root/arch/arm64/kvm/sys_regs.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read_from_write_only
  2. write_to_read_only
  3. vcpu_read_sys_reg
  4. vcpu_write_sys_reg
  5. get_ccsidr
  6. access_dcsw
  7. access_vm_reg
  8. access_gic_sgi
  9. access_gic_sre
  10. trap_raz_wi
  11. trap_loregion
  12. trap_oslsr_el1
  13. trap_dbgauthstatus_el1
  14. trap_debug_regs
  15. reg_to_dbg
  16. dbg_to_reg
  17. trap_bvr
  18. set_bvr
  19. get_bvr
  20. reset_bvr
  21. trap_bcr
  22. set_bcr
  23. get_bcr
  24. reset_bcr
  25. trap_wvr
  26. set_wvr
  27. get_wvr
  28. reset_wvr
  29. trap_wcr
  30. set_wcr
  31. get_wcr
  32. reset_wcr
  33. reset_amair_el1
  34. reset_mpidr
  35. reset_pmcr
  36. check_pmu_access_disabled
  37. pmu_access_el0_disabled
  38. pmu_write_swinc_el0_disabled
  39. pmu_access_cycle_counter_el0_disabled
  40. pmu_access_event_counter_el0_disabled
  41. access_pmcr
  42. access_pmselr
  43. access_pmceid
  44. pmu_counter_idx_valid
  45. access_pmu_evcntr
  46. access_pmu_evtyper
  47. access_pmcnten
  48. access_pminten
  49. access_pmovs
  50. access_pmswinc
  51. access_pmuserenr
  52. trap_ptrauth
  53. ptrauth_visibility
  54. access_arch_timer
  55. read_id_reg
  56. __access_id_reg
  57. access_id_reg
  58. access_raz_id_reg
  59. sve_visibility
  60. sve_id_visibility
  61. guest_id_aa64zfr0_el1
  62. access_id_aa64zfr0_el1
  63. get_id_aa64zfr0_el1
  64. set_id_aa64zfr0_el1
  65. __get_id_reg
  66. __set_id_reg
  67. get_id_reg
  68. set_id_reg
  69. get_raz_id_reg
  70. set_raz_id_reg
  71. access_ctr
  72. access_clidr
  73. access_csselr
  74. access_ccsidr
  75. trap_dbgidr
  76. trap_debug32
  77. trap_xvr
  78. kvm_register_target_sys_reg_table
  79. get_target_table
  80. match_sys_reg
  81. find_reg
  82. kvm_handle_cp14_load_store
  83. perform_access
  84. emulate_cp
  85. unhandled_cp_access
  86. kvm_handle_cp_64
  87. kvm_handle_cp_32
  88. kvm_handle_cp15_64
  89. kvm_handle_cp15_32
  90. kvm_handle_cp14_64
  91. kvm_handle_cp14_32
  92. emulate_sys_reg
  93. reset_sys_reg_descs
  94. kvm_handle_sys_reg
  95. index_to_params
  96. find_reg_by_id
  97. index_to_sys_reg_desc
  98. FUNCTION_INVARIANT
  99. reg_from_user
  100. reg_to_user
  101. get_invariant_sys_reg
  102. set_invariant_sys_reg
  103. is_valid_cache
  104. demux_c15_get
  105. demux_c15_set
  106. kvm_arm_sys_reg_get_reg
  107. kvm_arm_sys_reg_set_reg
  108. num_demux_regs
  109. write_demux_regids
  110. sys_reg_to_index
  111. copy_reg_to_user
  112. walk_one_sys_reg
  113. walk_sys_regs
  114. kvm_arm_num_sys_reg_descs
  115. kvm_arm_copy_sys_reg_indices
  116. check_sysreg_table
  117. kvm_sys_reg_table_init
  118. kvm_reset_sys_regs

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2012,2013 - ARM Ltd
   4  * Author: Marc Zyngier <marc.zyngier@arm.com>
   5  *
   6  * Derived from arch/arm/kvm/coproc.c:
   7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
   9  *          Christoffer Dall <c.dall@virtualopensystems.com>
  10  */
  11 
  12 #include <linux/bsearch.h>
  13 #include <linux/kvm_host.h>
  14 #include <linux/mm.h>
  15 #include <linux/printk.h>
  16 #include <linux/uaccess.h>
  17 
  18 #include <asm/cacheflush.h>
  19 #include <asm/cputype.h>
  20 #include <asm/debug-monitors.h>
  21 #include <asm/esr.h>
  22 #include <asm/kvm_arm.h>
  23 #include <asm/kvm_coproc.h>
  24 #include <asm/kvm_emulate.h>
  25 #include <asm/kvm_host.h>
  26 #include <asm/kvm_hyp.h>
  27 #include <asm/kvm_mmu.h>
  28 #include <asm/perf_event.h>
  29 #include <asm/sysreg.h>
  30 
  31 #include <trace/events/kvm.h>
  32 
  33 #include "sys_regs.h"
  34 
  35 #include "trace.h"
  36 
  37 /*
  38  * All of this file is extremly similar to the ARM coproc.c, but the
  39  * types are different. My gut feeling is that it should be pretty
  40  * easy to merge, but that would be an ABI breakage -- again. VFP
  41  * would also need to be abstracted.
  42  *
  43  * For AArch32, we only take care of what is being trapped. Anything
  44  * that has to do with init and userspace access has to go via the
  45  * 64bit interface.
  46  */
  47 
  48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
  49                                  struct sys_reg_params *params,
  50                                  const struct sys_reg_desc *r)
  51 {
  52         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  53         print_sys_reg_instr(params);
  54         kvm_inject_undefined(vcpu);
  55         return false;
  56 }
  57 
  58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
  59                                struct sys_reg_params *params,
  60                                const struct sys_reg_desc *r)
  61 {
  62         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  63         print_sys_reg_instr(params);
  64         kvm_inject_undefined(vcpu);
  65         return false;
  66 }
  67 
  68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
  69 {
  70         if (!vcpu->arch.sysregs_loaded_on_cpu)
  71                 goto immediate_read;
  72 
  73         /*
  74          * System registers listed in the switch are not saved on every
  75          * exit from the guest but are only saved on vcpu_put.
  76          *
  77          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
  78          * should never be listed below, because the guest cannot modify its
  79          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
  80          * thread when emulating cross-VCPU communication.
  81          */
  82         switch (reg) {
  83         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
  84         case SCTLR_EL1:         return read_sysreg_s(SYS_SCTLR_EL12);
  85         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
  86         case CPACR_EL1:         return read_sysreg_s(SYS_CPACR_EL12);
  87         case TTBR0_EL1:         return read_sysreg_s(SYS_TTBR0_EL12);
  88         case TTBR1_EL1:         return read_sysreg_s(SYS_TTBR1_EL12);
  89         case TCR_EL1:           return read_sysreg_s(SYS_TCR_EL12);
  90         case ESR_EL1:           return read_sysreg_s(SYS_ESR_EL12);
  91         case AFSR0_EL1:         return read_sysreg_s(SYS_AFSR0_EL12);
  92         case AFSR1_EL1:         return read_sysreg_s(SYS_AFSR1_EL12);
  93         case FAR_EL1:           return read_sysreg_s(SYS_FAR_EL12);
  94         case MAIR_EL1:          return read_sysreg_s(SYS_MAIR_EL12);
  95         case VBAR_EL1:          return read_sysreg_s(SYS_VBAR_EL12);
  96         case CONTEXTIDR_EL1:    return read_sysreg_s(SYS_CONTEXTIDR_EL12);
  97         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
  98         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
  99         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
 100         case AMAIR_EL1:         return read_sysreg_s(SYS_AMAIR_EL12);
 101         case CNTKCTL_EL1:       return read_sysreg_s(SYS_CNTKCTL_EL12);
 102         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
 103         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
 104         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
 105         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
 106         }
 107 
 108 immediate_read:
 109         return __vcpu_sys_reg(vcpu, reg);
 110 }
 111 
 112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
 113 {
 114         if (!vcpu->arch.sysregs_loaded_on_cpu)
 115                 goto immediate_write;
 116 
 117         /*
 118          * System registers listed in the switch are not restored on every
 119          * entry to the guest but are only restored on vcpu_load.
 120          *
 121          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
 122          * should never be listed below, because the the MPIDR should only be
 123          * set once, before running the VCPU, and never changed later.
 124          */
 125         switch (reg) {
 126         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
 127         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    return;
 128         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
 129         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    return;
 130         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    return;
 131         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    return;
 132         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      return;
 133         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      return;
 134         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    return;
 135         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    return;
 136         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      return;
 137         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     return;
 138         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     return;
 139         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
 140         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
 141         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
 142         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
 143         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    return;
 144         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  return;
 145         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
 146         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
 147         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
 148         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
 149         }
 150 
 151 immediate_write:
 152          __vcpu_sys_reg(vcpu, reg) = val;
 153 }
 154 
 155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 156 static u32 cache_levels;
 157 
 158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 159 #define CSSELR_MAX 12
 160 
 161 /* Which cache CCSIDR represents depends on CSSELR value. */
 162 static u32 get_ccsidr(u32 csselr)
 163 {
 164         u32 ccsidr;
 165 
 166         /* Make sure noone else changes CSSELR during this! */
 167         local_irq_disable();
 168         write_sysreg(csselr, csselr_el1);
 169         isb();
 170         ccsidr = read_sysreg(ccsidr_el1);
 171         local_irq_enable();
 172 
 173         return ccsidr;
 174 }
 175 
 176 /*
 177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 178  */
 179 static bool access_dcsw(struct kvm_vcpu *vcpu,
 180                         struct sys_reg_params *p,
 181                         const struct sys_reg_desc *r)
 182 {
 183         if (!p->is_write)
 184                 return read_from_write_only(vcpu, p, r);
 185 
 186         /*
 187          * Only track S/W ops if we don't have FWB. It still indicates
 188          * that the guest is a bit broken (S/W operations should only
 189          * be done by firmware, knowing that there is only a single
 190          * CPU left in the system, and certainly not from non-secure
 191          * software).
 192          */
 193         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
 194                 kvm_set_way_flush(vcpu);
 195 
 196         return true;
 197 }
 198 
 199 /*
 200  * Generic accessor for VM registers. Only called as long as HCR_TVM
 201  * is set. If the guest enables the MMU, we stop trapping the VM
 202  * sys_regs and leave it in complete control of the caches.
