016         cclk = devm_clk_get(dev, "core");
1017         if (IS_ERR(cclk))
1018                 return PTR_ERR(cclk);
1019 
1020         iclk = devm_clk_get(dev, "iface");
1021         if (IS_ERR(iclk))
1022                 return PTR_ERR(iclk);
1023 
1024         /* This is optional parameter */
1025         if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
1026                 max_freq = SPI_MAX_RATE;
1027 
1028         if (!max_freq || max_freq > SPI_MAX_RATE) {
1029                 dev_err(dev, "invalid clock frequency %d\n", max_freq);
1030                 return -ENXIO;
1031         }
1032 
1033         ret = clk_prepare_enable(cclk);
1034         if (ret) {
1035                 dev_err(dev, "cannot enable core clock\n");
1036                 return ret;
1037         }
1038 
1039         ret = clk_prepare_enable(iclk);
1040         if (ret) {
1041                 clk_disable_unprepare(cclk);
1042                 dev_err(dev, "cannot enable iface clock\n");
1043                 return ret;
1044         }
1045 
1046         master = spi_alloc_master(dev, sizeof(struct spi_qup));
1047         if (!master) {
1048                 clk_disable_unprepare(cclk);
1049                 clk_disable_unprepare(iclk);
1050                 dev_err(dev, "cannot allocate master\n");
1051                 return -ENOMEM;
1052         }
1053 
1054         /* use num-cs unless not present or out of range */
1055         if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
1056             num_cs > SPI_NUM_CHIPSELECTS)
1057                 master->num_chipselect = SPI_NUM_CHIPSELECTS;
1058         else
1059                 master->num_chipselect = num_cs;
1060 
1061         master->bus_num = pdev->id;
1062         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1063         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1064         master->max_speed_hz = max_freq;
1065         master->transfer_one = spi_qup_transfer_one;
1066         master->dev.of_node = pdev->dev.of_node;
1067         master->auto_runtime_pm = true;
1068         master->dma_alignment = dma_get_cache_alignment();
1069         master->max_dma_len = SPI_MAX_XFER;
1070 
1071         platform_set_drvdata(pdev, master);
1072 
1073         controller = spi_master_get_devdata(master);
1074 
1075         controller->dev = dev;
1076         controller->base = base;
1077         controller->iclk = iclk;
1078         controller->cclk = cclk;
1079         controller->irq = irq;
1080 
1081         ret = spi_qup_init_dma(master, res->start);
1082         if (ret == -EPROBE_DEFER)
1083                 goto error;
1084         else if (!ret)
1085                 master->can_dma = spi_qup_can_dma;
1086 
1087         controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
1088 
1089         if (!controller->qup_v1)
1090                 master->set_cs = spi_qup_set_cs;
1091 
1092         spin_lock_init(&controller->lock);
1093         init_completion(&controller->done);
1094 
1095         iomode = readl_relaxed(base + QUP_IO_M_MODES);
1096 
1097         size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
1098         if (size)
1099                 controller->out_blk_sz = size * 16;
1100         else
1101                 controller->out_blk_sz = 4;
1102 
1103         size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
1104         if (size)
1105                 controller->in_blk_sz = size * 16;
1106         else
1107                 controller->in_blk_sz = 4;
1108 
1109         size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
1110         controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
1111 
1112         size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
1113         controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
1114 
1115         dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1116                  controller->in_blk_sz, controller->in_fifo_sz,
1117                  controller->out_blk_sz, controller->out_fifo_sz);
1118 
1119         writel_relaxed(1, base + QUP_SW_RESET);
1120 
1121         ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1122         if (ret) {
1123                 dev_err(dev, "cannot set RESET state\n");
1124                 goto error_dma;
1125         }
1126 
1127         writel_relaxed(0, base + QUP_OPERATIONAL);
1128         writel_relaxed(0, base + QUP_IO_M_MODES);
1129 
1130         if (!controller->qup_v1)
1131                 writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
1132 
1133         writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
1134                        base + SPI_ERROR_FLAGS_EN);
1135 
1136         /* if earlier version of the QUP, disable INPUT_OVERRUN */
1137         if (controller->qup_v1)
1138                 writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
1139                         QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
1140                         base + QUP_ERROR_FLAGS_EN);
1141 
1142         writel_relaxed(0, base + SPI_CONFIG);
1143         writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
1144 
1145         ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
1146                                IRQF_TRIGGER_HIGH, pdev->name, controller);
1147         if (ret)
1148                 goto error_dma;
1149 
1150         pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
1151         pm_runtime_use_autosuspend(dev);
