root/drivers/mtd/chips/cfi_cmdset_0002.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cfi_use_status_reg
  2. cfi_check_err_status
  3. cfi_tell_features
  4. fixup_amd_bootblock
  5. fixup_use_write_buffers
  6. fixup_convert_atmel_pri
  7. fixup_use_secsi
  8. fixup_use_erase_chip
  9. fixup_use_atmel_lock
  10. fixup_old_sst_eraseregion
  11. fixup_sst39vf
  12. fixup_sst39vf_rev_b
  13. fixup_sst38vf640x_sectorsize
  14. fixup_s29gl064n_sectors
  15. fixup_s29gl032n_sectors
  16. fixup_s29ns512p_sectors
  17. cfi_fixup_major_minor
  18. is_m29ew
  19. cfi_fixup_m29ew_erase_suspend
  20. cfi_fixup_m29ew_delay_after_resume
  21. cfi_cmdset_0002
  22. cfi_amdstd_setup
  23. chip_ready
  24. chip_good
  25. get_chip
  26. put_chip
  27. xip_disable
  28. xip_enable
  29. xip_udelay
  30. do_read_onechip
  31. cfi_amdstd_read
  32. otp_enter
  33. otp_exit
  34. do_read_secsi_onechip
  35. cfi_amdstd_secsi_read
  36. do_otp_write
  37. do_otp_lock
  38. cfi_amdstd_otp_walk
  39. cfi_amdstd_get_fact_prot_info
  40. cfi_amdstd_get_user_prot_info
  41. cfi_amdstd_read_fact_prot_reg
  42. cfi_amdstd_read_user_prot_reg
  43. cfi_amdstd_write_user_prot_reg
  44. cfi_amdstd_lock_user_prot_reg
  45. do_write_oneword_once
  46. do_write_oneword_start
  47. do_write_oneword_done
  48. do_write_oneword_retry
  49. do_write_oneword
  50. cfi_amdstd_write_words
  51. do_write_buffer_wait
  52. do_write_buffer_reset
  53. do_write_buffer
  54. cfi_amdstd_write_buffers
  55. cfi_amdstd_panic_wait
  56. do_panic_write_oneword
  57. cfi_amdstd_panic_write
  58. do_erase_chip
  59. do_erase_oneblock
  60. cfi_amdstd_erase_varsize
  61. cfi_amdstd_erase_chip
  62. do_atmel_lock
  63. do_atmel_unlock
  64. cfi_atmel_lock
  65. cfi_atmel_unlock
  66. do_ppb_xxlock
  67. cfi_ppb_lock
  68. cfi_ppb_unlock
  69. cfi_ppb_is_locked
  70. cfi_amdstd_sync
  71. cfi_amdstd_suspend
  72. cfi_amdstd_resume
  73. cfi_amdstd_reset
  74. cfi_amdstd_reboot
  75. cfi_amdstd_destroy

   1 /*
   2  * Common Flash Interface support:
   3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4  *
   5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8  *
   9  * 2_by_8 routines added by Simon Munton
  10  *
  11  * 4_by_16 work by Carolyn J. Smith
  12  *
  13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14  * by Nicolas Pitre)
  15  *
  16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17  *
  18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19  *
  20  * This code is GPL
  21  */
  22 
  23 #include <linux/module.h>
  24 #include <linux/types.h>
  25 #include <linux/kernel.h>
  26 #include <linux/sched.h>
  27 #include <asm/io.h>
  28 #include <asm/byteorder.h>
  29 
  30 #include <linux/errno.h>
  31 #include <linux/slab.h>
  32 #include <linux/delay.h>
  33 #include <linux/interrupt.h>
  34 #include <linux/reboot.h>
  35 #include <linux/of.h>
  36 #include <linux/of_platform.h>
  37 #include <linux/mtd/map.h>
  38 #include <linux/mtd/mtd.h>
  39 #include <linux/mtd/cfi.h>
  40 #include <linux/mtd/xip.h>
  41 
  42 #define AMD_BOOTLOC_BUG
  43 #define FORCE_WORD_WRITE 0
  44 
  45 #define MAX_RETRIES 3
  46 
  47 #define SST49LF004B             0x0060
  48 #define SST49LF040B             0x0050
  49 #define SST49LF008A             0x005a
  50 #define AT49BV6416              0x00d6
  51 
  52 /*
  53  * Status Register bit description. Used by flash devices that don't
  54  * support DQ polling (e.g. HyperFlash)
  55  */
  56 #define CFI_SR_DRB              BIT(7)
  57 #define CFI_SR_ESB              BIT(5)
  58 #define CFI_SR_PSB              BIT(4)
  59 #define CFI_SR_WBASB            BIT(3)
  60 #define CFI_SR_SLSB             BIT(1)
  61 
  62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  64 #if !FORCE_WORD_WRITE
  65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  66 #endif
  67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  69 static void cfi_amdstd_sync (struct mtd_info *);
  70 static int cfi_amdstd_suspend (struct mtd_info *);
  71 static void cfi_amdstd_resume (struct mtd_info *);
  72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
  74                                          size_t *, struct otp_info *);
  75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
  76                                          size_t *, struct otp_info *);
  77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
  79                                          size_t *, u_char *);
  80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
  81                                          size_t *, u_char *);
  82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
  83                                           size_t *, u_char *);
  84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
  85 
  86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  87                                   size_t *retlen, const u_char *buf);
  88 
  89 static void cfi_amdstd_destroy(struct mtd_info *);
  90 
  91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  93 
  94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  96 #include "fwh_lock.h"
  97 
  98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 100 
 101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 104 
 105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
 106         .probe          = NULL, /* Not usable directly */
 107         .destroy        = cfi_amdstd_destroy,
 108         .name           = "cfi_cmdset_0002",
 109         .module         = THIS_MODULE
 110 };
 111 
 112 /*
 113  * Use status register to poll for Erase/write completion when DQ is not
 114  * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
 115  * CFI Primary Vendor-Specific Extended Query table 1.5
 116  */
 117 static int cfi_use_status_reg(struct cfi_private *cfi)
 118 {
 119         struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 120         u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
 121 
 122         return extp->MinorVersion >= '5' &&
 123                 (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
 124 }
 125 
 126 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
 127                                 unsigned long adr)
 128 {
 129         struct cfi_private *cfi = map->fldrv_priv;
 130         map_word status;
 131 
 132         if (!cfi_use_status_reg(cfi))
 133                 return 0;
 134 
 135         cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 136                          cfi->device_type, NULL);
 137         status = map_read(map, adr);
 138 
 139         /* The error bits are invalid while the chip's busy */
 140         if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
 141                 return 0;
 142 
 143         if (map_word_bitsset(map, status, CMD(0x3a))) {
 144                 unsigned long chipstatus = MERGESTATUS(status);
 145 
 146                 if (chipstatus & CFI_SR_ESB)
 147                         pr_err("%s erase operation failed, status %lx\n",
 148                                map->name, chipstatus);
 149                 if (chipstatus & CFI_SR_PSB)
 150                         pr_err("%s program operation failed, status %lx\n",
 151                                map->name, chipstatus);
 152                 if (chipstatus & CFI_SR_WBASB)
 153                         pr_err("%s buffer program command aborted, status %lx\n",
 154                                map->name, chipstatus);
 155                 if (chipstatus & CFI_SR_SLSB)
 156                         pr_err("%s sector write protected, status %lx\n",
 157                                map->name, chipstatus);
 158 
 159                 /* Erase/Program status bits are set on the operation failure */
 160                 if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
 161                         return 1;
 162         }
 163         return 0;
 164 }
 165 
 166 /* #define DEBUG_CFI_FEATURES */
 167 
 168 
 169 #ifdef DEBUG_CFI_FEATURES
 170 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 171 {
 172         const char* erase_suspend[3] = {
 173                 "Not supported", "Read only", "Read/write"
 174         };
 175         const char* top_bottom[6] = {
 176                 "No WP", "8x8KiB sectors at top & bottom, no WP",
 177                 "Bottom boot", "Top boot",
 178                 "Uniform, Bottom WP", "Uniform, Top WP"
 179         };
 180 
 181         printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 182         printk("  Address sensitive unlock: %s\n",
 183                (extp->SiliconRevision & 1) ? "Not required" : "Required");
 184 
 185         if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 186                 printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 187         else
 188                 printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 189 
 190         if (extp->BlkProt == 0)
 191                 printk("  Block protection: Not supported\n");
 192         else
 193                 printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 194 
 195 
 196         printk("  Temporary block unprotect: %s\n",
 197                extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 198         printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 199         printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 200         printk("  Burst mode: %s\n",
 201                extp->BurstMode ? "Supported" : "Not supported");
 202         if (extp->PageMode == 0)
 203                 printk("  Page mode: Not supported\n");
 204         else
 205                 printk("  Page mode: %d word page\n", extp->PageMode << 2);
 206 
 207         printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 208                extp->VppMin >> 4, extp->VppMin & 0xf);
 209         printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 210                extp->VppMax >> 4, extp->VppMax & 0xf);
 211 
 212         if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 213                 printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 214         else
 215                 printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 216 }
 217 #endif
 218 
 219 #ifdef AMD_BOOTLOC_BUG
 220 /* Wheee. Bring me the head of someone at AMD. */
 221 static void fixup_amd_bootblock(struct mtd_info *mtd)
 222 {
 223         struct map_info *map = mtd->priv;
 224         struct cfi_private *cfi = map->fldrv_priv;
 225         struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 226         __u8 major = extp->MajorVersion;
 227         __u8 minor = extp->MinorVersion;
 228 
 229         if (((major << 8) | minor) < 0x3131) {
 230                 /* CFI version 1.0 => don't trust bootloc */
 231 
 232                 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 233                         map->name, cfi->mfr, cfi->id);
 234 
 235                 /* AFAICS all 29LV400 with a bottom boot block have a device ID
 236                  * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 237                  * These were badly detected as they have the 0x80 bit set
 238                  * so treat them as a special case.
 239                  */
 240                 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 241 
 242                         /* Macronix added CFI to their 2nd generation
 243                          * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 244                          * Fujitsu, Spansion, EON, ESI and older Macronix)
 245                          * has CFI.
 246                          *
 247                          * Therefore also check the manufacturer.
 248                          * This reduces the risk of false detection due to
 249                          * the 8-bit device ID.