 203  */
 204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
 205                           struct sys_reg_params *p,
 206                           const struct sys_reg_desc *r)
 207 {
 208         bool was_enabled = vcpu_has_cache_enabled(vcpu);
 209         u64 val;
 210         int reg = r->reg;
 211 
 212         BUG_ON(!p->is_write);
 213 
 214         /* See the 32bit mapping in kvm_host.h */
 215         if (p->is_aarch32)
 216                 reg = r->reg / 2;
 217 
 218         if (!p->is_aarch32 || !p->is_32bit) {
 219                 val = p->regval;
 220         } else {
 221                 val = vcpu_read_sys_reg(vcpu, reg);
 222                 if (r->reg % 2)
 223                         val = (p->regval << 32) | (u64)lower_32_bits(val);
 224                 else
 225                         val = ((u64)upper_32_bits(val) << 32) |
 226                                 lower_32_bits(p->regval);
 227         }
 228         vcpu_write_sys_reg(vcpu, val, reg);
 229 
 230         kvm_toggle_cache(vcpu, was_enabled);
 231         return true;
 232 }
 233 
 234 /*
 235  * Trap handler for the GICv3 SGI generation system register.
 236  * Forward the request to the VGIC emulation.
 237  * The cp15_64 code makes sure this automatically works
 238  * for both AArch64 and AArch32 accesses.
 239  */
 240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 241                            struct sys_reg_params *p,
 242                            const struct sys_reg_desc *r)
 243 {
 244         bool g1;
 245 
 246         if (!p->is_write)
 247                 return read_from_write_only(vcpu, p, r);
 248 
 249         /*
 250          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 251          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 252          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 253          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 254          * group.
 255          */
 256         if (p->is_aarch32) {
 257                 switch (p->Op1) {
 258                 default:                /* Keep GCC quiet */
 259                 case 0:                 /* ICC_SGI1R */
 260                         g1 = true;
 261                         break;
 262                 case 1:                 /* ICC_ASGI1R */
 263                 case 2:                 /* ICC_SGI0R */
 264                         g1 = false;
 265                         break;
 266                 }
 267         } else {
 268                 switch (p->Op2) {
 269                 default:                /* Keep GCC quiet */
 270                 case 5:                 /* ICC_SGI1R_EL1 */
 271                         g1 = true;
 272                         break;
 273                 case 6:                 /* ICC_ASGI1R_EL1 */
 274                 case 7:                 /* ICC_SGI0R_EL1 */
 275                         g1 = false;
 276                         break;
 277                 }
 278         }
 279 
 280         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 281 
 282         return true;
 283 }
 284 
 285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
 286                            struct sys_reg_params *p,
 287                            const struct sys_reg_desc *r)
 288 {
 289         if (p->is_write)
 290                 return ignore_write(vcpu, p);
 291 
 292         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 293         return true;
 294 }
 295 
 296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 297                         struct sys_reg_params *p,
 298                         const struct sys_reg_desc *r)
 299 {
 300         if (p->is_write)
 301                 return ignore_write(vcpu, p);
 302         else
 303                 return read_zero(vcpu, p);
 304 }
 305 
 306 /*
 307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 310  * treat it separately.
 311  */
 312 static bool trap_loregion(struct kvm_vcpu *vcpu,
 313                           struct sys_reg_params *p,
 314                           const struct sys_reg_desc *r)
 315 {
 316         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
 317         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
 318                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
 319 
 320         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
 321                 kvm_inject_undefined(vcpu);
 322                 return false;
 323         }
 324 
 325         if (p->is_write && sr == SYS_LORID_EL1)
 326                 return write_to_read_only(vcpu, p, r);
 327 
 328         return trap_raz_wi(vcpu, p, r);
 329 }
 330 
 331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 332                            struct sys_reg_params *p,
 333                            const struct sys_reg_desc *r)
 334 {
 335         if (p->is_write) {
 336                 return ignore_write(vcpu, p);
 337         } else {
 338                 p->regval = (1 << 3);
 339                 return true;
 340         }
 341 }
 342 
 343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 344                                    struct sys_reg_params *p,
 345                                    const struct sys_reg_desc *r)
 346 {
 347         if (p->is_write) {
 348                 return ignore_write(vcpu, p);
 349         } else {
 350                 p->regval = read_sysreg(dbgauthstatus_el1);
 351                 return true;
 352         }
 353 }
 354 
 355 /*
 356  * We want to avoid world-switching all the DBG registers all the
 357  * time:
 358  * 
 359  * - If we've touched any debug register, it is likely that we're
 360  *   going to touch more of them. It then makes sense to disable the
 361  *   traps and start doing the save/restore dance
 362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 363  *   then mandatory to save/restore the registers, as the guest
 364  *   depends on them.
 365  * 
 366  * For this, we use a DIRTY bit, indicating the guest has modified the
 367  * debug registers, used as follow:
 368  *
 369  * On guest entry:
 370  * - If the dirty bit is set (because we're coming back from trapping),
 371  *   disable the traps, save host registers, restore guest registers.
 372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 373  *   set the dirty bit, disable the traps, save host registers,
 374  *   restore guest registers.
 375  * - Otherwise, enable the traps
 376  *
 377  * On guest exit:
 378  * - If the dirty bit is set, save guest registers, restore host
 379  *   registers and clear the dirty bit. This ensure that the host can
 380  *   now use the debug registers.
 381  */
 382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 383                             struct sys_reg_params *p,
 384                             const struct sys_reg_desc *r)
 385 {
 386         if (p->is_write) {
 387                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 388                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 389         } else {
 390                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 391         }
 392 
 393         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 394 
 395         return true;
 396 }
 397 
 398 /*
 399  * reg_to_dbg/dbg_to_reg
 400  *
 401  * A 32 bit write to a debug register leave top bits alone
 402  * A 32 bit read from a debug register only returns the bottom bits
 403  *
 404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 405  * hyp.S code switches between host and guest values in future.
 406  */
 407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
 408                        struct sys_reg_params *p,
 409                        u64 *dbg_reg)
 410 {
 411         u64 val = p->regval;
 412 
 413         if (p->is_32bit) {
 414                 val &= 0xffffffffUL;
 415                 val |= ((*dbg_reg >> 32) << 32);
 416         }
 417 
 418         *dbg_reg = val;
 419         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 420 }
 421 
 422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
 423                        struct sys_reg_params *p,
 424                        u64 *dbg_reg)
 425 {
 426         p->regval = *dbg_reg;
 427         if (p->is_32bit)
 428                 p->regval &= 0xffffffffUL;
 429 }
 430 
 431 static bool trap_bvr(struct kvm_vcpu *vcpu,
 432                      struct sys_reg_params *p,
 433                      const struct sys_reg_desc *rd)
 434 {
 435         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 436 
 437         if (p->is_write)
 438                 reg_to_dbg(vcpu, p, dbg_reg);
 439         else
 440                 dbg_to_reg(vcpu, p, dbg_reg);
 441 
 442         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 443 
 444         return true;
 445 }
 446 
 447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 448                 const struct kvm_one_reg *reg, void __user *uaddr)
 449 {
 450         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 451 
 452         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 453                 return -EFAULT;
 454         return 0;
 455 }
 456 
 457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 458         const struct kvm_one_reg *reg, void __user *uaddr)
 459 {
 460         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 461 
 462         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 463                 return -EFAULT;
 464         return 0;
 465 }
 466 
 467 static void reset_bvr(struct kvm_vcpu *vcpu,
 468                       const struct sys_reg_desc *rd)
 469 {
 470         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
 471 }
 472 
 473 static bool trap_bcr(struct kvm_vcpu *vcpu,
 474                      struct sys_reg_params *p,
 475                      const struct sys_reg_desc *rd)
 476 {
 477         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 478 
 479         if (p->is_write)
 480                 reg_to_dbg(vcpu, p, dbg_reg);
 481         else
 482                 dbg_to_reg(vcpu, p, dbg_reg);
 483 
 484         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 485 
 486         return true;
 487 }
 488 
 489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 490                 const struct kvm_one_reg *reg, void __user *uaddr)
 491 {
 492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 493 
 494         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 495                 return -EFAULT;
 496 
 497         return 0;
 498 }
 499 
 500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 501         const struct kvm_one_reg *reg, void __user *uaddr)
 502 {
 503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 504 
 505         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 506                 return -EFAULT;
 507         return 0;
 508 }
 509 
 510 static void reset_bcr(struct kvm_vcpu *vcpu,
 511                       const struct sys_reg_desc *rd)
 512 {
 513         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
 514 }
 515 
 516 static bool trap_wvr(struct kvm_vcpu *vcpu,
 517                      struct sys_reg_params *p,
 518                      const struct sys_reg_desc *rd)
 519 {
 520         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 521 
 522         if (p->is_write)
 523                 reg_to_dbg(vcpu, p, dbg_reg);
 524         else
 525                 dbg_to_reg(vcpu, p, dbg_reg);
 526 
 527         trace_trap_reg(__func__, rd->reg, p->is_write,
 528                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
 529 
 530         return true;
 531 }
 532 
 533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 534                 const struct kvm_one_reg *reg, void __user *uaddr)
 535 {
 536         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 537 
 538         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 539                 return -EFAULT;
 540         return 0;
 541 }
 542 
 543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 544         const struct kvm_one_reg *reg, void __user *uaddr)
 545 {
 546         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 547 
 548         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 549                 return -EFAULT;
 550         return 0;
 551 }
 552 
 553 static void reset_wvr(struct kvm_vcpu *vcpu,
 554                       const struct sys_reg_desc *rd)
 555 {
 556         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
 557 }
 558 
 559 static bool trap_wcr(struct kvm_vcpu *vcpu,
 560                      struct sys_reg_params *p,
 561                      const struct sys_reg_desc *rd)
 562 {
 563         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 564 
 565         if (p->is_write)
 566                 reg_to_dbg(vcpu, p, dbg_reg);
 567         else
 568                 dbg_to_reg(vcpu, p, dbg_reg);
 569 
 570         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 571 
 572         return true;
 573 }
 574 
 575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 576                 const struct kvm_one_reg *reg, void __user *uaddr)
 577 {
 578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 579 
 580         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 581                 return -EFAULT;
 582         return 0;
 583 }
 584 
 585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 586         const struct kvm_one_reg *reg, void __user *uaddr)
 587 {
 588         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 589 
 590         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 591                 return -EFAULT;
 592         return 0;
 593 }
 594 
 595 static void reset_wcr(struct kvm_vcpu *vcpu,
 596                       const struct sys_reg_desc *rd)
 597 {
 598         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
 599 }
 600 
 601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 602 {
 603         u64 amair = read_sysreg(amair_el1);
 604         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 605 }
 606 
 607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 608 {
 609         u64 mpidr;
 610 
 611         /*
 612          * Map the vcpu_id into the first three affinity level fields of
 613          * the MPIDR. We limit the number of VCPUs in level 0 due to a
 614          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 615          * of the GICv3 to be able to address each CPU directly when
 616          * sending IPIs.