1152         pm_runtime_set_active(dev);
1153         pm_runtime_enable(dev);
1154 
1155         ret = devm_spi_register_master(dev, master);
1156         if (ret)
1157                 goto disable_pm;
1158 
1159         return 0;
1160 
1161 disable_pm:
1162         pm_runtime_disable(&pdev->dev);
1163 error_dma:
1164         spi_qup_release_dma(master);
1165 error:
1166         clk_disable_unprepare(cclk);
1167         clk_disable_unprepare(iclk);
1168         spi_master_put(master);
1169         return ret;
1170 }
1171 
1172 #ifdef CONFIG_PM
1173 static int spi_qup_pm_suspend_runtime(struct device *device)
1174 {
1175         struct spi_master *master = dev_get_drvdata(device);
1176         struct spi_qup *controller = spi_master_get_devdata(master);
1177         u32 config;
1178 
1179         /* Enable clocks auto gaiting */
1180         config = readl(controller->base + QUP_CONFIG);
1181         config |= QUP_CONFIG_CLOCK_AUTO_GATE;
1182         writel_relaxed(config, controller->base + QUP_CONFIG);
1183 
1184         clk_disable_unprepare(controller->cclk);
1185         clk_disable_unprepare(controller->iclk);
1186 
1187         return 0;
1188 }
1189 
1190 static int spi_qup_pm_resume_runtime(struct device *device)
1191 {
1192         struct spi_master *master = dev_get_drvdata(device);
1193         struct spi_qup *controller = spi_master_get_devdata(master);
1194         u32 config;
1195         int ret;
1196 
1197         ret = clk_prepare_enable(controller->iclk);
1198         if (ret)
1199                 return ret;
1200 
1201         ret = clk_prepare_enable(controller->cclk);
1202         if (ret)
1203                 return ret;
1204 
1205         /* Disable clocks auto gaiting */
1206         config = readl_relaxed(controller->base + QUP_CONFIG);
1207         config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
1208         writel_relaxed(config, controller->base + QUP_CONFIG);
1209         return 0;
1210 }
1211 #endif /* CONFIG_PM */
1212 
1213 #ifdef CONFIG_PM_SLEEP
1214 static int spi_qup_suspend(struct device *device)
1215 {
1216         struct spi_master *master = dev_get_drvdata(device);
1217         struct spi_qup *controller = spi_master_get_devdata(master);
1218         int ret;
1219 
1220         if (pm_runtime_suspended(device)) {
1221                 ret = spi_qup_pm_resume_runtime(device);
1222                 if (ret)
1223                         return ret;
1224         }
1225         ret = spi_master_suspend(master);
1226         if (ret)
1227                 return ret;
1228 
1229         ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1230         if (ret)
1231                 return ret;
1232 
1233         clk_disable_unprepare(controller->cclk);
1234         clk_disable_unprepare(controller->iclk);
1235         return 0;
1236 }
1237 
1238 static int spi_qup_resume(struct device *device)
1239 {
1240         struct spi_master *master = dev_get_drvdata(device);
1241         struct spi_qup *controller = spi_master_get_devdata(master);
1242         int ret;
1243 
1244         ret = clk_prepare_enable(controller->iclk);
1245         if (ret)
1246                 return ret;
1247 
1248         ret = clk_prepare_enable(controller->cclk);
1249         if (ret)
1250                 return ret;
1251 
1252         ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1253         if (ret)
1254                 return ret;
1255 
1256         return spi_master_resume(master);
1257 }
1258 #endif /* CONFIG_PM_SLEEP */
1259 
1260 static int spi_qup_remove(struct platform_device *pdev)
1261 {
1262         struct spi_master *master = dev_get_drvdata(&pdev->dev);
1263         struct spi_qup *controller = spi_master_get_devdata(master);
1264         int ret;
1265 
1266         ret = pm_runtime_get_sync(&pdev->dev);
1267         if (ret < 0)
1268                 return ret;
1269 
1270         ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1271         if (ret)
1272                 return ret;
1273 
1274         spi_qup_release_dma(master);
1275 
1276         clk_disable_unprepare(controller->cclk);
1277         clk_disable_unprepare(controller->iclk);
1278 
1279         pm_runtime_put_noidle(&pdev->dev);
1280         pm_runtime_disable(&pdev->dev);
1281 
1282         return 0;
1283 }
1284 
1285 static const struct of_device_id spi_qup_dt_match[] = {
1286         { .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
1287         { .compatible = "qcom,spi-qup-v2.1.1", },
1288         { .compatible = "qcom,spi-qup-v2.2.1", },
1289         { }
1290 };
1291 MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
1292 
1293 static const struct dev_pm_ops spi_qup_dev_pm_ops = {
1294         SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
1295         SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
1296                            spi_qup_pm_resume_runtime,
1297                            NULL)
1298 };
1299 
1300 static struct platform_driver spi_qup_driver = {
1301         .driver = {
1302                 .name           = "spi_qup",
1303                 .pm             = &spi_qup_dev_pm_ops,
1304                 .of_match_table = spi_qup_dt_match,
1305         },
1306         .probe = spi_qup_probe,
1307         .remove = spi_qup_remove,
1308 };
1309 module_platform_driver(spi_qup_driver);
1310 
1311 MODULE_LICENSE("GPL v2");
1312 MODULE_ALIAS("platform:spi_qup");

/* [<][>][^][v][top][bottom][index][help] */