 250                          */
 251                         (cfi->mfr == CFI_MFR_MACRONIX)) {
 252                         pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 253                                 " detected\n", map->name);
 254                         extp->TopBottom = 2;    /* bottom boot */
 255                 } else
 256                 if (cfi->id & 0x80) {
 257                         printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 258                         extp->TopBottom = 3;    /* top boot */
 259                 } else {
 260                         extp->TopBottom = 2;    /* bottom boot */
 261                 }
 262 
 263                 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 264                         " deduced %s from Device ID\n", map->name, major, minor,
 265                         extp->TopBottom == 2 ? "bottom" : "top");
 266         }
 267 }
 268 #endif
 269 
 270 #if !FORCE_WORD_WRITE
 271 static void fixup_use_write_buffers(struct mtd_info *mtd)
 272 {
 273         struct map_info *map = mtd->priv;
 274         struct cfi_private *cfi = map->fldrv_priv;
 275         if (cfi->cfiq->BufWriteTimeoutTyp) {
 276                 pr_debug("Using buffer write method\n");
 277                 mtd->_write = cfi_amdstd_write_buffers;
 278         }
 279 }
 280 #endif /* !FORCE_WORD_WRITE */
 281 
 282 /* Atmel chips don't use the same PRI format as AMD chips */
 283 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 284 {
 285         struct map_info *map = mtd->priv;
 286         struct cfi_private *cfi = map->fldrv_priv;
 287         struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 288         struct cfi_pri_atmel atmel_pri;
 289 
 290         memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 291         memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 292 
 293         if (atmel_pri.Features & 0x02)
 294                 extp->EraseSuspend = 2;
 295 
 296         /* Some chips got it backwards... */
 297         if (cfi->id == AT49BV6416) {
 298                 if (atmel_pri.BottomBoot)
 299                         extp->TopBottom = 3;
 300                 else
 301                         extp->TopBottom = 2;
 302         } else {
 303                 if (atmel_pri.BottomBoot)
 304                         extp->TopBottom = 2;
 305                 else
 306                         extp->TopBottom = 3;
 307         }
 308 
 309         /* burst write mode not supported */
 310         cfi->cfiq->BufWriteTimeoutTyp = 0;
 311         cfi->cfiq->BufWriteTimeoutMax = 0;
 312 }
 313 
 314 static void fixup_use_secsi(struct mtd_info *mtd)
 315 {
 316         /* Setup for chips with a secsi area */
 317         mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 318         mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 319 }
 320 
 321 static void fixup_use_erase_chip(struct mtd_info *mtd)
 322 {
 323         struct map_info *map = mtd->priv;
 324         struct cfi_private *cfi = map->fldrv_priv;
 325         if ((cfi->cfiq->NumEraseRegions == 1) &&
 326                 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 327                 mtd->_erase = cfi_amdstd_erase_chip;
 328         }
 329 
 330 }
 331 
 332 /*
 333  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 334  * locked by default.
 335  */
 336 static void fixup_use_atmel_lock(struct mtd_info *mtd)
 337 {
 338         mtd->_lock = cfi_atmel_lock;
 339         mtd->_unlock = cfi_atmel_unlock;
 340         mtd->flags |= MTD_POWERUP_LOCK;
 341 }
 342 
 343 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 344 {
 345         struct map_info *map = mtd->priv;
 346         struct cfi_private *cfi = map->fldrv_priv;
 347 
 348         /*
 349          * These flashes report two separate eraseblock regions based on the
 350          * sector_erase-size and block_erase-size, although they both operate on the
 351          * same memory. This is not allowed according to CFI, so we just pick the
 352          * sector_erase-size.
 353          */
 354         cfi->cfiq->NumEraseRegions = 1;
 355 }
 356 
 357 static void fixup_sst39vf(struct mtd_info *mtd)
 358 {
 359         struct map_info *map = mtd->priv;
 360         struct cfi_private *cfi = map->fldrv_priv;
 361 
 362         fixup_old_sst_eraseregion(mtd);
 363 
 364         cfi->addr_unlock1 = 0x5555;
 365         cfi->addr_unlock2 = 0x2AAA;
 366 }
 367 
 368 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 369 {
 370         struct map_info *map = mtd->priv;
 371         struct cfi_private *cfi = map->fldrv_priv;
 372 
 373         fixup_old_sst_eraseregion(mtd);
 374 
 375         cfi->addr_unlock1 = 0x555;
 376         cfi->addr_unlock2 = 0x2AA;
 377 
 378         cfi->sector_erase_cmd = CMD(0x50);
 379 }
 380 
 381 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 382 {
 383         struct map_info *map = mtd->priv;
 384         struct cfi_private *cfi = map->fldrv_priv;
 385 
 386         fixup_sst39vf_rev_b(mtd);
 387 
 388         /*
 389          * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 390          * it should report a size of 8KBytes (0x0020*256).
 391          */
 392         cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 393         pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
 394                 mtd->name);
 395 }
 396 
 397 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 398 {
 399         struct map_info *map = mtd->priv;
 400         struct cfi_private *cfi = map->fldrv_priv;
 401 
 402         if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 403                 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 404                 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
 405                         mtd->name);
 406         }
 407 }
 408 
 409 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 410 {
 411         struct map_info *map = mtd->priv;
 412         struct cfi_private *cfi = map->fldrv_priv;
 413 
 414         if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 415                 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 416                 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
 417                         mtd->name);
 418         }
 419 }
 420 
 421 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 422 {
 423         struct map_info *map = mtd->priv;
 424         struct cfi_private *cfi = map->fldrv_priv;
 425 
 426         /*
 427          *  S29NS512P flash uses more than 8bits to report number of sectors,
 428          * which is not permitted by CFI.
 429          */
 430         cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 431         pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
 432                 mtd->name);
 433 }
 434 
 435 /* Used to fix CFI-Tables of chips without Extended Query Tables */
 436 static struct cfi_fixup cfi_nopri_fixup_table[] = {
 437         { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 438         { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 439         { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 440         { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 441         { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 442         { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 443         { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 444         { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 445         { 0, 0, NULL }
 446 };
 447 
 448 static struct cfi_fixup cfi_fixup_table[] = {
 449         { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 450 #ifdef AMD_BOOTLOC_BUG
 451         { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 452         { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 453         { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 454 #endif
 455         { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 456         { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 457         { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 458         { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 459         { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 460         { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 461         { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 462         { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 463         { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 464         { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 465         { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 466         { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 467         { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 468         { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 469         { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 470 #if !FORCE_WORD_WRITE
 471         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 472 #endif
 473         { 0, 0, NULL }
 474 };
 475 static struct cfi_fixup jedec_fixup_table[] = {
 476         { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 477         { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 478         { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 479         { 0, 0, NULL }
 480 };
 481 
 482 static struct cfi_fixup fixup_table[] = {
 483         /* The CFI vendor ids and the JEDEC vendor IDs appear
 484          * to be common.  It is like the devices id's are as
 485          * well.  This table is to pick all cases where
 486          * we know that is the case.
 487          */
 488         { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 489         { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 490         { 0, 0, NULL }
 491 };
 492 
 493 
 494 static void cfi_fixup_major_minor(struct cfi_private *cfi,
 495                                   struct cfi_pri_amdstd *extp)
 496 {
 497         if (cfi->mfr == CFI_MFR_SAMSUNG) {
 498                 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 499                     (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 500                         /*
 501                          * Samsung K8P2815UQB and K8D6x16UxM chips
 502                          * report major=0 / minor=0.
 503                          * K8D3x16UxC chips report major=3 / minor=3.
 504                          */
 505                         printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 506                                " Extended Query version to 1.%c\n",
 507                                extp->MinorVersion);
 508                         extp->MajorVersion = '1';
 509                 }
 510         }
 511 
 512         /*
 513          * SST 38VF640x chips report major=0xFF / minor=0xFF.
 514          */
 515         if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 516                 extp->MajorVersion = '1';
 517                 extp->MinorVersion = '0';
 518         }
 519 }
 520 
 521 static int is_m29ew(struct cfi_private *cfi)
 522 {
 523         if (cfi->mfr == CFI_MFR_INTEL &&
 524             ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 525              (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 526                 return 1;
 527         return 0;
 528 }
 529 
 530 /*
 531  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 532  * Some revisions of the M29EW suffer from erase suspend hang ups. In
 533  * particular, it can occur when the sequence
 534  * Erase Confirm -> Suspend -> Program -> Resume
 535  * causes a lockup due to internal timing issues. The consequence is that the
 536  * erase cannot be resumed without inserting a dummy command after programming
 537  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 538  * that writes an F0 command code before the RESUME command.
 539  */
 540 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 541                                           unsigned long adr)
 542 {
 543         struct cfi_private *cfi = map->fldrv_priv;
 544         /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 545         if (is_m29ew(cfi))
 546                 map_write(map, CMD(0xF0), adr);
 547 }
 548 
 549 /*
 550  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 551  *
 552  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 553  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 554  * command is issued after an ERASE RESUME operation without waiting for a
 555  * minimum delay.  The result is that once the ERASE seems to be completed
 556  * (no bits are toggling), the contents of the Flash memory block on which
 557  * the erase was ongoing could be inconsistent with the expected values
 558  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 559  * values), causing a consequent failure of the ERASE operation.
 560  * The occurrence of this issue could be high, especially when file system
 561  * operations on the Flash are intensive.  As a result, it is recommended
 562  * that a patch be applied.  Intensive file system operations can cause many
 563  * calls to the garbage routine to free Flash space (also by erasing physical
 564  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 565  * commands can occur.  The problem disappears when a delay is inserted after
 566  * the RESUME command by using the udelay() function available in Linux.
 567  * The DELAY value must be tuned based on the customer's platform.
 568  * The maximum value that fixes the problem in all cases is 500us.
 569  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 570  * in most cases.
 571  * We have chosen 500µs because this latency is acceptable.
 572  */
 573 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 574 {
 575         /*
 576          * Resolving the Delay After Resume Issue see Micron TN-13-07
 577          * Worst case delay must be 500µs but 30-50µs should be ok as well
 578          */
 579         if (is_m29ew(cfi))
 580                 cfi_udelay(500);
 581 }
 582 
 583 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 584 {
 585         struct cfi_private *cfi = map->fldrv_priv;
 586         struct device_node __maybe_unused *np = map->device_node;
 587         struct mtd_info *mtd;
 588         int i;
 589 
 590         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 591         if (!mtd)
 592                 return NULL;
 593         mtd->priv = map;
 594         mtd->type = MTD_NORFLASH;
 595 
 596         /* Fill in the default mtd operations */
 597         mtd->_erase   = cfi_amdstd_erase_varsize;
 598         mtd->_write   = cfi_amdstd_write_words;
 599         mtd->_read    = cfi_amdstd_read;
 600         mtd->_sync    = cfi_amdstd_sync;
 601         mtd->_suspend = cfi_amdstd_suspend;
 602         mtd->_resume  = cfi_amdstd_resume;
 603         mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 604         mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 605         mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 606         mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 607         mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 608         mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 609         mtd->flags   = MTD_CAP_NORFLASH;
 610         mtd->name    = map->name;
 611         mtd->writesize = 1;
 612         mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 613 
 614         pr_debug("MTD %s(): write buffer size %d\n", __func__,
 615                         mtd->writebufsize);
 616 
 617         mtd->_panic_write = cfi_amdstd_panic_write;
 618         mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 619 
 620         if (cfi->cfi_mode==CFI_MODE_CFI){
 621                 unsigned char bootloc;
 622                 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 623                 struct cfi_pri_amdstd *extp;
 624 
 625                 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 626                 if (extp) {
 627                         /*
 628                          * It's a real CFI chip, not one for which the probe
 629                          * routine faked a CFI structure.