 617          */
 618         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 619         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 620         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 621         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 622 }
 623 
 624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 625 {
 626         u64 pmcr, val;
 627 
 628         pmcr = read_sysreg(pmcr_el0);
 629         /*
 630          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 631          * except PMCR.E resetting to zero.
 632          */
 633         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 634                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 635         if (!system_supports_32bit_el0())
 636                 val |= ARMV8_PMU_PMCR_LC;
 637         __vcpu_sys_reg(vcpu, r->reg) = val;
 638 }
 639 
 640 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 641 {
 642         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 643         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 644 
 645         if (!enabled)
 646                 kvm_inject_undefined(vcpu);
 647 
 648         return !enabled;
 649 }
 650 
 651 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 652 {
 653         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 654 }
 655 
 656 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 657 {
 658         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 659 }
 660 
 661 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 662 {
 663         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 664 }
 665 
 666 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 667 {
 668         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 669 }
 670 
 671 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 672                         const struct sys_reg_desc *r)
 673 {
 674         u64 val;
 675 
 676         if (!kvm_arm_pmu_v3_ready(vcpu))
 677                 return trap_raz_wi(vcpu, p, r);
 678 
 679         if (pmu_access_el0_disabled(vcpu))
 680                 return false;
 681 
 682         if (p->is_write) {
 683                 /* Only update writeable bits of PMCR */
 684                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 685                 val &= ~ARMV8_PMU_PMCR_MASK;
 686                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
 687                 if (!system_supports_32bit_el0())
 688                         val |= ARMV8_PMU_PMCR_LC;
 689                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 690                 kvm_pmu_handle_pmcr(vcpu, val);
 691                 kvm_vcpu_pmu_restore_guest(vcpu);
 692         } else {
 693                 /* PMCR.P & PMCR.C are RAZ */
 694                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 695                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 696                 p->regval = val;
 697         }
 698 
 699         return true;
 700 }
 701 
 702 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 703                           const struct sys_reg_desc *r)
 704 {
 705         if (!kvm_arm_pmu_v3_ready(vcpu))
 706                 return trap_raz_wi(vcpu, p, r);
 707 
 708         if (pmu_access_event_counter_el0_disabled(vcpu))
 709                 return false;
 710 
 711         if (p->is_write)
 712                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 713         else
 714                 /* return PMSELR.SEL field */
 715                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 716                             & ARMV8_PMU_COUNTER_MASK;
 717 
 718         return true;
 719 }
 720 
 721 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 722                           const struct sys_reg_desc *r)
 723 {
 724         u64 pmceid;
 725 
 726         if (!kvm_arm_pmu_v3_ready(vcpu))
 727                 return trap_raz_wi(vcpu, p, r);
 728 
 729         BUG_ON(p->is_write);
 730 
 731         if (pmu_access_el0_disabled(vcpu))
 732                 return false;
 733 
 734         if (!(p->Op2 & 1))
 735                 pmceid = read_sysreg(pmceid0_el0);
 736         else
 737                 pmceid = read_sysreg(pmceid1_el0);
 738 
 739         p->regval = pmceid;
 740 
 741         return true;
 742 }
 743 
 744 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 745 {
 746         u64 pmcr, val;
 747 
 748         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 749         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 750         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 751                 kvm_inject_undefined(vcpu);
 752                 return false;
 753         }
 754 
 755         return true;
 756 }
 757 
 758 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 759                               struct sys_reg_params *p,
 760                               const struct sys_reg_desc *r)
 761 {
 762         u64 idx;
 763 
 764         if (!kvm_arm_pmu_v3_ready(vcpu))
 765                 return trap_raz_wi(vcpu, p, r);
 766 
 767         if (r->CRn == 9 && r->CRm == 13) {
 768                 if (r->Op2 == 2) {
 769                         /* PMXEVCNTR_EL0 */
 770                         if (pmu_access_event_counter_el0_disabled(vcpu))
 771                                 return false;
 772 
 773                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 774                               & ARMV8_PMU_COUNTER_MASK;
 775                 } else if (r->Op2 == 0) {
 776                         /* PMCCNTR_EL0 */
 777                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
 778                                 return false;
 779 
 780                         idx = ARMV8_PMU_CYCLE_IDX;
 781                 } else {
 782                         return false;
 783                 }
 784         } else if (r->CRn == 0 && r->CRm == 9) {
 785                 /* PMCCNTR */
 786                 if (pmu_access_event_counter_el0_disabled(vcpu))
 787                         return false;
 788 
 789                 idx = ARMV8_PMU_CYCLE_IDX;
 790         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 791                 /* PMEVCNTRn_EL0 */
 792                 if (pmu_access_event_counter_el0_disabled(vcpu))
 793                         return false;
 794 
 795                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 796         } else {
 797                 return false;
 798         }
 799 
 800         if (!pmu_counter_idx_valid(vcpu, idx))
 801                 return false;
 802 
 803         if (p->is_write) {
 804                 if (pmu_access_el0_disabled(vcpu))
 805                         return false;
 806 
 807                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 808         } else {
 809                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 810         }
 811 
 812         return true;
 813 }
 814 
 815 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 816                                const struct sys_reg_desc *r)
 817 {
 818         u64 idx, reg;
 819 
 820         if (!kvm_arm_pmu_v3_ready(vcpu))
 821                 return trap_raz_wi(vcpu, p, r);
 822 
 823         if (pmu_access_el0_disabled(vcpu))
 824                 return false;
 825 
 826         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 827                 /* PMXEVTYPER_EL0 */
 828                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 829                 reg = PMEVTYPER0_EL0 + idx;
 830         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 831                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 832                 if (idx == ARMV8_PMU_CYCLE_IDX)
 833                         reg = PMCCFILTR_EL0;
 834                 else
 835                         /* PMEVTYPERn_EL0 */
 836                         reg = PMEVTYPER0_EL0 + idx;
 837         } else {
 838                 BUG();
 839         }
 840 
 841         if (!pmu_counter_idx_valid(vcpu, idx))
 842                 return false;
 843 
 844         if (p->is_write) {
 845                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 846                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 847                 kvm_vcpu_pmu_restore_guest(vcpu);
 848         } else {
 849                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 850         }
 851 
 852         return true;
 853 }
 854 
 855 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 856                            const struct sys_reg_desc *r)
 857 {
 858         u64 val, mask;
 859 
 860         if (!kvm_arm_pmu_v3_ready(vcpu))
 861                 return trap_raz_wi(vcpu, p, r);
 862 
 863         if (pmu_access_el0_disabled(vcpu))
 864                 return false;
 865 
 866         mask = kvm_pmu_valid_counter_mask(vcpu);
 867         if (p->is_write) {
 868                 val = p->regval & mask;
 869                 if (r->Op2 & 0x1) {
 870                         /* accessing PMCNTENSET_EL0 */
 871                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 872                         kvm_pmu_enable_counter_mask(vcpu, val);
 873                         kvm_vcpu_pmu_restore_guest(vcpu);
 874                 } else {
 875                         /* accessing PMCNTENCLR_EL0 */
 876                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 877                         kvm_pmu_disable_counter_mask(vcpu, val);
 878                 }
 879         } else {
 880                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
 881         }
 882 
 883         return true;
 884 }
 885 
 886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 887                            const struct sys_reg_desc *r)
 888 {
 889         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 890 
 891         if (!kvm_arm_pmu_v3_ready(vcpu))
 892                 return trap_raz_wi(vcpu, p, r);
 893 
 894         if (!vcpu_mode_priv(vcpu)) {
 895                 kvm_inject_undefined(vcpu);
 896                 return false;
 897         }
 898 
 899         if (p->is_write) {
 900                 u64 val = p->regval & mask;
 901 
 902                 if (r->Op2 & 0x1)
 903                         /* accessing PMINTENSET_EL1 */
 904                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 905                 else
 906                         /* accessing PMINTENCLR_EL1 */
 907                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 908         } else {
 909                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
 910         }
 911 
 912         return true;
 913 }
 914 
 915 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 916                          const struct sys_reg_desc *r)
 917 {
 918         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 919 
 920         if (!kvm_arm_pmu_v3_ready(vcpu))
 921                 return trap_raz_wi(vcpu, p, r);
 922 
 923         if (pmu_access_el0_disabled(vcpu))
 924                 return false;
 925 
 926         if (p->is_write) {
 927                 if (r->CRm & 0x2)
 928                         /* accessing PMOVSSET_EL0 */
 929                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 930                 else
 931                         /* accessing PMOVSCLR_EL0 */
 932                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 933         } else {
 934                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
 935         }
 936 
 937         return true;
 938 }
 939 
 940 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 941                            const struct sys_reg_desc *r)
 942 {
 943         u64 mask;
 944 
 945         if (!kvm_arm_pmu_v3_ready(vcpu))
 946                 return trap_raz_wi(vcpu, p, r);
 947 
 948         if (!p->is_write)
 949                 return read_from_write_only(vcpu, p, r);
 950 
 951         if (pmu_write_swinc_el0_disabled(vcpu))
 952                 return false;
 953 
 954         mask = kvm_pmu_valid_counter_mask(vcpu);
 955         kvm_pmu_software_increment(vcpu, p->regval & mask);
 956         return true;
 957 }
 958 
 959 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 960                              const struct sys_reg_desc *r)
 961 {
 962         if (!kvm_arm_pmu_v3_ready(vcpu))
 963                 return trap_raz_wi(vcpu, p, r);
 964 
 965         if (p->is_write) {
 966                 if (!vcpu_mode_priv(vcpu)) {
 967                         kvm_inject_undefined(vcpu);
 968                         return false;
 969                 }
 970 
 971                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 972                                p->regval & ARMV8_PMU_USERENR_MASK;
 973         } else {
 974                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 975                             & ARMV8_PMU_USERENR_MASK;
 976         }
 977 
 978         return true;
 979 }
 980 
 981 #define reg_to_encoding(x)                                              \
 982         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
 983                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
 984 
 985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 986 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
 987         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
 988           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
 989         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
 990           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
 991         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
 992           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
 993         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
 994           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
 995 
 996 /* Macro to expand the PMEVCNTRn_EL0 register */
 997 #define PMU_PMEVCNTR_EL0(n)                                             \
 998         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
 999           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000 
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n)                                            \
1003         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1004           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005 
1006 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1007                          struct sys_reg_params *p,
1008                          const struct sys_reg_desc *rd)
1009 {
1010         kvm_arm_vcpu_ptrauth_trap(vcpu);
1011 
1012         /*
1013          * Return false for both cases as we never skip the trapped
1014          * instruction:
1015          *
1016          * - Either we re-execute the same key register access instruction
1017          *   after enabling ptrauth.