 630                          */
 631                         cfi_fixup_major_minor(cfi, extp);
 632 
 633                         /*
 634                          * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 635                          * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 636                          *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 637                          *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 638                          *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 639                          */
 640                         if (extp->MajorVersion != '1' ||
 641                             (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 642                                 printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 643                                        "version %c.%c (%#02x/%#02x).\n",
 644                                        extp->MajorVersion, extp->MinorVersion,
 645                                        extp->MajorVersion, extp->MinorVersion);
 646                                 kfree(extp);
 647                                 kfree(mtd);
 648                                 return NULL;
 649                         }
 650 
 651                         printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 652                                extp->MajorVersion, extp->MinorVersion);
 653 
 654                         /* Install our own private info structure */
 655                         cfi->cmdset_priv = extp;
 656 
 657                         /* Apply cfi device specific fixups */
 658                         cfi_fixup(mtd, cfi_fixup_table);
 659 
 660 #ifdef DEBUG_CFI_FEATURES
 661                         /* Tell the user about it in lots of lovely detail */
 662                         cfi_tell_features(extp);
 663 #endif
 664 
 665 #ifdef CONFIG_OF
 666                         if (np && of_property_read_bool(
 667                                     np, "use-advanced-sector-protection")
 668                             && extp->BlkProtUnprot == 8) {
 669                                 printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 670                                 mtd->_lock = cfi_ppb_lock;
 671                                 mtd->_unlock = cfi_ppb_unlock;
 672                                 mtd->_is_locked = cfi_ppb_is_locked;
 673                         }
 674 #endif
 675 
 676                         bootloc = extp->TopBottom;
 677                         if ((bootloc < 2) || (bootloc > 5)) {
 678                                 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 679                                        "bank location (%d). Assuming bottom.\n",
 680                                        map->name, bootloc);
 681                                 bootloc = 2;
 682                         }
 683 
 684                         if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 685                                 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 686 
 687                                 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 688                                         int j = (cfi->cfiq->NumEraseRegions-1)-i;
 689 
 690                                         swap(cfi->cfiq->EraseRegionInfo[i],
 691                                              cfi->cfiq->EraseRegionInfo[j]);
 692                                 }
 693                         }
 694                         /* Set the default CFI lock/unlock addresses */
 695                         cfi->addr_unlock1 = 0x555;
 696                         cfi->addr_unlock2 = 0x2aa;
 697                 }
 698                 cfi_fixup(mtd, cfi_nopri_fixup_table);
 699 
 700                 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 701                         kfree(mtd);
 702                         return NULL;
 703                 }
 704 
 705         } /* CFI mode */
 706         else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 707                 /* Apply jedec specific fixups */
 708                 cfi_fixup(mtd, jedec_fixup_table);
 709         }
 710         /* Apply generic fixups */
 711         cfi_fixup(mtd, fixup_table);
 712 
 713         for (i=0; i< cfi->numchips; i++) {
 714                 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 715                 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 716                 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 717                 /*
 718                  * First calculate the timeout max according to timeout field
 719                  * of struct cfi_ident that probed from chip's CFI aera, if
 720                  * available. Specify a minimum of 2000us, in case the CFI data
 721                  * is wrong.
 722                  */
 723                 if (cfi->cfiq->BufWriteTimeoutTyp &&
 724                     cfi->cfiq->BufWriteTimeoutMax)
 725                         cfi->chips[i].buffer_write_time_max =
 726                                 1 << (cfi->cfiq->BufWriteTimeoutTyp +
 727                                       cfi->cfiq->BufWriteTimeoutMax);
 728                 else
 729                         cfi->chips[i].buffer_write_time_max = 0;
 730 
 731                 cfi->chips[i].buffer_write_time_max =
 732                         max(cfi->chips[i].buffer_write_time_max, 2000);
 733 
 734                 cfi->chips[i].ref_point_counter = 0;
 735                 init_waitqueue_head(&(cfi->chips[i].wq));
 736         }
 737 
 738         map->fldrv = &cfi_amdstd_chipdrv;
 739 
 740         return cfi_amdstd_setup(mtd);
 741 }
 742 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 743 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 744 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 745 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 746 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 747 
 748 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 749 {
 750         struct map_info *map = mtd->priv;
 751         struct cfi_private *cfi = map->fldrv_priv;
 752         unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 753         unsigned long offset = 0;
 754         int i,j;
 755 
 756         printk(KERN_NOTICE "number of %s chips: %d\n",
 757                (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 758         /* Select the correct geometry setup */
 759         mtd->size = devsize * cfi->numchips;
 760 
 761         mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 762         mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
 763                                           sizeof(struct mtd_erase_region_info),
 764                                           GFP_KERNEL);
 765         if (!mtd->eraseregions)
 766                 goto setup_err;
 767 
 768         for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 769                 unsigned long ernum, ersize;
 770                 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 771                 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 772 
 773                 if (mtd->erasesize < ersize) {
 774                         mtd->erasesize = ersize;
 775                 }
 776                 for (j=0; j<cfi->numchips; j++) {
 777                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 778                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 779                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 780                 }
 781                 offset += (ersize * ernum);
 782         }
 783         if (offset != devsize) {
 784                 /* Argh */
 785                 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 786                 goto setup_err;
 787         }
 788 
 789         __module_get(THIS_MODULE);
 790         register_reboot_notifier(&mtd->reboot_notifier);
 791         return mtd;
 792 
 793  setup_err:
 794         kfree(mtd->eraseregions);
 795         kfree(mtd);
 796         kfree(cfi->cmdset_priv);
 797         kfree(cfi->cfiq);
 798         return NULL;
 799 }
 800 
 801 /*
 802  * Return true if the chip is ready.
 803  *
 804  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 805  * non-suspended sector) and is indicated by no toggle bits toggling.
 806  *
 807  * Note that anything more complicated than checking if no bits are toggling
 808  * (including checking DQ5 for an error status) is tricky to get working
 809  * correctly and is therefore not done  (particularly with interleaved chips
 810  * as each chip must be checked independently of the others).
 811  */
 812 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
 813                                unsigned long addr)
 814 {
 815         struct cfi_private *cfi = map->fldrv_priv;
 816         map_word d, t;
 817 
 818         if (cfi_use_status_reg(cfi)) {
 819                 map_word ready = CMD(CFI_SR_DRB);
 820                 /*
 821                  * For chips that support status register, check device
 822                  * ready bit
 823                  */
 824                 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 825                                  cfi->device_type, NULL);
 826                 d = map_read(map, addr);
 827 
 828                 return map_word_andequal(map, d, ready, ready);
 829         }
 830 
 831         d = map_read(map, addr);
 832         t = map_read(map, addr);
 833 
 834         return map_word_equal(map, d, t);
 835 }
 836 
 837 /*
 838  * Return true if the chip is ready and has the correct value.
 839  *
 840  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 841  * non-suspended sector) and it is indicated by no bits toggling.
 842  *
 843  * Error are indicated by toggling bits or bits held with the wrong value,
 844  * or with bits toggling.
 845  *
 846  * Note that anything more complicated than checking if no bits are toggling
 847  * (including checking DQ5 for an error status) is tricky to get working
 848  * correctly and is therefore not done  (particularly with interleaved chips
 849  * as each chip must be checked independently of the others).
 850  *
 851  */
 852 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
 853                               unsigned long addr, map_word expected)
 854 {
 855         struct cfi_private *cfi = map->fldrv_priv;
 856         map_word oldd, curd;
 857 
 858         if (cfi_use_status_reg(cfi)) {
 859                 map_word ready = CMD(CFI_SR_DRB);
 860 
 861                 /*
 862                  * For chips that support status register, check device
 863                  * ready bit
 864                  */
 865                 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
 866                                  cfi->device_type, NULL);
 867                 curd = map_read(map, addr);
 868 
 869                 return map_word_andequal(map, curd, ready, ready);
 870         }
 871 
 872         oldd = map_read(map, addr);
 873         curd = map_read(map, addr);
 874 
 875         return  map_word_equal(map, oldd, curd) &&
 876                 map_word_equal(map, curd, expected);
 877 }
 878 
 879 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 880 {
 881         DECLARE_WAITQUEUE(wait, current);
 882         struct cfi_private *cfi = map->fldrv_priv;
 883         unsigned long timeo;
 884         struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 885 
 886  resettime:
 887         timeo = jiffies + HZ;
 888  retry:
 889         switch (chip->state) {
 890 
 891         case FL_STATUS:
 892                 for (;;) {
 893                         if (chip_ready(map, chip, adr))
 894                                 break;
 895 
 896                         if (time_after(jiffies, timeo)) {
 897                                 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 898                                 return -EIO;
 899                         }
 900                         mutex_unlock(&chip->mutex);
 901                         cfi_udelay(1);
 902                         mutex_lock(&chip->mutex);
 903                         /* Someone else might have been playing with it. */
 904                         goto retry;
 905                 }
 906 
 907         case FL_READY:
 908         case FL_CFI_QUERY:
 909         case FL_JEDEC_QUERY:
 910                 return 0;
 911 
 912         case FL_ERASING:
 913                 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 914                     !(mode == FL_READY || mode == FL_POINT ||
 915                     (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 916                         goto sleep;
 917 
 918                 /* Do not allow suspend iff read/write to EB address */
 919                 if ((adr & chip->in_progress_block_mask) ==
 920                     chip->in_progress_block_addr)
 921                         goto sleep;
 922 
 923                 /* Erase suspend */
 924                 /* It's harmless to issue the Erase-Suspend and Erase-Resume
 925                  * commands when the erase algorithm isn't in progress. */
 926                 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 927                 chip->oldstate = FL_ERASING;
 928                 chip->state = FL_ERASE_SUSPENDING;
 929                 chip->erase_suspended = 1;
 930                 for (;;) {
 931                         if (chip_ready(map, chip, adr))
 932                                 break;
 933 
 934                         if (time_after(jiffies, timeo)) {
 935                                 /* Should have suspended the erase by now.
 936                                  * Send an Erase-Resume command as either
 937                                  * there was an error (so leave the erase
 938                                  * routine to recover from it) or we trying to
 939                                  * use the erase-in-progress sector. */
 940                                 put_chip(map, chip, adr);
 941                                 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 942                                 return -EIO;
 943                         }
 944 
 945                         mutex_unlock(&chip->mutex);
 946                         cfi_udelay(1);
 947                         mutex_lock(&chip->mutex);
 948                         /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 949                            So we can just loop here. */
 950                 }
 951                 chip->state = FL_READY;
 952                 return 0;
 953 
 954         case FL_XIP_WHILE_ERASING:
 955                 if (mode != FL_READY && mode != FL_POINT &&
 956                     (!cfip || !(cfip->EraseSuspend&2)))
 957                         goto sleep;
 958                 chip->oldstate = chip->state;
 959                 chip->state = FL_READY;
 960                 return 0;
 961 
 962         case FL_SHUTDOWN:
 963                 /* The machine is rebooting */
 964                 return -EIO;
 965 
 966         case FL_POINT:
 967                 /* Only if there's no operation suspended... */
 968                 if (mode == FL_READY && chip->oldstate == FL_READY)
 969                         return 0;
 970                 /* fall through */
 971 
 972         default:
 973         sleep:
 974                 set_current_state(TASK_UNINTERRUPTIBLE);
 975                 add_wait_queue(&chip->wq, &wait);
 976                 mutex_unlock(&chip->mutex);
 977                 schedule();
 978                 remove_wait_queue(&chip->wq, &wait);
 979                 mutex_lock(&chip->mutex);
 980                 goto resettime;
 981         }
 982 }
 983 
 984 
 985 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 986 {
 987         struct cfi_private *cfi = map->fldrv_priv;
 988 
 989         switch(chip->oldstate) {
 990         case FL_ERASING:
 991                 cfi_fixup_m29ew_erase_suspend(map,
 992                         chip->in_progress_block_addr);
 993                 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 994                 cfi_fixup_m29ew_delay_after_resume(cfi);
 995                 chip->oldstate = FL_READY;
 996                 chip->state = FL_ERASING;
 997                 break;
 998 
 999         case FL_XIP_WHILE_ERASING:
1000                 chip->state = chip->oldstate;
1001                 chip->oldstate = FL_READY;
1002                 break;
1003 
1004         case FL_READY:
1005         case FL_STATUS:
1006                 break;
1007         default:
1008                 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1009         }
1010         wake_up(&chip->wq);
1011 }
1012 
1013 #ifdef CONFIG_MTD_XIP
1014 
1015 /*
1016  * No interrupt what so ever can be serviced while the flash isn't in array
1017  * mode.  This is ensured by the xip_disable() and xip_enable() functions
1018  * enclosing any code path where the flash is known not to be in array mode.
1019  * And within a XIP disabled code path, only functions marked with __xipram
1020  * may be called and nothing else (it's a good thing to inspect generated
1021  * assembly to make sure inline functions were actually inlined and that gcc
1022  * didn't emit calls to its own support functions). Also configuring MTD CFI
1023  * support to a single buswidth and a single interleave is also recommended.
1024  */
1025 
1026 static void xip_disable(struct map_info *map, struct flchip *chip,
1027                         unsigned long adr)
1028 {
1029         /* TODO: chips with no XIP use should ignore and return */
1030         (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1031         local_irq_disable();
1032 }
1033 
1034 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1035                                 unsigned long adr)
1036 {
1037         struct cfi_private *cfi = map->fldrv_priv;
1038 
1039         if (chip->state != FL_POINT && chip->state != FL_READY) {
1040                 map_write(map, CMD(0xf0), adr);
1041                 chip->state = FL_READY;
1042         }
1043         (void) map_read(map, adr);
1044         xip_iprefetch();
1045         local_irq_enable();
1046 }
1047 
1048 /*
1049  * When a delay is required for the flash operation to complete, the
1050  * xip_udelay() function is polling for both the given timeout and pending
1051  * (but still masked) hardware interrupts.  Whenever there is an interrupt
1052  * pending then the flash erase operation is suspended, array mode restored
1053  * and interrupts unmasked.  Task scheduling might also happen at that
1054  * point.  The CPU eventually returns from the interrupt or the call to
1055  * schedule() and the suspended flash operation is resumed for the remaining
1056  * of the delay period.
1057  *
1058  * Warning: this function _will_ fool interrupt latency tracing tools.
1059  */
1060 
1061 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1062                                 unsigned long adr, int usec)
1063 {
1064         struct cfi_private *cfi = map->fldrv_priv;
1065         struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1066         map_word status, OK = CMD(0x80);
1067         unsigned long suspended, start = xip_currtime();
1068         flstate_t oldstate;
1069 
1070         do {
1071                 cpu_relax();
1072                 if (xip_irqpending() && extp &&
1073                     ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1074                     (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1075                         /*
1076                          * Let's suspend the erase operation when supported.
1077                          * Note that we currently don't try to suspend
1078                          * interleaved chips if there is already another
1079                          * operation suspended (imagine what happens
1080                          * when one chip was already done with the current
1081                          * operation while another chip suspended it, then
1082                          * we resume the whole thing at once).  Yes, it
1083                          * can happen!
1084                          */
1085                         map_write(map, CMD(0xb0), adr);
1086                         usec -= xip_elapsed_since(start);
1087                         suspended = xip_currtime();
1088                         do {
1089                                 if (xip_elapsed_since(suspended) > 100000) {
1090                                         /*
1091                                          * The chip doesn't want to suspend
1092                                          * after waiting for 100 msecs.
1093                                          * This is a critical error but there
1094                                          * is not much we can do here.
1095                                          */
1096                                         return;
1097                                 }
1098                                 status = map_read(map, adr);
1099                         } while (!map_word_andequal(map, status, OK, OK));
1100 
1101                         /* Suspend succeeded */
1102                         oldstate = chip->state;
1103                         if (!map_word_bitsset(map, status, CMD(0x40)))
1104                                 break;
1105                         chip->state = FL_XIP_WHILE_ERASING;
1106                         chip->erase_suspended = 1;
1107                         map_write(map, CMD(0xf0), adr);
1108                         (void) map_read(map, adr);
1109                         xip_iprefetch();
1110                         local_irq_enable();
1111                         mutex_unlock(&chip->mutex);
1112                         xip_iprefetch();
1113                         cond_resched();
1114 
1115                         /*
1116                          * We're back.  However someone else might have
1117                          * decided to go write to the chip if we are in
1118                          * a suspended erase state.  If so let's wait
1119                          * until it's done.
1120                          */
1121                         mutex_lock(&chip->mutex);
1122                         while (chip->state != FL_XIP_WHILE_ERASING) {
1123                                 DECLARE_WAITQUEUE(wait, current);
1124                                 set_current_state(TASK_UNINTERRUPTIBLE);
1125                                 add_wait_queue(&chip->wq, &wait);
1126                                 mutex_unlock(&chip->mutex);
1127                                 schedule();
1128                                 remove_wait_queue(&chip->wq, &wait);
1129                                 mutex_lock(&chip->mutex);
1130                         }
1131                         /* Disallow XIP again */
1132                         local_irq_disable();
1133 
1134                         /* Correct Erase Suspend Hangups for M29EW */
1135                         cfi_fixup_m29ew_erase_suspend(map, adr);
1136                         /* Resume the write or erase operation */
1137                         map_write(map, cfi->sector_erase_cmd, adr);
1138                         chip->state = oldstate;
1139                         start = xip_currtime();
1140                 } else if (usec >= 1000000/HZ) {
1141                         /*
1142                          * Try to save on CPU power when waiting delay
1143                          * is at least a system timer tick period.
1144                          * No need to be extremely accurate here.
1145                          */
1146                         xip_cpu_idle();
1147                 }
1148                 status = map_read(map, adr);
1149         } while (!map_word_andequal(map, status, OK, OK)
1150                  && xip_elapsed_since(start) < usec);
1151 }
1152 
1153 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1154 
1155 /*
1156  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1157  * the flash is actively programming or erasing since we have to poll for
1158  * the operation to complete anyway.  We can't do that in a generic way with
1159  * a XIP setup so do it before the actual flash operation in this case
1160  * and stub it out from INVALIDATE_CACHE_UDELAY.
1161  */
1162 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1163         INVALIDATE_CACHED_RANGE(map, from, size)
1164 
1165 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1166         UDELAY(map, chip, adr, usec)
1167 
1168 /*
1169  * Extra notes:
1170  *
1171  * Activating this XIP support changes the way the code works a bit.  For
1172  * example the code to suspend the current process when concurrent access
1173  * happens is never executed because xip_udelay() will always return with the
1174  * same chip state as it was entered with.  This is why there is no care for
1175  * the presence of add_wait_queue() or schedule() calls from within a couple
1176  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1177  * The queueing and scheduling are always happening within xip_udelay().
1178  *
1179  * Similarly, get_chip() and put_chip() just happen to always be executed
1180  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1181  * is in array mode, therefore never executing many cases therein and not
1182  * causing any problem with XIP.
1183  */
1184 
1185 #else
1186 
1187 #define xip_disable(map, chip, adr)
1188 #define xip_enable(map, chip, adr)
1189 #define XIP_INVAL_CACHED_RANGE(x...)