1018          * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1019          */
1020         return false;
1021 }
1022 
1023 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1024                         const struct sys_reg_desc *rd)
1025 {
1026         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1027 }
1028 
1029 #define __PTRAUTH_KEY(k)                                                \
1030         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1031         .visibility = ptrauth_visibility}
1032 
1033 #define PTRAUTH_KEY(k)                                                  \
1034         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1035         __PTRAUTH_KEY(k ## KEYHI_EL1)
1036 
1037 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1038                               struct sys_reg_params *p,
1039                               const struct sys_reg_desc *r)
1040 {
1041         enum kvm_arch_timers tmr;
1042         enum kvm_arch_timer_regs treg;
1043         u64 reg = reg_to_encoding(r);
1044 
1045         switch (reg) {
1046         case SYS_CNTP_TVAL_EL0:
1047         case SYS_AARCH32_CNTP_TVAL:
1048                 tmr = TIMER_PTIMER;
1049                 treg = TIMER_REG_TVAL;
1050                 break;
1051         case SYS_CNTP_CTL_EL0:
1052         case SYS_AARCH32_CNTP_CTL:
1053                 tmr = TIMER_PTIMER;
1054                 treg = TIMER_REG_CTL;
1055                 break;
1056         case SYS_CNTP_CVAL_EL0:
1057         case SYS_AARCH32_CNTP_CVAL:
1058                 tmr = TIMER_PTIMER;
1059                 treg = TIMER_REG_CVAL;
1060                 break;
1061         default:
1062                 BUG();
1063         }
1064 
1065         if (p->is_write)
1066                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1067         else
1068                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1069 
1070         return true;
1071 }
1072 
1073 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1074 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1075                 struct sys_reg_desc const *r, bool raz)
1076 {
1077         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1078                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1079         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1080 
1081         if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1082                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1083         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1084                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1085                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1086                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1087                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1088         }
1089 
1090         return val;
1091 }
1092 
1093 /* cpufeature ID register access trap handlers */
1094 
1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096                             struct sys_reg_params *p,
1097                             const struct sys_reg_desc *r,
1098                             bool raz)
1099 {
1100         if (p->is_write)
1101                 return write_to_read_only(vcpu, p, r);
1102 
1103         p->regval = read_id_reg(vcpu, r, raz);
1104         return true;
1105 }
1106 
1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108                           struct sys_reg_params *p,
1109                           const struct sys_reg_desc *r)
1110 {
1111         return __access_id_reg(vcpu, p, r, false);
1112 }
1113 
1114 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1115                               struct sys_reg_params *p,
1116                               const struct sys_reg_desc *r)
1117 {
1118         return __access_id_reg(vcpu, p, r, true);
1119 }
1120 
1121 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1122 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1123 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1124 
1125 /* Visibility overrides for SVE-specific control registers */
1126 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1127                                    const struct sys_reg_desc *rd)
1128 {
1129         if (vcpu_has_sve(vcpu))
1130                 return 0;
1131 
1132         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1133 }
1134 
1135 /* Visibility overrides for SVE-specific ID registers */
1136 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1137                                       const struct sys_reg_desc *rd)
1138 {
1139         if (vcpu_has_sve(vcpu))
1140                 return 0;
1141 
1142         return REG_HIDDEN_USER;
1143 }
1144 
1145 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1146 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1147 {
1148         if (!vcpu_has_sve(vcpu))
1149                 return 0;
1150 
1151         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1152 }
1153 
1154 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1155                                    struct sys_reg_params *p,
1156                                    const struct sys_reg_desc *rd)
1157 {
1158         if (p->is_write)
1159                 return write_to_read_only(vcpu, p, rd);
1160 
1161         p->regval = guest_id_aa64zfr0_el1(vcpu);
1162         return true;
1163 }
1164 
1165 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1166                 const struct sys_reg_desc *rd,
1167                 const struct kvm_one_reg *reg, void __user *uaddr)
1168 {
1169         u64 val;
1170 
1171         if (WARN_ON(!vcpu_has_sve(vcpu)))
1172                 return -ENOENT;
1173 
1174         val = guest_id_aa64zfr0_el1(vcpu);
1175         return reg_to_user(uaddr, &val, reg->id);
1176 }
1177 
1178 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1179                 const struct sys_reg_desc *rd,
1180                 const struct kvm_one_reg *reg, void __user *uaddr)
1181 {
1182         const u64 id = sys_reg_to_index(rd);
1183         int err;
1184         u64 val;
1185 
1186         if (WARN_ON(!vcpu_has_sve(vcpu)))
1187                 return -ENOENT;
1188 
1189         err = reg_from_user(&val, uaddr, id);
1190         if (err)
1191                 return err;
1192 
1193         /* This is what we mean by invariant: you can't change it. */
1194         if (val != guest_id_aa64zfr0_el1(vcpu))
1195                 return -EINVAL;
1196 
1197         return 0;
1198 }
1199 
1200 /*
1201  * cpufeature ID register user accessors
1202  *
1203  * For now, these registers are immutable for userspace, so no values
1204  * are stored, and for set_id_reg() we don't allow the effective value
1205  * to be changed.
1206  */
1207 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1208                         const struct sys_reg_desc *rd, void __user *uaddr,
1209                         bool raz)
1210 {
1211         const u64 id = sys_reg_to_index(rd);
1212         const u64 val = read_id_reg(vcpu, rd, raz);
1213 
1214         return reg_to_user(uaddr, &val, id);
1215 }
1216 
1217 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1218                         const struct sys_reg_desc *rd, void __user *uaddr,
1219                         bool raz)
1220 {
1221         const u64 id = sys_reg_to_index(rd);
1222         int err;
1223         u64 val;
1224 
1225         err = reg_from_user(&val, uaddr, id);
1226         if (err)
1227                 return err;
1228 
1229         /* This is what we mean by invariant: you can't change it. */
1230         if (val != read_id_reg(vcpu, rd, raz))
1231                 return -EINVAL;
1232 
1233         return 0;
1234 }
1235 
1236 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1237                       const struct kvm_one_reg *reg, void __user *uaddr)
1238 {
1239         return __get_id_reg(vcpu, rd, uaddr, false);
1240 }
1241 
1242 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1243                       const struct kvm_one_reg *reg, void __user *uaddr)
1244 {
1245         return __set_id_reg(vcpu, rd, uaddr, false);
1246 }
1247 
1248 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1249                           const struct kvm_one_reg *reg, void __user *uaddr)
1250 {
1251         return __get_id_reg(vcpu, rd, uaddr, true);
1252 }
1253 
1254 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1255                           const struct kvm_one_reg *reg, void __user *uaddr)
1256 {
1257         return __set_id_reg(vcpu, rd, uaddr, true);
1258 }
1259 
1260 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261                        const struct sys_reg_desc *r)
1262 {
1263         if (p->is_write)
1264                 return write_to_read_only(vcpu, p, r);
1265 
1266         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1267         return true;
1268 }
1269 
1270 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1271                          const struct sys_reg_desc *r)
1272 {
1273         if (p->is_write)
1274                 return write_to_read_only(vcpu, p, r);
1275 
1276         p->regval = read_sysreg(clidr_el1);
1277         return true;
1278 }
1279 
1280 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281                           const struct sys_reg_desc *r)
1282 {
1283         int reg = r->reg;
1284 
1285         /* See the 32bit mapping in kvm_host.h */
1286         if (p->is_aarch32)
1287                 reg = r->reg / 2;
1288 
1289         if (p->is_write)
1290                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1291         else
1292                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1293         return true;
1294 }
1295 
1296 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1297                           const struct sys_reg_desc *r)
1298 {
1299         u32 csselr;
1300 
1301         if (p->is_write)
1302                 return write_to_read_only(vcpu, p, r);
1303 
1304         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1305         p->regval = get_ccsidr(csselr);
1306 
1307         /*
1308          * Guests should not be doing cache operations by set/way at all, and
1309          * for this reason, we trap them and attempt to infer the intent, so
1310          * that we can flush the entire guest's address space at the appropriate
1311          * time.
1312          * To prevent this trapping from causing performance problems, let's
1313          * expose the geometry of all data and unified caches (which are
1314          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1315          * [If guests should attempt to infer aliasing properties from the
1316          * geometry (which is not permitted by the architecture), they would
1317          * only do so for virtually indexed caches.]
1318          */
1319         if (!(csselr & 1)) // data or unified cache
1320                 p->regval &= ~GENMASK(27, 3);
1321         return true;
1322 }
1323 
1324 /* sys_reg_desc initialiser for known cpufeature ID registers */
1325 #define ID_SANITISED(name) {                    \
1326         SYS_DESC(SYS_##name),                   \
1327         .access = access_id_reg,                \
1328         .get_user = get_id_reg,                 \
1329         .set_user = set_id_reg,                 \
1330 }
1331 
1332 /*
1333  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1334  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1335  * (1 <= crm < 8, 0 <= Op2 < 8).
1336  */
1337 #define ID_UNALLOCATED(crm, op2) {                      \
1338         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1339         .access = access_raz_id_reg,                    \
1340         .get_user = get_raz_id_reg,                     \
1341         .set_user = set_raz_id_reg,                     \
1342 }
1343 
1344 /*
1345  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1346  * For now, these are exposed just like unallocated ID regs: they appear
1347  * RAZ for the guest.
1348  */
1349 #define ID_HIDDEN(name) {                       \
1350         SYS_DESC(SYS_##name),                   \
1351         .access = access_raz_id_reg,            \
1352         .get_user = get_raz_id_reg,             \
1353         .set_user = set_raz_id_reg,             \
1354 }
1355 
1356 /*
1357  * Architected system registers.
1358  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1359  *
1360  * Debug handling: We do trap most, if not all debug related system
1361  * registers. The implementation is good enough to ensure that a guest
1362  * can use these with minimal performance degradation. The drawback is
1363  * that we don't implement any of the external debug, none of the
1364  * OSlock protocol. This should be revisited if we ever encounter a
1365  * more demanding guest...