1190 
1191 #define UDELAY(map, chip, adr, usec)  \
1192 do {  \
1193         mutex_unlock(&chip->mutex);  \
1194         cfi_udelay(usec);  \
1195         mutex_lock(&chip->mutex);  \
1196 } while (0)
1197 
1198 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1199 do {  \
1200         mutex_unlock(&chip->mutex);  \
1201         INVALIDATE_CACHED_RANGE(map, adr, len);  \
1202         cfi_udelay(usec);  \
1203         mutex_lock(&chip->mutex);  \
1204 } while (0)
1205 
1206 #endif
1207 
1208 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1209 {
1210         unsigned long cmd_addr;
1211         struct cfi_private *cfi = map->fldrv_priv;
1212         int ret;
1213 
1214         adr += chip->start;
1215 
1216         /* Ensure cmd read/writes are aligned. */
1217         cmd_addr = adr & ~(map_bankwidth(map)-1);
1218 
1219         mutex_lock(&chip->mutex);
1220         ret = get_chip(map, chip, cmd_addr, FL_READY);
1221         if (ret) {
1222                 mutex_unlock(&chip->mutex);
1223                 return ret;
1224         }
1225 
1226         if (chip->state != FL_POINT && chip->state != FL_READY) {
1227                 map_write(map, CMD(0xf0), cmd_addr);
1228                 chip->state = FL_READY;
1229         }
1230 
1231         map_copy_from(map, buf, adr, len);
1232 
1233         put_chip(map, chip, cmd_addr);
1234 
1235         mutex_unlock(&chip->mutex);
1236         return 0;
1237 }
1238 
1239 
1240 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1241 {
1242         struct map_info *map = mtd->priv;
1243         struct cfi_private *cfi = map->fldrv_priv;
1244         unsigned long ofs;
1245         int chipnum;
1246         int ret = 0;
1247 
1248         /* ofs: offset within the first chip that the first read should start */
1249         chipnum = (from >> cfi->chipshift);
1250         ofs = from - (chipnum <<  cfi->chipshift);
1251 
1252         while (len) {
1253                 unsigned long thislen;
1254 
1255                 if (chipnum >= cfi->numchips)
1256                         break;
1257 
1258                 if ((len + ofs -1) >> cfi->chipshift)
1259                         thislen = (1<<cfi->chipshift) - ofs;
1260                 else
1261                         thislen = len;
1262 
1263                 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1264                 if (ret)
1265                         break;
1266 
1267                 *retlen += thislen;
1268                 len -= thislen;
1269                 buf += thislen;
1270 
1271                 ofs = 0;
1272                 chipnum++;
1273         }
1274         return ret;
1275 }
1276 
1277 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1278                         loff_t adr, size_t len, u_char *buf, size_t grouplen);
1279 
1280 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1281                              loff_t adr, size_t len)
1282 {
1283         struct cfi_private *cfi = map->fldrv_priv;
1284 
1285         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1286                          cfi->device_type, NULL);
1287         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1288                          cfi->device_type, NULL);
1289         cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1290                          cfi->device_type, NULL);
1291 
1292         INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1293 }
1294 
1295 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1296                             loff_t adr, size_t len)
1297 {
1298         struct cfi_private *cfi = map->fldrv_priv;
1299 
1300         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1301                          cfi->device_type, NULL);
1302         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1303                          cfi->device_type, NULL);
1304         cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1305                          cfi->device_type, NULL);
1306         cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1307                          cfi->device_type, NULL);
1308 
1309         INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1310 }
1311 
1312 static inline int do_read_secsi_onechip(struct map_info *map,
1313                                         struct flchip *chip, loff_t adr,
1314                                         size_t len, u_char *buf,
1315                                         size_t grouplen)
1316 {
1317         DECLARE_WAITQUEUE(wait, current);
1318 
1319  retry:
1320         mutex_lock(&chip->mutex);
1321 
1322         if (chip->state != FL_READY){
1323                 set_current_state(TASK_UNINTERRUPTIBLE);
1324                 add_wait_queue(&chip->wq, &wait);
1325 
1326                 mutex_unlock(&chip->mutex);
1327 
1328                 schedule();
1329                 remove_wait_queue(&chip->wq, &wait);
1330 
1331                 goto retry;
1332         }
1333 
1334         adr += chip->start;
1335 
1336         chip->state = FL_READY;
1337 
1338         otp_enter(map, chip, adr, len);
1339         map_copy_from(map, buf, adr, len);
1340         otp_exit(map, chip, adr, len);
1341 
1342         wake_up(&chip->wq);
1343         mutex_unlock(&chip->mutex);
1344 
1345         return 0;
1346 }
1347 
1348 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1349 {
1350         struct map_info *map = mtd->priv;
1351         struct cfi_private *cfi = map->fldrv_priv;
1352         unsigned long ofs;
1353         int chipnum;
1354         int ret = 0;
1355 
1356         /* ofs: offset within the first chip that the first read should start */
1357         /* 8 secsi bytes per chip */
1358         chipnum=from>>3;
1359         ofs=from & 7;
1360 
1361         while (len) {
1362                 unsigned long thislen;
1363 
1364                 if (chipnum >= cfi->numchips)
1365                         break;
1366 
1367                 if ((len + ofs -1) >> 3)
1368                         thislen = (1<<3) - ofs;
1369                 else
1370                         thislen = len;
1371 
1372                 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1373                                             thislen, buf, 0);
1374                 if (ret)
1375                         break;
1376 
1377                 *retlen += thislen;
1378                 len -= thislen;
1379                 buf += thislen;
1380 
1381                 ofs = 0;
1382                 chipnum++;
1383         }
1384         return ret;
1385 }
1386 
1387 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1388                                      unsigned long adr, map_word datum,
1389                                      int mode);
1390 
1391 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1392                         size_t len, u_char *buf, size_t grouplen)
1393 {
1394         int ret;
1395         while (len) {
1396                 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1397                 int gap = adr - bus_ofs;
1398                 int n = min_t(int, len, map_bankwidth(map) - gap);
1399                 map_word datum = map_word_ff(map);
1400 
1401                 if (n != map_bankwidth(map)) {
1402                         /* partial write of a word, load old contents */
1403                         otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1404                         datum = map_read(map, bus_ofs);
1405                         otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1406                 }
1407 
1408                 datum = map_word_load_partial(map, datum, buf, gap, n);
1409                 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1410                 if (ret)
1411                         return ret;
1412 
1413                 adr += n;
1414                 buf += n;
1415                 len -= n;
1416         }
1417 
1418         return 0;
1419 }
1420 
1421 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1422                        size_t len, u_char *buf, size_t grouplen)
1423 {
1424         struct cfi_private *cfi = map->fldrv_priv;
1425         uint8_t lockreg;
1426         unsigned long timeo;
1427         int ret;
1428 
1429         /* make sure area matches group boundaries */
1430         if ((adr != 0) || (len != grouplen))
1431                 return -EINVAL;
1432 
1433         mutex_lock(&chip->mutex);
1434         ret = get_chip(map, chip, chip->start, FL_LOCKING);
1435         if (ret) {
1436                 mutex_unlock(&chip->mutex);
1437                 return ret;
1438         }
1439         chip->state = FL_LOCKING;
1440 
1441         /* Enter lock register command */
1442         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1443                          cfi->device_type, NULL);
1444         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1445                          cfi->device_type, NULL);
1446         cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1447                          cfi->device_type, NULL);
1448 
1449         /* read lock register */
1450         lockreg = cfi_read_query(map, 0);
1451 
1452         /* set bit 0 to protect extended memory block */
1453         lockreg &= ~0x01;
1454 
1455         /* set bit 0 to protect extended memory block */
1456         /* write lock register */
1457         map_write(map, CMD(0xA0), chip->start);
1458         map_write(map, CMD(lockreg), chip->start);
1459 
1460         /* wait for chip to become ready */
1461         timeo = jiffies + msecs_to_jiffies(2);
1462         for (;;) {
1463                 if (chip_ready(map, chip, adr))
1464                         break;
1465 
1466                 if (time_after(jiffies, timeo)) {
1467                         pr_err("Waiting for chip to be ready timed out.\n");
1468                         ret = -EIO;
1469                         break;
1470                 }
1471                 UDELAY(map, chip, 0, 1);
1472         }
1473 
1474         /* exit protection commands */
1475         map_write(map, CMD(0x90), chip->start);
1476         map_write(map, CMD(0x00), chip->start);
1477 
1478         chip->state = FL_READY;
1479         put_chip(map, chip, chip->start);
1480         mutex_unlock(&chip->mutex);
1481 
1482         return ret;
1483 }
1484 
1485 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1486                                size_t *retlen, u_char *buf,
1487                                otp_op_t action, int user_regs)
1488 {
1489         struct map_info *map = mtd->priv;
1490         struct cfi_private *cfi = map->fldrv_priv;
1491         int ofs_factor = cfi->interleave * cfi->device_type;
1492         unsigned long base;
1493         int chipnum;
1494         struct flchip *chip;
1495         uint8_t otp, lockreg;
1496         int ret;
1497 
1498         size_t user_size, factory_size, otpsize;
1499         loff_t user_offset, factory_offset, otpoffset;
1500         int user_locked = 0, otplocked;
1501 
1502         *retlen = 0;
1503 
1504         for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1505                 chip = &cfi->chips[chipnum];
1506                 factory_size = 0;
1507                 user_size = 0;
1508 
1509                 /* Micron M29EW family */
1510                 if (is_m29ew(cfi)) {
1511                         base = chip->start;
1512 
1513                         /* check whether secsi area is factory locked
1514                            or user lockable */
1515                         mutex_lock(&chip->mutex);
1516                         ret = get_chip(map, chip, base, FL_CFI_QUERY);
1517                         if (ret) {
1518                                 mutex_unlock(&chip->mutex);
1519                                 return ret;
1520                         }
1521                         cfi_qry_mode_on(base, map, cfi);
1522                         otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1523                         cfi_qry_mode_off(base, map, cfi);
1524                         put_chip(map, chip, base);
1525                         mutex_unlock(&chip->mutex);
1526 
1527                         if (otp & 0x80) {
1528                                 /* factory locked */
1529                                 factory_offset = 0;
1530                                 factory_size = 0x100;
1531                         } else {
1532                                 /* customer lockable */
1533                                 user_offset = 0;
1534                                 user_size = 0x100;
1535 
1536                                 mutex_lock(&chip->mutex);
1537                                 ret = get_chip(map, chip, base, FL_LOCKING);
1538                                 if (ret) {
1539                                         mutex_unlock(&chip->mutex);
1540                                         return ret;
1541                                 }
1542 
1543                                 /* Enter lock register command */
1544                                 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1545                                                  chip->start, map, cfi,
1546                                                  cfi->device_type, NULL);
1547                                 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1548                                                  chip->start, map, cfi,
1549                                                  cfi->device_type, NULL);
1550                                 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1551                                                  chip->start, map, cfi,
1552                                                  cfi->device_type, NULL);
1553                                 /* read lock register */
1554                                 lockreg = cfi_read_query(map, 0);
1555                                 /* exit protection commands */
1556                                 map_write(map, CMD(0x90), chip->start);
1557                                 map_write(map, CMD(0x00), chip->start);
1558                                 put_chip(map, chip, chip->start);
1559                                 mutex_unlock(&chip->mutex);
1560 
1561                                 user_locked = ((lockreg & 0x01) == 0x00);
1562                         }
1563                 }
1564 
1565                 otpsize = user_regs ? user_size : factory_size;
1566                 if (!otpsize)
1567                         continue;
1568                 otpoffset = user_regs ? user_offset : factory_offset;
1569                 otplocked = user_regs ? user_locked : 1;
1570 
1571                 if (!action) {
1572                         /* return otpinfo */
1573                         struct otp_info *otpinfo;
1574                         len -= sizeof(*otpinfo);
1575                         if (len <= 0)
1576                                 return -ENOSPC;
1577                         otpinfo = (struct otp_info *)buf;
1578                         otpinfo->start = from;
1579                         otpinfo->length = otpsize;
1580                         otpinfo->locked = otplocked;
1581                         buf += sizeof(*otpinfo);
1582                         *retlen += sizeof(*otpinfo);
1583                         from += otpsize;
1584                 } else if ((from < otpsize) && (len > 0)) {
1585                         size_t size;
1586                         size = (len < otpsize - from) ? len : otpsize - from;
1587                         ret = action(map, chip, otpoffset + from, size, buf,
1588                                      otpsize);
1589                         if (ret < 0)
1590                                 return ret;
1591 
1592                         buf += size;
1593                         len -= size;
1594                         *retlen += size;
1595                         from = 0;
1596                 } else {
1597                         from -= otpsize;
1598                 }
1599         }
1600         return 0;
1601 }
1602 
1603 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1604                                          size_t *retlen, struct otp_info *buf)
1605 {
1606         return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1607                                    NULL, 0);
1608 }
1609 
1610 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1611                                          size_t *retlen, struct otp_info *buf)
1612 {
1613         return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1614                                    NULL, 1);
1615 }
1616 
1617 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1618                                          size_t len, size_t *retlen,
1619                                          u_char *buf)
1620 {
1621         return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1622                                    buf, do_read_secsi_onechip, 0);
1623 }
1624 
1625 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1626                                          size_t len, size_t *retlen,
1627                                          u_char *buf)
1628 {
1629         return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1630                                    buf, do_read_secsi_onechip, 1);
1631 }
1632 
1633 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1634                                           size_t len, size_t *retlen,
1635                                           u_char *buf)
1636 {
1637         return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1638                                    do_otp_write, 1);
1639 }
1640 
1641 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1642                                          size_t len)
1643 {
1644         size_t retlen;
1645         return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1646                                    do_otp_lock, 1);
1647 }
1648 
1649 static int __xipram do_write_oneword_once(struct map_info *map,
1650                                           struct flchip *chip,
1651                                           unsigned long adr, map_word datum,
1652                                           int mode, struct cfi_private *cfi)
1653 {
1654         unsigned long timeo = jiffies + HZ;
1655         /*
1656          * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1657          * have a max write time of a few hundreds usec). However, we should
1658          * use the maximum timeout value given by the chip at probe time
1659          * instead.  Unfortunately, struct flchip does have a field for
1660          * maximum timeout, only for typical which can be far too short
1661          * depending of the conditions.  The ' + 1' is to avoid having a
1662          * timeout of 0 jiffies if HZ is smaller than 1000.