1366  */
1367 static const struct sys_reg_desc sys_reg_descs[] = {
1368         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1369         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1370         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1371 
1372         DBG_BCR_BVR_WCR_WVR_EL1(0),
1373         DBG_BCR_BVR_WCR_WVR_EL1(1),
1374         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1375         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1376         DBG_BCR_BVR_WCR_WVR_EL1(2),
1377         DBG_BCR_BVR_WCR_WVR_EL1(3),
1378         DBG_BCR_BVR_WCR_WVR_EL1(4),
1379         DBG_BCR_BVR_WCR_WVR_EL1(5),
1380         DBG_BCR_BVR_WCR_WVR_EL1(6),
1381         DBG_BCR_BVR_WCR_WVR_EL1(7),
1382         DBG_BCR_BVR_WCR_WVR_EL1(8),
1383         DBG_BCR_BVR_WCR_WVR_EL1(9),
1384         DBG_BCR_BVR_WCR_WVR_EL1(10),
1385         DBG_BCR_BVR_WCR_WVR_EL1(11),
1386         DBG_BCR_BVR_WCR_WVR_EL1(12),
1387         DBG_BCR_BVR_WCR_WVR_EL1(13),
1388         DBG_BCR_BVR_WCR_WVR_EL1(14),
1389         DBG_BCR_BVR_WCR_WVR_EL1(15),
1390 
1391         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1392         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1393         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1394         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1395         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1396         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1397         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1398         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1399 
1400         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1401         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1402         // DBGDTR[TR]X_EL0 share the same encoding
1403         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1404 
1405         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1406 
1407         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1408 
1409         /*
1410          * ID regs: all ID_SANITISED() entries here must have corresponding
1411          * entries in arm64_ftr_regs[].
1412          */
1413 
1414         /* AArch64 mappings of the AArch32 ID registers */
1415         /* CRm=1 */
1416         ID_SANITISED(ID_PFR0_EL1),
1417         ID_SANITISED(ID_PFR1_EL1),
1418         ID_SANITISED(ID_DFR0_EL1),
1419         ID_HIDDEN(ID_AFR0_EL1),
1420         ID_SANITISED(ID_MMFR0_EL1),
1421         ID_SANITISED(ID_MMFR1_EL1),
1422         ID_SANITISED(ID_MMFR2_EL1),
1423         ID_SANITISED(ID_MMFR3_EL1),
1424 
1425         /* CRm=2 */
1426         ID_SANITISED(ID_ISAR0_EL1),
1427         ID_SANITISED(ID_ISAR1_EL1),
1428         ID_SANITISED(ID_ISAR2_EL1),
1429         ID_SANITISED(ID_ISAR3_EL1),
1430         ID_SANITISED(ID_ISAR4_EL1),
1431         ID_SANITISED(ID_ISAR5_EL1),
1432         ID_SANITISED(ID_MMFR4_EL1),
1433         ID_UNALLOCATED(2,7),
1434 
1435         /* CRm=3 */
1436         ID_SANITISED(MVFR0_EL1),
1437         ID_SANITISED(MVFR1_EL1),
1438         ID_SANITISED(MVFR2_EL1),
1439         ID_UNALLOCATED(3,3),
1440         ID_UNALLOCATED(3,4),
1441         ID_UNALLOCATED(3,5),
1442         ID_UNALLOCATED(3,6),
1443         ID_UNALLOCATED(3,7),
1444 
1445         /* AArch64 ID registers */
1446         /* CRm=4 */
1447         ID_SANITISED(ID_AA64PFR0_EL1),
1448         ID_SANITISED(ID_AA64PFR1_EL1),
1449         ID_UNALLOCATED(4,2),
1450         ID_UNALLOCATED(4,3),
1451         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1452         ID_UNALLOCATED(4,5),
1453         ID_UNALLOCATED(4,6),
1454         ID_UNALLOCATED(4,7),
1455 
1456         /* CRm=5 */
1457         ID_SANITISED(ID_AA64DFR0_EL1),
1458         ID_SANITISED(ID_AA64DFR1_EL1),
1459         ID_UNALLOCATED(5,2),
1460         ID_UNALLOCATED(5,3),
1461         ID_HIDDEN(ID_AA64AFR0_EL1),
1462         ID_HIDDEN(ID_AA64AFR1_EL1),
1463         ID_UNALLOCATED(5,6),
1464         ID_UNALLOCATED(5,7),
1465 
1466         /* CRm=6 */
1467         ID_SANITISED(ID_AA64ISAR0_EL1),
1468         ID_SANITISED(ID_AA64ISAR1_EL1),
1469         ID_UNALLOCATED(6,2),
1470         ID_UNALLOCATED(6,3),
1471         ID_UNALLOCATED(6,4),
1472         ID_UNALLOCATED(6,5),
1473         ID_UNALLOCATED(6,6),
1474         ID_UNALLOCATED(6,7),
1475 
1476         /* CRm=7 */
1477         ID_SANITISED(ID_AA64MMFR0_EL1),
1478         ID_SANITISED(ID_AA64MMFR1_EL1),
1479         ID_SANITISED(ID_AA64MMFR2_EL1),
1480         ID_UNALLOCATED(7,3),
1481         ID_UNALLOCATED(7,4),
1482         ID_UNALLOCATED(7,5),
1483         ID_UNALLOCATED(7,6),
1484         ID_UNALLOCATED(7,7),
1485 
1486         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1487         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1488         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1489         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1490         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1491         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1492 
1493         PTRAUTH_KEY(APIA),
1494         PTRAUTH_KEY(APIB),
1495         PTRAUTH_KEY(APDA),
1496         PTRAUTH_KEY(APDB),
1497         PTRAUTH_KEY(APGA),
1498 
1499         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1500         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1501         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1502 
1503         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1504         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1505         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1506         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1507         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1508         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1509         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1510         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1511 
1512         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1513         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1514 
1515         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1516         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1517 
1518         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1519         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1520 
1521         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1522         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1523         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1524         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1525         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1526 
1527         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1528         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1529 
1530         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1531         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1532         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1533         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1534         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1535         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1536         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1537         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1538         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1539         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1540         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1541         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1542 
1543         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1544         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1545 
1546         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1547 
1548         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1549         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1550         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1551         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1552 
1553         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1554         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1555         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1556         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1557         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1558         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1559         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1560         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1561         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1562         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1563         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1564         /*
1565          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1566          * in 32bit mode. Here we choose to reset it as zero for consistency.
1567          */
1568         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1569         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1570 
1571         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1572         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1573 
1574         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1575         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1576         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1577 
1578         /* PMEVCNTRn_EL0 */
1579         PMU_PMEVCNTR_EL0(0),
1580         PMU_PMEVCNTR_EL0(1),
1581         PMU_PMEVCNTR_EL0(2),
1582         PMU_PMEVCNTR_EL0(3),
1583         PMU_PMEVCNTR_EL0(4),
1584         PMU_PMEVCNTR_EL0(5),
1585         PMU_PMEVCNTR_EL0(6),
1586         PMU_PMEVCNTR_EL0(7),
1587         PMU_PMEVCNTR_EL0(8),
1588         PMU_PMEVCNTR_EL0(9),
1589         PMU_PMEVCNTR_EL0(10),
1590         PMU_PMEVCNTR_EL0(11),
1591         PMU_PMEVCNTR_EL0(12),
1592         PMU_PMEVCNTR_EL0(13),
1593         PMU_PMEVCNTR_EL0(14),
1594         PMU_PMEVCNTR_EL0(15),
1595         PMU_PMEVCNTR_EL0(16),
1596         PMU_PMEVCNTR_EL0(17),
1597         PMU_PMEVCNTR_EL0(18),
1598         PMU_PMEVCNTR_EL0(19),
1599         PMU_PMEVCNTR_EL0(20),
1600         PMU_PMEVCNTR_EL0(21),
1601         PMU_PMEVCNTR_EL0(22),
1602         PMU_PMEVCNTR_EL0(23),
1603         PMU_PMEVCNTR_EL0(24),
1604         PMU_PMEVCNTR_EL0(25),
1605         PMU_PMEVCNTR_EL0(26),
1606         PMU_PMEVCNTR_EL0(27),
1607         PMU_PMEVCNTR_EL0(28),
1608         PMU_PMEVCNTR_EL0(29),
1609         PMU_PMEVCNTR_EL0(30),
1610         /* PMEVTYPERn_EL0 */
1611         PMU_PMEVTYPER_EL0(0),
1612         PMU_PMEVTYPER_EL0(1),
1613         PMU_PMEVTYPER_EL0(2),
1614         PMU_PMEVTYPER_EL0(3),
1615         PMU_PMEVTYPER_EL0(4),
1616         PMU_PMEVTYPER_EL0(5),
1617         PMU_PMEVTYPER_EL0(6),
1618         PMU_PMEVTYPER_EL0(7),
1619         PMU_PMEVTYPER_EL0(8),
1620         PMU_PMEVTYPER_EL0(9),
1621         PMU_PMEVTYPER_EL0(10),
1622         PMU_PMEVTYPER_EL0(11),
1623         PMU_PMEVTYPER_EL0(12),
1624         PMU_PMEVTYPER_EL0(13),
1625         PMU_PMEVTYPER_EL0(14),
1626         PMU_PMEVTYPER_EL0(15),
1627         PMU_PMEVTYPER_EL0(16),
1628         PMU_PMEVTYPER_EL0(17),
1629         PMU_PMEVTYPER_EL0(18),
1630         PMU_PMEVTYPER_EL0(19),
1631         PMU_PMEVTYPER_EL0(20),
1632         PMU_PMEVTYPER_EL0(21),
1633         PMU_PMEVTYPER_EL0(22),
1634         PMU_PMEVTYPER_EL0(23),
1635         PMU_PMEVTYPER_EL0(24),
1636         PMU_PMEVTYPER_EL0(25),
1637         PMU_PMEVTYPER_EL0(26),
1638         PMU_PMEVTYPER_EL0(27),
1639         PMU_PMEVTYPER_EL0(28),
1640         PMU_PMEVTYPER_EL0(29),
1641         PMU_PMEVTYPER_EL0(30),
1642         /*
1643          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1644          * in 32bit mode. Here we choose to reset it as zero for consistency.
1645          */
1646         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1647 
1648         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1649         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1650         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1651 };
1652 
1653 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1654                         struct sys_reg_params *p,
1655                         const struct sys_reg_desc *r)
1656 {
1657         if (p->is_write) {
1658                 return ignore_write(vcpu, p);
1659         } else {
1660                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1661                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1662                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1663 
1664                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1665                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1666                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1667                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1668                 return true;
1669         }
1670 }
1671 
1672 static bool trap_debug32(struct kvm_vcpu *vcpu,
1673                          struct sys_reg_params *p,
1674                          const struct sys_reg_desc *r)
1675 {
1676         if (p->is_write) {
1677                 vcpu_cp14(vcpu, r->reg) = p->regval;
1678                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1679         } else {
1680                 p->regval = vcpu_cp14(vcpu, r->reg);
1681         }
1682 
1683         return true;
1684 }
1685 
1686 /* AArch32 debug register mappings
1687  *
1688  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1689  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1690  *
1691  * All control registers and watchpoint value registers are mapped to
1692  * the lower 32 bits of their AArch64 equivalents. We share the trap
1693  * handlers with the above AArch64 code which checks what mode the
1694  * system is in.