1663          */
1664         unsigned long uWriteTimeout = (HZ / 1000) + 1;
1665         int ret = 0;
1666 
1667         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1668         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1669         cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1670         map_write(map, datum, adr);
1671         chip->state = mode;
1672 
1673         INVALIDATE_CACHE_UDELAY(map, chip,
1674                                 adr, map_bankwidth(map),
1675                                 chip->word_write_time);
1676 
1677         /* See comment above for timeout value. */
1678         timeo = jiffies + uWriteTimeout;
1679         for (;;) {
1680                 if (chip->state != mode) {
1681                         /* Someone's suspended the write. Sleep */
1682                         DECLARE_WAITQUEUE(wait, current);
1683 
1684                         set_current_state(TASK_UNINTERRUPTIBLE);
1685                         add_wait_queue(&chip->wq, &wait);
1686                         mutex_unlock(&chip->mutex);
1687                         schedule();
1688                         remove_wait_queue(&chip->wq, &wait);
1689                         timeo = jiffies + (HZ / 2); /* FIXME */
1690                         mutex_lock(&chip->mutex);
1691                         continue;
1692                 }
1693 
1694                 /*
1695                  * We check "time_after" and "!chip_good" before checking
1696                  * "chip_good" to avoid the failure due to scheduling.
1697                  */
1698                 if (time_after(jiffies, timeo) &&
1699                     !chip_good(map, chip, adr, datum)) {
1700                         xip_enable(map, chip, adr);
1701                         printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1702                         xip_disable(map, chip, adr);
1703                         ret = -EIO;
1704                         break;
1705                 }
1706 
1707                 if (chip_good(map, chip, adr, datum)) {
1708                         if (cfi_check_err_status(map, chip, adr))
1709                                 ret = -EIO;
1710                         break;
1711                 }
1712 
1713                 /* Latency issues. Drop the lock, wait a while and retry */
1714                 UDELAY(map, chip, adr, 1);
1715         }
1716 
1717         return ret;
1718 }
1719 
1720 static int __xipram do_write_oneword_start(struct map_info *map,
1721                                            struct flchip *chip,
1722                                            unsigned long adr, int mode)
1723 {
1724         int ret = 0;
1725 
1726         mutex_lock(&chip->mutex);
1727 
1728         ret = get_chip(map, chip, adr, mode);
1729         if (ret) {
1730                 mutex_unlock(&chip->mutex);
1731                 return ret;
1732         }
1733 
1734         if (mode == FL_OTP_WRITE)
1735                 otp_enter(map, chip, adr, map_bankwidth(map));
1736 
1737         return ret;
1738 }
1739 
1740 static void __xipram do_write_oneword_done(struct map_info *map,
1741                                            struct flchip *chip,
1742                                            unsigned long adr, int mode)
1743 {
1744         if (mode == FL_OTP_WRITE)
1745                 otp_exit(map, chip, adr, map_bankwidth(map));
1746 
1747         chip->state = FL_READY;
1748         DISABLE_VPP(map);
1749         put_chip(map, chip, adr);
1750 
1751         mutex_unlock(&chip->mutex);
1752 }
1753 
1754 static int __xipram do_write_oneword_retry(struct map_info *map,
1755                                            struct flchip *chip,
1756                                            unsigned long adr, map_word datum,
1757                                            int mode)
1758 {
1759         struct cfi_private *cfi = map->fldrv_priv;
1760         int ret = 0;
1761         map_word oldd;
1762         int retry_cnt = 0;
1763 
1764         /*
1765          * Check for a NOP for the case when the datum to write is already
1766          * present - it saves time and works around buggy chips that corrupt
1767          * data at other locations when 0xff is written to a location that
1768          * already contains 0xff.
1769          */
1770         oldd = map_read(map, adr);
1771         if (map_word_equal(map, oldd, datum)) {
1772                 pr_debug("MTD %s(): NOP\n", __func__);
1773                 return ret;
1774         }
1775 
1776         XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1777         ENABLE_VPP(map);
1778         xip_disable(map, chip, adr);
1779 
1780  retry:
1781         ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1782         if (ret) {
1783                 /* reset on all failures. */
1784                 map_write(map, CMD(0xF0), chip->start);
1785                 /* FIXME - should have reset delay before continuing */
1786 
1787                 if (++retry_cnt <= MAX_RETRIES) {
1788                         ret = 0;
1789                         goto retry;
1790                 }
1791         }
1792         xip_enable(map, chip, adr);
1793 
1794         return ret;
1795 }
1796 
1797 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1798                                      unsigned long adr, map_word datum,
1799                                      int mode)
1800 {
1801         int ret = 0;
1802 
1803         adr += chip->start;
1804 
1805         pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1806                  datum.x[0]);
1807 
1808         ret = do_write_oneword_start(map, chip, adr, mode);
1809         if (ret)
1810                 return ret;
1811 
1812         ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1813 
1814         do_write_oneword_done(map, chip, adr, mode);
1815 
1816         return ret;
1817 }
1818 
1819 
1820 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1821                                   size_t *retlen, const u_char *buf)
1822 {
1823         struct map_info *map = mtd->priv;
1824         struct cfi_private *cfi = map->fldrv_priv;
1825         int ret = 0;
1826         int chipnum;
1827         unsigned long ofs, chipstart;
1828         DECLARE_WAITQUEUE(wait, current);
1829 
1830         chipnum = to >> cfi->chipshift;
1831         ofs = to  - (chipnum << cfi->chipshift);
1832         chipstart = cfi->chips[chipnum].start;
1833 
1834         /* If it's not bus-aligned, do the first byte write */
1835         if (ofs & (map_bankwidth(map)-1)) {
1836                 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1837                 int i = ofs - bus_ofs;
1838                 int n = 0;
1839                 map_word tmp_buf;
1840 
1841  retry:
1842                 mutex_lock(&cfi->chips[chipnum].mutex);
1843 
1844                 if (cfi->chips[chipnum].state != FL_READY) {
1845                         set_current_state(TASK_UNINTERRUPTIBLE);
1846                         add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1847 
1848                         mutex_unlock(&cfi->chips[chipnum].mutex);
1849 
1850                         schedule();
1851                         remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1852                         goto retry;
1853                 }
1854 
1855                 /* Load 'tmp_buf' with old contents of flash */
1856                 tmp_buf = map_read(map, bus_ofs+chipstart);
1857 
1858                 mutex_unlock(&cfi->chips[chipnum].mutex);
1859 
1860                 /* Number of bytes to copy from buffer */
1861                 n = min_t(int, len, map_bankwidth(map)-i);
1862 
1863                 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1864 
1865                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1866                                        bus_ofs, tmp_buf, FL_WRITING);
1867                 if (ret)
1868                         return ret;
1869 
1870                 ofs += n;
1871                 buf += n;
1872                 (*retlen) += n;
1873                 len -= n;
1874 
1875                 if (ofs >> cfi->chipshift) {
1876                         chipnum ++;
1877                         ofs = 0;
1878                         if (chipnum == cfi->numchips)
1879                                 return 0;
1880                 }
1881         }
1882 
1883         /* We are now aligned, write as much as possible */
1884         while(len >= map_bankwidth(map)) {
1885                 map_word datum;
1886 
1887                 datum = map_word_load(map, buf);
1888 
1889                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1890                                        ofs, datum, FL_WRITING);
1891                 if (ret)
1892                         return ret;
1893 
1894                 ofs += map_bankwidth(map);
1895                 buf += map_bankwidth(map);
1896                 (*retlen) += map_bankwidth(map);
1897                 len -= map_bankwidth(map);
1898 
1899                 if (ofs >> cfi->chipshift) {
1900                         chipnum ++;
1901                         ofs = 0;
1902                         if (chipnum == cfi->numchips)
1903                                 return 0;
1904                         chipstart = cfi->chips[chipnum].start;
1905                 }
1906         }
1907 
1908         /* Write the trailing bytes if any */
1909         if (len & (map_bankwidth(map)-1)) {
1910                 map_word tmp_buf;
1911 
1912  retry1:
1913                 mutex_lock(&cfi->chips[chipnum].mutex);
1914 
1915                 if (cfi->chips[chipnum].state != FL_READY) {
1916                         set_current_state(TASK_UNINTERRUPTIBLE);
1917                         add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1918 
1919                         mutex_unlock(&cfi->chips[chipnum].mutex);
1920 
1921                         schedule();
1922                         remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1923                         goto retry1;
1924                 }
1925 
1926                 tmp_buf = map_read(map, ofs + chipstart);
1927 
1928                 mutex_unlock(&cfi->chips[chipnum].mutex);
1929 
1930                 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1931 
1932                 ret = do_write_oneword(map, &cfi->chips[chipnum],
1933                                        ofs, tmp_buf, FL_WRITING);
1934                 if (ret)
1935                         return ret;
1936 
1937                 (*retlen) += len;
1938         }
1939 
1940         return 0;
1941 }
1942 
1943 #if !FORCE_WORD_WRITE
1944 static int __xipram do_write_buffer_wait(struct map_info *map,
1945                                          struct flchip *chip, unsigned long adr,
1946                                          map_word datum)
1947 {
1948         unsigned long timeo;
1949         unsigned long u_write_timeout;
1950         int ret = 0;
1951 
1952         /*
1953          * Timeout is calculated according to CFI data, if available.
1954          * See more comments in cfi_cmdset_0002().
1955          */
1956         u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1957         timeo = jiffies + u_write_timeout;
1958 
1959         for (;;) {
1960                 if (chip->state != FL_WRITING) {
1961                         /* Someone's suspended the write. Sleep */
1962                         DECLARE_WAITQUEUE(wait, current);
1963 
1964                         set_current_state(TASK_UNINTERRUPTIBLE);
1965                         add_wait_queue(&chip->wq, &wait);
1966                         mutex_unlock(&chip->mutex);
1967                         schedule();
1968                         remove_wait_queue(&chip->wq, &wait);
1969                         timeo = jiffies + (HZ / 2); /* FIXME */
1970                         mutex_lock(&chip->mutex);
1971                         continue;
1972                 }
1973 
1974                 /*
1975                  * We check "time_after" and "!chip_good" before checking
1976                  * "chip_good" to avoid the failure due to scheduling.
1977                  */
1978                 if (time_after(jiffies, timeo) &&
1979                     !chip_good(map, chip, adr, datum)) {
1980                         pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1981                                __func__, adr);
1982                         ret = -EIO;
1983                         break;
1984                 }
1985 
1986                 if (chip_good(map, chip, adr, datum)) {
1987                         if (cfi_check_err_status(map, chip, adr))
1988                                 ret = -EIO;
1989                         break;
1990                 }
1991 
1992                 /* Latency issues. Drop the lock, wait a while and retry */
1993                 UDELAY(map, chip, adr, 1);
1994         }
1995 
1996         return ret;
1997 }
1998 
1999 static void __xipram do_write_buffer_reset(struct map_info *map,
2000                                            struct flchip *chip,
2001                                            struct cfi_private *cfi)
2002 {
2003         /*
2004          * Recovery from write-buffer programming failures requires
2005          * the write-to-buffer-reset sequence.  Since the last part
2006          * of the sequence also works as a normal reset, we can run
2007          * the same commands regardless of why we are here.
2008          * See e.g.
2009          * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2010          */
2011         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2012                          cfi->device_type, NULL);
2013         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2014                          cfi->device_type, NULL);
2015         cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2016                          cfi->device_type, NULL);
2017 
2018         /* FIXME - should have reset delay before continuing */
2019 }
2020 
2021 /*
2022  * FIXME: interleaved mode not tested, and probably not supported!
2023  */
2024 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2025                                     unsigned long adr, const u_char *buf,
2026                                     int len)
2027 {
2028         struct cfi_private *cfi = map->fldrv_priv;
2029         int ret = -EIO;
2030         unsigned long cmd_adr;
2031         int z, words;
2032         map_word datum;
2033 
2034         adr += chip->start;
2035         cmd_adr = adr;
2036 
2037         mutex_lock(&chip->mutex);
2038         ret = get_chip(map, chip, adr, FL_WRITING);
2039         if (ret) {
2040                 mutex_unlock(&chip->mutex);
2041                 return ret;
2042         }
2043 
2044         datum = map_word_load(map, buf);
2045 
2046         pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2047                  __func__, adr, datum.x[0]);
2048 
2049         XIP_INVAL_CACHED_RANGE(map, adr, len);
2050         ENABLE_VPP(map);
2051         xip_disable(map, chip, cmd_adr);
2052 
2053         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2054         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2055 
2056         /* Write Buffer Load */
2057         map_write(map, CMD(0x25), cmd_adr);
2058 
2059         chip->state = FL_WRITING_TO_BUFFER;
2060 
2061         /* Write length of data to come */
2062         words = len / map_bankwidth(map);
2063         map_write(map, CMD(words - 1), cmd_adr);
2064         /* Write data */
2065         z = 0;
2066         while(z < words * map_bankwidth(map)) {
2067                 datum = map_word_load(map, buf);
2068                 map_write(map, datum, adr + z);
2069 
2070                 z += map_bankwidth(map);
2071                 buf += map_bankwidth(map);
2072         }
2073         z -= map_bankwidth(map);
2074 
2075         adr += z;
2076 
2077         /* Write Buffer Program Confirm: GO GO GO */
2078         map_write(map, CMD(0x29), cmd_adr);
2079         chip->state = FL_WRITING;
2080 
2081         INVALIDATE_CACHE_UDELAY(map, chip,
2082                                 adr, map_bankwidth(map),
2083                                 chip->word_write_time);
2084 
2085         ret = do_write_buffer_wait(map, chip, adr, datum);
2086         if (ret)
2087                 do_write_buffer_reset(map, chip, cfi);
2088 
2089         xip_enable(map, chip, adr);
2090 
2091         chip->state = FL_READY;
2092         DISABLE_VPP(map);
2093         put_chip(map, chip, adr);
2094         mutex_unlock(&chip->mutex);
2095 
2096         return ret;
2097 }
2098 
2099 
2100 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2101                                     size_t *retlen, const u_char *buf)
2102 {
2103         struct map_info *map = mtd->priv;
2104         struct cfi_private *cfi = map->fldrv_priv;
2105         int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2106         int ret = 0;
2107         int chipnum;
2108         unsigned long ofs;
2109 
2110         chipnum = to >> cfi->chipshift;
2111         ofs = to  - (chipnum << cfi->chipshift);
2112 
2113         /* If it's not bus-aligned, do the first word write */
2114         if (ofs & (map_bankwidth(map)-1)) {
2115                 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2116                 if (local_len > len)
2117                         local_len = len;
2118                 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2119                                              local_len, retlen, buf);
2120                 if (ret)
2121                         return ret;
2122                 ofs += local_len;
2123                 buf += local_len;
2124                 len -= local_len;
2125 
2126                 if (ofs >> cfi->chipshift) {
2127                         chipnum ++;
2128                         ofs = 0;
2129                         if (chipnum == cfi->numchips)
2130                                 return 0;
2131                 }
2132         }
2133 
2134         /* Write buffer is worth it only if more than one word to write... */
2135         while (len >= map_bankwidth(map) * 2) {
2136                 /* We must not cross write block boundaries */
2137                 int size = wbufsize - (ofs & (wbufsize-1));
2138 
2139                 if (size > len)
2140                         size = len;
2141                 if (size % map_bankwidth(map))
2142                         size -= size % map_bankwidth(map);
2143 
2144                 ret = do_write_buffer(map, &cfi->chips[chipnum],
2145                                       ofs, buf, size);
2146                 if (ret)
2147                         return ret;
2148 
2149                 ofs += size;
2150                 buf += size;
2151                 (*retlen) += size;
2152                 len -= size;
2153 
2154                 if (ofs >> cfi->chipshift) {
2155                         chipnum ++;
2156                         ofs = 0;
2157                         if (chipnum == cfi->numchips)
2158                                 return 0;
2159                 }
2160         }
2161 
2162         if (len) {
2163                 size_t retlen_dregs = 0;
2164 
2165                 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2166                                              len, &retlen_dregs, buf);
2167 
2168                 *retlen += retlen_dregs;
2169                 return ret;
2170         }
2171 
2172         return 0;
2173 }
2174 #endif /* !FORCE_WORD_WRITE */
2175 
2176 /*
2177  * Wait for the flash chip to become ready to write data
2178  *
2179  * This is only called during the panic_write() path. When panic_write()
2180  * is called, the kernel is in the process of a panic, and will soon be
2181  * dead. Therefore we don't take any locks, and attempt to get access
2182  * to the chip as soon as possible.
2183  */
2184 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2185                                  unsigned long adr)
2186 {
2187         struct cfi_private *cfi = map->fldrv_priv;
2188         int retries = 10;
2189         int i;
2190 
2191         /*
2192          * If the driver thinks the chip is idle, and no toggle bits
2193          * are changing, then the chip is actually idle for sure.
2194          */
2195         if (chip->state == FL_READY && chip_ready(map, chip, adr))
2196                 return 0;
2197 
2198         /*
2199          * Try several times to reset the chip and then wait for it
2200          * to become idle. The upper limit of a few milliseconds of
2201          * delay isn't a big problem: the kernel is dying anyway. It
2202          * is more important to save the messages.
2203          */
2204         while (retries > 0) {
2205                 const unsigned long timeo = (HZ / 1000) + 1;
2206 
2207                 /* send the reset command */
2208                 map_write(map, CMD(0xF0), chip->start);
2209 
2210                 /* wait for the chip to become ready */
2211                 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2212                         if (chip_ready(map, chip, adr))
2213                                 return 0;
2214 
2215                         udelay(1);
2216                 }
2217 
2218                 retries--;
2219         }
2220 
2221         /* the chip never became ready */
2222         return -EBUSY;
2223 }
2224 
2225 /*
2226  * Write out one word of data to a single flash chip during a kernel panic
2227  *
2228  * This is only called during the panic_write() path. When panic_write()
2229  * is called, the kernel is in the process of a panic, and will soon be
2230  * dead. Therefore we don't take any locks, and attempt to get access
2231  * to the chip as soon as possible.
2232  *
2233  * The implementation of this routine is intentionally similar to
2234  * do_write_oneword(), in order to ease code maintenance.
2235  */
2236 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2237                                   unsigned long adr, map_word datum)
2238 {
2239         const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2240         struct cfi_private *cfi = map->fldrv_priv;
2241         int retry_cnt = 0;
2242         map_word oldd;
2243         int ret = 0;
2244         int i;
2245 
2246         adr += chip->start;
2247 
2248         ret = cfi_amdstd_panic_wait(map, chip, adr);
2249         if (ret)
2250                 return ret;
2251 
2252         pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2253                         __func__, adr, datum.x[0]);
2254 
2255         /*
2256          * Check for a NOP for the case when the datum to write is already
2257          * present - it saves time and works around buggy chips that corrupt
2258          * data at other locations when 0xff is written to a location that
2259          * already contains 0xff.
2260          */
2261         oldd = map_read(map, adr);
2262         if (map_word_equal(map, oldd, datum)) {
2263                 pr_debug("MTD %s(): NOP\n", __func__);
2264                 goto op_done;
2265         }
2266 
2267         ENABLE_VPP(map);
2268 
2269 retry:
2270         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2272         cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2273         map_write(map, datum, adr);
2274 
2275         for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2276                 if (chip_ready(map, chip, adr))
2277                         break;
2278 
2279                 udelay(1);
2280         }
2281 
2282         if (!chip_good(map, chip, adr, datum) ||
2283             cfi_check_err_status(map, chip, adr)) {
2284                 /* reset on all failures. */
2285                 map_write(map, CMD(0xF0), chip->start);
2286                 /* FIXME - should have reset delay before continuing */
2287 
2288                 if (++retry_cnt <= MAX_RETRIES)
2289                         goto retry;
2290 
2291                 ret = -EIO;
2292         }
2293 
2294 op_done:
2295         DISABLE_VPP(map);
2296         return ret;
2297 }
2298 
2299 /*
2300  * Write out some data during a kernel panic
2301  *
2302  * This is used by the mtdoops driver to save the dying messages from a
2303  * kernel which has panic'd.
2304  *
2305  * This routine ignores all of the locking used throughout the rest of the
2306  * driver, in order to ensure that the data gets written out no matter what
2307  * state this driver (and the flash chip itself) was in when the kernel crashed.
2308  *
2309  * The implementation of this routine is intentionally similar to
2310  * cfi_amdstd_write_words(), in order to ease code maintenance.