1695  */
1696 
1697 static bool trap_xvr(struct kvm_vcpu *vcpu,
1698                      struct sys_reg_params *p,
1699                      const struct sys_reg_desc *rd)
1700 {
1701         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1702 
1703         if (p->is_write) {
1704                 u64 val = *dbg_reg;
1705 
1706                 val &= 0xffffffffUL;
1707                 val |= p->regval << 32;
1708                 *dbg_reg = val;
1709 
1710                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1711         } else {
1712                 p->regval = *dbg_reg >> 32;
1713         }
1714 
1715         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1716 
1717         return true;
1718 }
1719 
1720 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1721         /* DBGBVRn */                                                   \
1722         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1723         /* DBGBCRn */                                                   \
1724         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1725         /* DBGWVRn */                                                   \
1726         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1727         /* DBGWCRn */                                                   \
1728         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1729 
1730 #define DBGBXVR(n)                                                      \
1731         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1732 
1733 /*
1734  * Trapped cp14 registers. We generally ignore most of the external
1735  * debug, on the principle that they don't really make sense to a
1736  * guest. Revisit this one day, would this principle change.
1737  */
1738 static const struct sys_reg_desc cp14_regs[] = {
1739         /* DBGIDR */
1740         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1741         /* DBGDTRRXext */
1742         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1743 
1744         DBG_BCR_BVR_WCR_WVR(0),
1745         /* DBGDSCRint */
1746         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1747         DBG_BCR_BVR_WCR_WVR(1),
1748         /* DBGDCCINT */
1749         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1750         /* DBGDSCRext */
1751         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1752         DBG_BCR_BVR_WCR_WVR(2),
1753         /* DBGDTR[RT]Xint */
1754         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1755         /* DBGDTR[RT]Xext */
1756         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1757         DBG_BCR_BVR_WCR_WVR(3),
1758         DBG_BCR_BVR_WCR_WVR(4),
1759         DBG_BCR_BVR_WCR_WVR(5),
1760         /* DBGWFAR */
1761         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1762         /* DBGOSECCR */
1763         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1764         DBG_BCR_BVR_WCR_WVR(6),
1765         /* DBGVCR */
1766         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1767         DBG_BCR_BVR_WCR_WVR(7),
1768         DBG_BCR_BVR_WCR_WVR(8),
1769         DBG_BCR_BVR_WCR_WVR(9),
1770         DBG_BCR_BVR_WCR_WVR(10),
1771         DBG_BCR_BVR_WCR_WVR(11),
1772         DBG_BCR_BVR_WCR_WVR(12),
1773         DBG_BCR_BVR_WCR_WVR(13),
1774         DBG_BCR_BVR_WCR_WVR(14),
1775         DBG_BCR_BVR_WCR_WVR(15),
1776 
1777         /* DBGDRAR (32bit) */
1778         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1779 
1780         DBGBXVR(0),
1781         /* DBGOSLAR */
1782         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1783         DBGBXVR(1),
1784         /* DBGOSLSR */
1785         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1786         DBGBXVR(2),
1787         DBGBXVR(3),
1788         /* DBGOSDLR */
1789         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1790         DBGBXVR(4),
1791         /* DBGPRCR */
1792         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1793         DBGBXVR(5),
1794         DBGBXVR(6),
1795         DBGBXVR(7),
1796         DBGBXVR(8),
1797         DBGBXVR(9),
1798         DBGBXVR(10),
1799         DBGBXVR(11),
1800         DBGBXVR(12),
1801         DBGBXVR(13),
1802         DBGBXVR(14),
1803         DBGBXVR(15),
1804 
1805         /* DBGDSAR (32bit) */
1806         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1807 
1808         /* DBGDEVID2 */
1809         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1810         /* DBGDEVID1 */
1811         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1812         /* DBGDEVID */
1813         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1814         /* DBGCLAIMSET */
1815         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1816         /* DBGCLAIMCLR */
1817         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1818         /* DBGAUTHSTATUS */
1819         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1820 };
1821 
1822 /* Trapped cp14 64bit registers */
1823 static const struct sys_reg_desc cp14_64_regs[] = {
1824         /* DBGDRAR (64bit) */
1825         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1826 
1827         /* DBGDSAR (64bit) */
1828         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1829 };
1830 
1831 /* Macro to expand the PMEVCNTRn register */
1832 #define PMU_PMEVCNTR(n)                                                 \
1833         /* PMEVCNTRn */                                                 \
1834         { Op1(0), CRn(0b1110),                                          \
1835           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1836           access_pmu_evcntr }
1837 
1838 /* Macro to expand the PMEVTYPERn register */
1839 #define PMU_PMEVTYPER(n)                                                \
1840         /* PMEVTYPERn */                                                \
1841         { Op1(0), CRn(0b1110),                                          \
1842           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1843           access_pmu_evtyper }
1844 
1845 /*
1846  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1847  * depending on the way they are accessed (as a 32bit or a 64bit
1848  * register).
1849  */
1850 static const struct sys_reg_desc cp15_regs[] = {
1851         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1852         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1853         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1854         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1855         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1856         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1857         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1858         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1859         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1860         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1861         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1862         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1863 
1864         /*
1865          * DC{C,I,CI}SW operations:
1866          */
1867         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1868         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1869         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1870 
1871         /* PMU */
1872         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1873         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1874         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1875         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1876         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1877         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1878         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1879         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1880         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1881         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1882         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1883         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1884         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1885         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1886         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1887 
1888         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1889         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1890         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1891         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1892 
1893         /* ICC_SRE */
1894         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1895 
1896         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1897 
1898         /* Arch Tmers */
1899         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1900         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1901 
1902         /* PMEVCNTRn */
1903         PMU_PMEVCNTR(0),
1904         PMU_PMEVCNTR(1),
1905         PMU_PMEVCNTR(2),
1906         PMU_PMEVCNTR(3),
1907         PMU_PMEVCNTR(4),
1908         PMU_PMEVCNTR(5),
1909         PMU_PMEVCNTR(6),
1910         PMU_PMEVCNTR(7),
1911         PMU_PMEVCNTR(8),
1912         PMU_PMEVCNTR(9),
1913         PMU_PMEVCNTR(10),
1914         PMU_PMEVCNTR(11),
1915         PMU_PMEVCNTR(12),
1916         PMU_PMEVCNTR(13),
1917         PMU_PMEVCNTR(14),
1918         PMU_PMEVCNTR(15),
1919         PMU_PMEVCNTR(16),
1920         PMU_PMEVCNTR(17),
1921         PMU_PMEVCNTR(18),
1922         PMU_PMEVCNTR(19),
1923         PMU_PMEVCNTR(20),
1924         PMU_PMEVCNTR(21),
1925         PMU_PMEVCNTR(22),
1926         PMU_PMEVCNTR(23),
1927         PMU_PMEVCNTR(24),
1928         PMU_PMEVCNTR(25),
1929         PMU_PMEVCNTR(26),
1930         PMU_PMEVCNTR(27),
1931         PMU_PMEVCNTR(28),
1932         PMU_PMEVCNTR(29),
1933         PMU_PMEVCNTR(30),
1934         /* PMEVTYPERn */
1935         PMU_PMEVTYPER(0),
1936         PMU_PMEVTYPER(1),
1937         PMU_PMEVTYPER(2),
1938         PMU_PMEVTYPER(3),
1939         PMU_PMEVTYPER(4),
1940         PMU_PMEVTYPER(5),
1941         PMU_PMEVTYPER(6),
1942         PMU_PMEVTYPER(7),
1943         PMU_PMEVTYPER(8),
1944         PMU_PMEVTYPER(9),
1945         PMU_PMEVTYPER(10),
1946         PMU_PMEVTYPER(11),
1947         PMU_PMEVTYPER(12),
1948         PMU_PMEVTYPER(13),
1949         PMU_PMEVTYPER(14),
1950         PMU_PMEVTYPER(15),
1951         PMU_PMEVTYPER(16),
1952         PMU_PMEVTYPER(17),
1953         PMU_PMEVTYPER(18),
1954         PMU_PMEVTYPER(19),
1955         PMU_PMEVTYPER(20),
1956         PMU_PMEVTYPER(21),
1957         PMU_PMEVTYPER(22),
1958         PMU_PMEVTYPER(23),
1959         PMU_PMEVTYPER(24),
1960         PMU_PMEVTYPER(25),
1961         PMU_PMEVTYPER(26),
1962         PMU_PMEVTYPER(27),
1963         PMU_PMEVTYPER(28),
1964         PMU_PMEVTYPER(29),
1965         PMU_PMEVTYPER(30),
1966         /* PMCCFILTR */
1967         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1968 
1969         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1970         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1971         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1972 };
1973 
1974 static const struct sys_reg_desc cp15_64_regs[] = {
1975         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1976         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1977         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1978         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1979         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1980         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1981         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1982 };
1983 
1984 /* Target specific emulation tables */
1985 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1986 
1987 void kvm_register_target_sys_reg_table(unsigned int target,
1988                                        struct kvm_sys_reg_target_table *table)
1989 {
1990         target_tables[target] = table;
1991 }
1992 
1993 /* Get specific register table for this target. */
1994 static const struct sys_reg_desc *get_target_table(unsigned target,
1995                                                    bool mode_is_64,
1996                                                    size_t *num)
1997 {
1998         struct kvm_sys_reg_target_table *table;
1999 
2000         table = target_tables[target];
2001         if (mode_is_64) {
2002                 *num = table->table64.num;
2003                 return table->table64.table;
2004         } else {
2005                 *num = table->table32.num;
2006                 return table->table32.table;
2007         }
2008 }
2009 
2010 static int match_sys_reg(const void *key, const void *elt)
2011 {
2012         const unsigned long pval = (unsigned long)key;
2013         const struct sys_reg_desc *r = elt;
2014 
2015         return pval - reg_to_encoding(r);
2016 }
2017 
2018 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2019                                          const struct sys_reg_desc table[],
2020                                          unsigned int num)
2021 {
2022         unsigned long pval = reg_to_encoding(params);
2023 
2024         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2025 }
2026 
2027 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2028 {
2029         kvm_inject_undefined(vcpu);
2030         return 1;
2031 }
2032 
2033 static void perform_access(struct kvm_vcpu *vcpu,
2034                            struct sys_reg_params *params,
2035                            const struct sys_reg_desc *r)
2036 {
2037         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2038 
2039         /* Check for regs disabled by runtime config */
2040         if (sysreg_hidden_from_guest(vcpu, r)) {
2041                 kvm_inject_undefined(vcpu);
2042                 return;
2043         }
2044 
2045         /*
2046          * Not having an accessor means that we have configured a trap
2047          * that we don't know how to handle. This certainly qualifies
2048          * as a gross bug that should be fixed right away.
2049          */
2050         BUG_ON(!r->access);
2051 
2052         /* Skip instruction if instructed so */
2053         if (likely(r->access(vcpu, params, r)))
2054                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2055 }
2056 
2057 /*
2058  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2059  *                call the corresponding trap handler.
2060  *
2061  * @params: pointer to the descriptor of the access
2062  * @table: array of trap descriptors
2063  * @num: size of the trap descriptor array
2064  *
2065  * Return 0 if the access has been handled, and -1 if not.
2066  */
2067 static int emulate_cp(struct kvm_vcpu *vcpu,
2068                       struct sys_reg_params *params,
2069                       const struct sys_reg_desc *table,
2070                       size_t num)
2071 {
2072         const struct sys_reg_desc *r;
2073 
2074         if (!table)
2075                 return -1;      /* Not handled */
2076 
2077         r = find_reg(params, table, num);
2078 
2079         if (r) {
2080                 perform_access(vcpu, params, r);
2081                 return 0;
2082         }
2083 
2084         /* Not handled */
2085         return -1;
2086 }
2087 
2088 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2089                                 struct sys_reg_params *params)
2090 {
2091         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2092         int cp = -1;
2093 
2094         switch(hsr_ec) {
2095         case ESR_ELx_EC_CP15_32:
2096         case ESR_ELx_EC_CP15_64:
2097                 cp = 15;
2098                 break;
2099         case ESR_ELx_EC_CP14_MR:
2100         case ESR_ELx_EC_CP14_64:
2101                 cp = 14;
2102                 break;
2103         default:
2104                 WARN_ON(1);
2105         }
2106 
2107         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2108                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2109         print_sys_reg_instr(params);
2110         kvm_inject_undefined(vcpu);
2111 }
2112 
2113 /**
2114  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2115  * @vcpu: The VCPU pointer
2116  * @run:  The kvm_run struct
2117  */
2118 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2119                             const struct sys_reg_desc *global,
2120                             size_t nr_global,
2121                             const struct sys_reg_desc *target_specific,
2122                             size_t nr_specific)
2123 {
2124         struct sys_reg_params params;
2125         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2126         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2127         int Rt2 = (hsr >> 10) & 0x1f;
2128 
2129         params.is_aarch32 = true;
2130         params.is_32bit = false;
2131         params.CRm = (hsr >> 1) & 0xf;
2132         params.is_write = ((hsr & 1) == 0);
2133 
2134         params.Op0 = 0;
2135         params.Op1 = (hsr >> 16) & 0xf;
2136         params.Op2 = 0;
2137         params.CRn = 0;
2138 
2139         /*
2140          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2141          * backends between AArch32 and AArch64, we get away with it.
2142          */
2143         if (params.is_write) {
2144                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2145                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2146         }
2147 
2148         /*
2149          * Try to emulate the coprocessor access using the target
2150          * specific table first, and using the global table afterwards.
2151          * If either of the tables contains a handler, handle the
2152          * potential register operation in the case of a read and return
2153          * with success.
2154          */
2155         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2156             !emulate_cp(vcpu, &params, global, nr_global)) {
2157                 /* Split up the value between registers for the read side */
2158                 if (!params.is_write) {
2159                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2160                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2161                 }
2162 
2163                 return 1;
2164         }
2165 
2166         unhandled_cp_access(vcpu, &params);
2167         return 1;
2168 }
2169 
2170 /**
2171  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2172  * @vcpu: The VCPU pointer
2173  * @run:  The kvm_run struct
2174  */
2175 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2176                             const struct sys_reg_desc *global,
2177                             size_t nr_global,
2178                             const struct sys_reg_desc *target_specific,
2179                             size_t nr_specific)
2180 {
2181         struct sys_reg_params params;
2182         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2183         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2184 
2185         params.is_aarch32 = true;
2186         params.is_32bit = true;
2187         params.CRm = (hsr >> 1) & 0xf;
2188         params.regval = vcpu_get_reg(vcpu, Rt);
2189         params.is_write = ((hsr & 1) == 0);
2190         params.CRn = (hsr >> 10) & 0xf;
2191         params.Op0 = 0;
2192         params.Op1 = (hsr >> 14) & 0x7;
2193         params.Op2 = (hsr >> 17) & 0x7;
2194 
2195         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2196             !emulate_cp(vcpu, &params, global, nr_global)) {
2197                 if (!params.is_write)
2198                         vcpu_set_reg(vcpu, Rt, params.regval);
2199                 return 1;
2200         }
2201 
2202         unhandled_cp_access(vcpu, &params);
2203         return 1;
2204 }
2205 
2206 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2207 {
2208         const struct sys_reg_desc *target_specific;
2209         size_t num;
2210 
2211         target_specific = get_target_table(vcpu->arch.target, false, &num);
2212         return kvm_handle_cp_64(vcpu,
2213                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2214                                 target_specific, num);
2215 }
2216 
2217 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2218 {
2219         const struct sys_reg_desc *target_specific;
2220         size_t num;
2221 
2222         target_specific = get_target_table(vcpu->arch.target, false, &num);
2223         return kvm_handle_cp_32(vcpu,
2224                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2225                                 target_specific, num);
2226 }
2227 
2228 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2229 {
2230         return kvm_handle_cp_64(vcpu,
2231                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2232                                 NULL, 0);
2233 }
2234 
2235 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2236 {
2237         return kvm_handle_cp_32(vcpu,
2238                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2239                                 NULL, 0);
2240 }
2241 
2242 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2243                            struct sys_reg_params *params)
2244 {
2245         size_t num;
2246         const struct sys_reg_desc *table, *r;
2247 
2248         table = get_target_table(vcpu->arch.target, true, &num);
2249 
2250         /* Search target-specific then generic table. */
2251         r = find_reg(params, table, num);
2252         if (!r)
2253                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2254 
2255         if (likely(r)) {
2256                 perform_access(vcpu, params, r);
2257         } else {
2258                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2259                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2260                 print_sys_reg_instr(params);
2261                 kvm_inject_undefined(vcpu);
2262         }
2263         return 1;
2264 }
2265 
2266 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2267                                 const struct sys_reg_desc *table, size_t num,
2268                                 unsigned long *bmap)
2269 {
2270         unsigned long i;
2271 
2272         for (i = 0; i < num; i++)
2273                 if (table[i].reset) {
2274                         int reg = table[i].reg;
2275 
2276                         table[i].reset(vcpu, &table[i]);
2277                         if (reg > 0 && reg < NR_SYS_REGS)
2278                                 set_bit(reg, bmap);
2279                 }
2280 }
2281 
2282 /**
2283  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2284  * @vcpu: The VCPU pointer
2285  * @run:  The kvm_run struct
2286  */
2287 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2288 {
2289         struct sys_reg_params params;
2290         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2291         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2292         int ret;
2293 
2294         trace_kvm_handle_sys_reg(esr);
2295 
2296         params.is_aarch32 = false;
2297         params.is_32bit = false;
2298         params.Op0 = (esr >> 20) & 3;
2299         params.Op1 = (esr >> 14) & 0x7;
2300         params.CRn = (esr >> 10) & 0xf;
2301         params.CRm = (esr >> 1) & 0xf;
2302         params.Op2 = (esr >> 17) & 0x7;
2303         params.regval = vcpu_get_reg(vcpu, Rt);
2304         params.is_write = !(esr & 1);
2305 
2306         ret = emulate_sys_reg(vcpu, &params);
2307 
2308         if (!params.is_write)
2309                 vcpu_set_reg(vcpu, Rt, params.regval);
2310         return ret;
2311 }
2312 
2313 /******************************************************************************
2314  * Userspace API
2315  *****************************************************************************/
2316 
2317 static bool index_to_params(u64 id, struct sys_reg_params *params)
2318 {
2319         switch (id & KVM_REG_SIZE_MASK) {
2320         case KVM_REG_SIZE_U64:
2321                 /* Any unused index bits means it's not valid. */
2322                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2323                               | KVM_REG_ARM_COPROC_MASK
2324                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2325                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2326                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2327                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2328                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2329                         return false;
2330                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2331                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2332                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2333                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2334                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2335                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2336                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2337                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2338                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2339                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2340                 return true;
2341         default:
2342                 return false;
2343         }
2344 }
2345 
2346 const struct sys_reg_desc *find_reg_by_id(u64 id,
2347                                           struct sys_reg_params *params,
2348                                           const struct sys_reg_desc table[],
2349                                           unsigned int num)
2350 {
2351         if (!index_to_params(id, params))
2352                 return NULL;
2353 
2354         return find_reg(params, table, num);
2355 }
2356 
2357 /* Decode an index value, and find the sys_reg_desc entry. */
2358 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2359                                                     u64 id)
2360 {
2361         size_t num;
2362         const struct sys_reg_desc *table, *r;
2363         struct sys_reg_params params;
2364 
2365         /* We only do sys_reg for now. */
2366         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2367                 return NULL;
2368 
2369         if (!index_to_params(id, &params))
2370                 return NULL;
2371 
2372         table = get_target_table(vcpu->arch.target, true, &num);
2373         r = find_reg(&params, table, num);
2374         if (!r)
2375                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2376 
2377         /* Not saved in the sys_reg array and not otherwise accessible? */
2378         if (r && !(r->reg || r->get_user))
2379                 r = NULL;
2380 
2381         return r;
2382 }
2383 
2384 /*
2385  * These are the invariant sys_reg registers: we let the guest see the
2386  * host versions of these, so they're part of the guest state.
2387  *
2388  * A future CPU may provide a mechanism to present different values to
2389  * the guest, or a future kvm may trap them.
2390  */
2391 
2392 #define FUNCTION_INVARIANT(reg)                                         \
2393         static void get_##reg(struct kvm_vcpu *v,                       \
2394                               const struct sys_reg_desc *r)             \
2395         {                                                               \
2396                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2397         }
2398 
2399 FUNCTION_INVARIANT(midr_el1)
2400 FUNCTION_INVARIANT(revidr_el1)
2401 FUNCTION_INVARIANT(clidr_el1)
2402 FUNCTION_INVARIANT(aidr_el1)
2403 
2404 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2405 {
2406         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2407 }
2408 
2409 /* ->val is filled in by kvm_sys_reg_table_init() */
2410 static struct sys_reg_desc invariant_sys_regs[] = {
2411         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2412         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2413         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2414         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2415         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2416 };
2417 
2418 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2419 {
2420         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2421                 return -EFAULT;
2422         return 0;
2423 }
2424 
2425 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2426 {
2427         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2428                 return -EFAULT;
2429         return 0;
2430 }
2431 
2432 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2433 {
2434         struct sys_reg_params params;
2435         const struct sys_reg_desc *r;
2436 
2437         r = find_reg_by_id(id, &params, invariant_sys_regs,
2438                            ARRAY_SIZE(invariant_sys_regs));
2439         if (!r)
2440                 return -ENOENT;
2441 
2442         return reg_to_user(uaddr, &r->val, id);
2443 }
2444 
2445 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2446 {
2447         struct sys_reg_params params;
2448         const struct sys_reg_desc *r;
2449         int err;
2450         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2451 
2452         r = find_reg_by_id(id, &params, invariant_sys_regs,
2453                            ARRAY_SIZE(invariant_sys_regs));
2454         if (!r)
2455                 return -ENOENT;
2456 
2457         err = reg_from_user(&val, uaddr, id);
2458         if (err)
2459                 return err;
2460 
2461         /* This is what we mean by invariant: you can't change it. */
2462         if (r->val != val)
2463                 return -EINVAL;
2464 
2465         return 0;
2466 }
2467 
2468 static bool is_valid_cache(u32 val)
2469 {
2470         u32 level, ctype;
2471 
2472         if (val >= CSSELR_MAX)
2473                 return false;
2474 
2475         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2476         level = (val >> 1);
2477         ctype = (cache_levels >> (level * 3)) & 7;
2478 
2479         switch (ctype) {
2480         case 0: /* No cache */
2481                 return false;
2482         case 1: /* Instruction cache only */
2483                 return (val & 1);
2484         case 2: /* Data cache only */
2485         case 4: /* Unified cache */
2486                 return !(val & 1);
2487         case 3: /* Separate instruction and data caches */
2488                 return true;
2489         default: /* Reserved: we can't know instruction or data. */
2490                 return false;
2491         }
2492 }
2493 
2494 static int demux_c15_get(u64 id, void __user *uaddr)
2495 {
2496         u32 val;
2497         u32 __user *uval = uaddr;
2498 
2499         /* Fail if we have unknown bits set. */
2500         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2501                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2502                 return -ENOENT;
2503 
2504         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2505         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2506                 if (KVM_REG_SIZE(id) != 4)
2507                         return -ENOENT;
2508                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2509                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2510                 if (!is_valid_cache(val))
2511                         return -ENOENT;
2512 
2513                 return put_user(get_ccsidr(val), uval);
2514         default:
2515                 return -ENOENT;
2516         }
2517 }
2518 
2519 static int demux_c15_set(u64 id, void __user *uaddr)
2520 {
2521         u32 val, newval;
2522         u32 __user *uval = uaddr;
2523 
2524         /* Fail if we have unknown bits set. */
2525         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2526                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2527                 return -ENOENT;
2528 
2529         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2530         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2531                 if (KVM_REG_SIZE(id) != 4)
2532                         return -ENOENT;
2533                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2534                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2535                 if (!is_valid_cache(val))
2536                         return -ENOENT;
2537 
2538                 if (get_user(newval, uval))
2539                         return -EFAULT;
2540 
2541                 /* This is also invariant: you can't change it. */
2542                 if (newval != get_ccsidr(val))
2543                         return -EINVAL;
2544                 return 0;
2545         default:
2546                 return -ENOENT;
2547         }
2548 }
2549 
2550 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2551 {
2552         const struct sys_reg_desc *r;
2553         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2554 
2555         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2556                 return demux_c15_get(reg->id, uaddr);
2557 
2558         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2559                 return -ENOENT;
2560 
2561         r = index_to_sys_reg_desc(vcpu, reg->id);
2562         if (!r)
2563                 return get_invariant_sys_reg(reg->id, uaddr);
2564 
2565         /* Check for regs disabled by runtime config */
2566         if (sysreg_hidden_from_user(vcpu, r))
2567                 return -ENOENT;
2568 
2569         if (r->get_user)
2570                 return (r->get_user)(vcpu, r, reg, uaddr);
2571 
2572         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2573 }
2574 
2575 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2576 {
2577         const struct sys_reg_desc *r;
2578         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2579 
2580         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2581                 return demux_c15_set(reg->id, uaddr);
2582 
2583         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2584                 return -ENOENT;
2585 
2586         r = index_to_sys_reg_desc(vcpu, reg->id);
2587         if (!r)
2588                 return set_invariant_sys_reg(reg->id, uaddr);
2589 
2590         /* Check for regs disabled by runtime config */
2591         if (sysreg_hidden_from_user(vcpu, r))
2592                 return -ENOENT;
2593 
2594         if (r->set_user)
2595                 return (r->set_user)(vcpu, r, reg, uaddr);
2596 
2597         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2598 }
2599 
2600 static unsigned int num_demux_regs(void)
2601 {
2602         unsigned int i, count = 0;
2603 
2604         for (i = 0; i < CSSELR_MAX; i++)
2605                 if (is_valid_cache(i))
2606                         count++;
2607 
2608         return count;
2609 }
2610 
2611 static int write_demux_regids(u64 __user *uindices)
2612 {
2613         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2614         unsigned int i;
2615 
2616         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2617         for (i = 0; i < CSSELR_MAX; i++) {
2618                 if (!is_valid_cache(i))
2619                         continue;
2620                 if (put_user(val | i, uindices))
2621                         return -EFAULT;
2622                 uindices++;
2623         }
2624         return 0;
2625 }
2626 
2627 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2628 {
2629         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2630                 KVM_REG_ARM64_SYSREG |
2631                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2632                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2633                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2634                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2635                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2636 }
2637 
2638 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2639 {
2640         if (!*uind)
2641                 return true;
2642 
2643         if (put_user(sys_reg_to_index(reg), *uind))
2644                 return false;
2645 
2646         (*uind)++;
2647         return true;
2648 }
2649 
2650 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2651                             const struct sys_reg_desc *rd,
2652                             u64 __user **uind,
2653                             unsigned int *total)
2654 {
2655         /*
2656          * Ignore registers we trap but don't save,
2657          * and for which no custom user accessor is provided.
2658          */
2659         if (!(rd->reg || rd->get_user))
2660                 return 0;
2661 
2662         if (sysreg_hidden_from_user(vcpu, rd))
2663                 return 0;
2664 
2665         if (!copy_reg_to_user(rd, uind))
2666                 return -EFAULT;
2667 
2668         (*total)++;
2669         return 0;
2670 }
2671 
2672 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2673 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2674 {
2675         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2676         unsigned int total = 0;
2677         size_t num;
2678         int err;
2679 
2680         /* We check for duplicates here, to allow arch-specific overrides. */
2681         i1 = get_target_table(vcpu->arch.target, true, &num);
2682         end1 = i1 + num;
2683         i2 = sys_reg_descs;
2684         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2685 
2686         BUG_ON(i1 == end1 || i2 == end2);
2687 
2688         /* Walk carefully, as both tables may refer to the same register. */
2689         while (i1 || i2) {
2690                 int cmp = cmp_sys_reg(i1, i2);
2691                 /* target-specific overrides generic entry. */
2692                 if (cmp <= 0)
2693                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2694                 else
2695                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2696 
2697                 if (err)
2698                         return err;
2699 
2700                 if (cmp <= 0 && ++i1 == end1)
2701                         i1 = NULL;
2702                 if (cmp >= 0 && ++i2 == end2)
2703                         i2 = NULL;
2704         }
2705         return total;
2706 }
2707 
2708 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2709 {
2710         return ARRAY_SIZE(invariant_sys_regs)
2711                 + num_demux_regs()
2712                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2713 }
2714 
2715 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2716 {
2717         unsigned int i;
2718         int err;
2719 
2720         /* Then give them all the invariant registers' indices. */
2721         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2722                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2723                         return -EFAULT;
2724                 uindices++;
2725         }
2726 
2727         err = walk_sys_regs(vcpu, uindices);
2728         if (err < 0)
2729                 return err;
2730         uindices += err;
2731 
2732         return write_demux_regids(uindices);
2733 }
2734 
2735 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2736 {
2737         unsigned int i;
2738 
2739         for (i = 1; i < n; i++) {
2740                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2741                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2742                         return 1;
2743                 }
2744         }
2745 
2746         return 0;
2747 }
2748 
2749 void kvm_sys_reg_table_init(void)
2750 {
2751         unsigned int i;
2752         struct sys_reg_desc clidr;
2753 
2754         /* Make sure tables are unique and in order. */
2755         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2756         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2757         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2758         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2759         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2760         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2761 
2762         /* We abuse the reset function to overwrite the table itself. */
2763         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2764                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2765 
2766         /*
2767          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2768          *
2769          *   If software reads the Cache Type fields from Ctype1
2770          *   upwards, once it has seen a value of 0b000, no caches
2771          *   exist at further-out levels of the hierarchy. So, for
2772          *   example, if Ctype3 is the first Cache Type field with a
2773          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2774          *   ignored.
2775          */
2776         get_clidr_el1(NULL, &clidr); /* Ugly... */
2777         cache_levels = clidr.val;
2778         for (i = 0; i < 7; i++)
2779                 if (((cache_levels >> (i*3)) & 7) == 0)
2780                         break;
2781         /* Clear all higher bits. */
2782         cache_levels &= (1 << (i*3))-1;
2783 }
2784 
2785 /**
2786  * kvm_reset_sys_regs - sets system registers to reset value
2787  * @vcpu: The VCPU pointer
2788  *
2789  * This function finds the right table above and sets the registers on the
2790  * virtual CPU struct to their architecturally defined reset values.
2791  */
2792 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2793 {
2794         size_t num;
2795         const struct sys_reg_desc *table;
2796         DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2797 
2798         /* Generic chip reset first (so target could override). */
2799         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2800 
2801         table = get_target_table(vcpu->arch.target, true, &num);
2802         reset_sys_reg_descs(vcpu, table, num, bmap);
2803 
2804         for (num = 1; num < NR_SYS_REGS; num++) {
2805                 if (WARN(!test_bit(num, bmap),
2806                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2807                         break;
2808         }
2809 }

/* [<][>][^][v][top][bottom][index][help] */