2311  */
2312 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2313                                   size_t *retlen, const u_char *buf)
2314 {
2315         struct map_info *map = mtd->priv;
2316         struct cfi_private *cfi = map->fldrv_priv;
2317         unsigned long ofs, chipstart;
2318         int ret = 0;
2319         int chipnum;
2320 
2321         chipnum = to >> cfi->chipshift;
2322         ofs = to - (chipnum << cfi->chipshift);
2323         chipstart = cfi->chips[chipnum].start;
2324 
2325         /* If it's not bus aligned, do the first byte write */
2326         if (ofs & (map_bankwidth(map) - 1)) {
2327                 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2328                 int i = ofs - bus_ofs;
2329                 int n = 0;
2330                 map_word tmp_buf;
2331 
2332                 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2333                 if (ret)
2334                         return ret;
2335 
2336                 /* Load 'tmp_buf' with old contents of flash */
2337                 tmp_buf = map_read(map, bus_ofs + chipstart);
2338 
2339                 /* Number of bytes to copy from buffer */
2340                 n = min_t(int, len, map_bankwidth(map) - i);
2341 
2342                 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2343 
2344                 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2345                                              bus_ofs, tmp_buf);
2346                 if (ret)
2347                         return ret;
2348 
2349                 ofs += n;
2350                 buf += n;
2351                 (*retlen) += n;
2352                 len -= n;
2353 
2354                 if (ofs >> cfi->chipshift) {
2355                         chipnum++;
2356                         ofs = 0;
2357                         if (chipnum == cfi->numchips)
2358                                 return 0;
2359                 }
2360         }
2361 
2362         /* We are now aligned, write as much as possible */
2363         while (len >= map_bankwidth(map)) {
2364                 map_word datum;
2365 
2366                 datum = map_word_load(map, buf);
2367 
2368                 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2369                                              ofs, datum);
2370                 if (ret)
2371                         return ret;
2372 
2373                 ofs += map_bankwidth(map);
2374                 buf += map_bankwidth(map);
2375                 (*retlen) += map_bankwidth(map);
2376                 len -= map_bankwidth(map);
2377 
2378                 if (ofs >> cfi->chipshift) {
2379                         chipnum++;
2380                         ofs = 0;
2381                         if (chipnum == cfi->numchips)
2382                                 return 0;
2383 
2384                         chipstart = cfi->chips[chipnum].start;
2385                 }
2386         }
2387 
2388         /* Write the trailing bytes if any */
2389         if (len & (map_bankwidth(map) - 1)) {
2390                 map_word tmp_buf;
2391 
2392                 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2393                 if (ret)
2394                         return ret;
2395 
2396                 tmp_buf = map_read(map, ofs + chipstart);
2397 
2398                 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2399 
2400                 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2401                                              ofs, tmp_buf);
2402                 if (ret)
2403                         return ret;
2404 
2405                 (*retlen) += len;
2406         }
2407 
2408         return 0;
2409 }
2410 
2411 
2412 /*
2413  * Handle devices with one erase region, that only implement
2414  * the chip erase command.
2415  */
2416 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2417 {
2418         struct cfi_private *cfi = map->fldrv_priv;
2419         unsigned long timeo = jiffies + HZ;
2420         unsigned long int adr;
2421         DECLARE_WAITQUEUE(wait, current);
2422         int ret = 0;
2423         int retry_cnt = 0;
2424 
2425         adr = cfi->addr_unlock1;
2426 
2427         mutex_lock(&chip->mutex);
2428         ret = get_chip(map, chip, adr, FL_ERASING);
2429         if (ret) {
2430                 mutex_unlock(&chip->mutex);
2431                 return ret;
2432         }
2433 
2434         pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2435                __func__, chip->start);
2436 
2437         XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2438         ENABLE_VPP(map);
2439         xip_disable(map, chip, adr);
2440 
2441  retry:
2442         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2443         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2444         cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2445         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2446         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2447         cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2448 
2449         chip->state = FL_ERASING;
2450         chip->erase_suspended = 0;
2451         chip->in_progress_block_addr = adr;
2452         chip->in_progress_block_mask = ~(map->size - 1);
2453 
2454         INVALIDATE_CACHE_UDELAY(map, chip,
2455                                 adr, map->size,
2456                                 chip->erase_time*500);
2457 
2458         timeo = jiffies + (HZ*20);
2459 
2460         for (;;) {
2461                 if (chip->state != FL_ERASING) {
2462                         /* Someone's suspended the erase. Sleep */
2463                         set_current_state(TASK_UNINTERRUPTIBLE);
2464                         add_wait_queue(&chip->wq, &wait);
2465                         mutex_unlock(&chip->mutex);
2466                         schedule();
2467                         remove_wait_queue(&chip->wq, &wait);
2468                         mutex_lock(&chip->mutex);
2469                         continue;
2470                 }
2471                 if (chip->erase_suspended) {
2472                         /* This erase was suspended and resumed.
2473                            Adjust the timeout */
2474                         timeo = jiffies + (HZ*20); /* FIXME */
2475                         chip->erase_suspended = 0;
2476                 }
2477 
2478                 if (chip_good(map, chip, adr, map_word_ff(map))) {
2479                         if (cfi_check_err_status(map, chip, adr))
2480                                 ret = -EIO;
2481                         break;
2482                 }
2483 
2484                 if (time_after(jiffies, timeo)) {
2485                         printk(KERN_WARNING "MTD %s(): software timeout\n",
2486                                __func__);
2487                         ret = -EIO;
2488                         break;
2489                 }
2490 
2491                 /* Latency issues. Drop the lock, wait a while and retry */
2492                 UDELAY(map, chip, adr, 1000000/HZ);
2493         }
2494         /* Did we succeed? */
2495         if (ret) {
2496                 /* reset on all failures. */
2497                 map_write(map, CMD(0xF0), chip->start);
2498                 /* FIXME - should have reset delay before continuing */
2499 
2500                 if (++retry_cnt <= MAX_RETRIES) {
2501                         ret = 0;
2502                         goto retry;
2503                 }
2504         }
2505 
2506         chip->state = FL_READY;
2507         xip_enable(map, chip, adr);
2508         DISABLE_VPP(map);
2509         put_chip(map, chip, adr);
2510         mutex_unlock(&chip->mutex);
2511 
2512         return ret;
2513 }
2514 
2515 
2516 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2517 {
2518         struct cfi_private *cfi = map->fldrv_priv;
2519         unsigned long timeo = jiffies + HZ;
2520         DECLARE_WAITQUEUE(wait, current);
2521         int ret = 0;
2522         int retry_cnt = 0;
2523 
2524         adr += chip->start;
2525 
2526         mutex_lock(&chip->mutex);
2527         ret = get_chip(map, chip, adr, FL_ERASING);
2528         if (ret) {
2529                 mutex_unlock(&chip->mutex);
2530                 return ret;
2531         }
2532 
2533         pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2534                  __func__, adr);
2535 
2536         XIP_INVAL_CACHED_RANGE(map, adr, len);
2537         ENABLE_VPP(map);
2538         xip_disable(map, chip, adr);
2539 
2540  retry:
2541         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2543         cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2544         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2545         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2546         map_write(map, cfi->sector_erase_cmd, adr);
2547 
2548         chip->state = FL_ERASING;
2549         chip->erase_suspended = 0;
2550         chip->in_progress_block_addr = adr;
2551         chip->in_progress_block_mask = ~(len - 1);
2552 
2553         INVALIDATE_CACHE_UDELAY(map, chip,
2554                                 adr, len,
2555                                 chip->erase_time*500);
2556 
2557         timeo = jiffies + (HZ*20);
2558 
2559         for (;;) {
2560                 if (chip->state != FL_ERASING) {
2561                         /* Someone's suspended the erase. Sleep */
2562                         set_current_state(TASK_UNINTERRUPTIBLE);
2563                         add_wait_queue(&chip->wq, &wait);
2564                         mutex_unlock(&chip->mutex);
2565                         schedule();
2566                         remove_wait_queue(&chip->wq, &wait);
2567                         mutex_lock(&chip->mutex);
2568                         continue;
2569                 }
2570                 if (chip->erase_suspended) {
2571                         /* This erase was suspended and resumed.
2572                            Adjust the timeout */
2573                         timeo = jiffies + (HZ*20); /* FIXME */
2574                         chip->erase_suspended = 0;
2575                 }
2576 
2577                 if (chip_good(map, chip, adr, map_word_ff(map))) {
2578                         if (cfi_check_err_status(map, chip, adr))
2579                                 ret = -EIO;
2580                         break;
2581                 }
2582 
2583                 if (time_after(jiffies, timeo)) {
2584                         printk(KERN_WARNING "MTD %s(): software timeout\n",
2585                                __func__);
2586                         ret = -EIO;
2587                         break;
2588                 }
2589 
2590                 /* Latency issues. Drop the lock, wait a while and retry */
2591                 UDELAY(map, chip, adr, 1000000/HZ);
2592         }
2593         /* Did we succeed? */
2594         if (ret) {
2595                 /* reset on all failures. */
2596                 map_write(map, CMD(0xF0), chip->start);
2597                 /* FIXME - should have reset delay before continuing */
2598 
2599                 if (++retry_cnt <= MAX_RETRIES) {
2600                         ret = 0;
2601                         goto retry;
2602                 }
2603         }
2604 
2605         chip->state = FL_READY;
2606         xip_enable(map, chip, adr);
2607         DISABLE_VPP(map);
2608         put_chip(map, chip, adr);
2609         mutex_unlock(&chip->mutex);
2610         return ret;
2611 }
2612 
2613 
2614 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2615 {
2616         return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2617                                 instr->len, NULL);
2618 }
2619 
2620 
2621 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2622 {
2623         struct map_info *map = mtd->priv;
2624         struct cfi_private *cfi = map->fldrv_priv;
2625 
2626         if (instr->addr != 0)
2627                 return -EINVAL;
2628 
2629         if (instr->len != mtd->size)
2630                 return -EINVAL;
2631 
2632         return do_erase_chip(map, &cfi->chips[0]);
2633 }
2634 
2635 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2636                          unsigned long adr, int len, void *thunk)
2637 {
2638         struct cfi_private *cfi = map->fldrv_priv;
2639         int ret;
2640 
2641         mutex_lock(&chip->mutex);
2642         ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2643         if (ret)
2644                 goto out_unlock;
2645         chip->state = FL_LOCKING;
2646 
2647         pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2648 
2649         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2650                          cfi->device_type, NULL);
2651         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2652                          cfi->device_type, NULL);
2653         cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2654                          cfi->device_type, NULL);
2655         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2656                          cfi->device_type, NULL);
2657         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2658                          cfi->device_type, NULL);
2659         map_write(map, CMD(0x40), chip->start + adr);
2660 
2661         chip->state = FL_READY;
2662         put_chip(map, chip, adr + chip->start);
2663         ret = 0;
2664 
2665 out_unlock:
2666         mutex_unlock(&chip->mutex);
2667         return ret;
2668 }
2669 
2670 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2671                            unsigned long adr, int len, void *thunk)
2672 {
2673         struct cfi_private *cfi = map->fldrv_priv;
2674         int ret;
2675 
2676         mutex_lock(&chip->mutex);
2677         ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2678         if (ret)
2679                 goto out_unlock;
2680         chip->state = FL_UNLOCKING;
2681 
2682         pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2683 
2684         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2685                          cfi->device_type, NULL);
2686         map_write(map, CMD(0x70), adr);
2687 
2688         chip->state = FL_READY;
2689         put_chip(map, chip, adr + chip->start);
2690         ret = 0;
2691 
2692 out_unlock:
2693         mutex_unlock(&chip->mutex);
2694         return ret;
2695 }
2696 
2697 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2698 {
2699         return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2700 }
2701 
2702 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2703 {
2704         return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2705 }
2706 
2707 /*
2708  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2709  */
2710 
2711 struct ppb_lock {
2712         struct flchip *chip;
2713         unsigned long adr;
2714         int locked;
2715 };
2716 
2717 #define DO_XXLOCK_ONEBLOCK_LOCK         ((void *)1)
2718 #define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *)2)
2719 #define DO_XXLOCK_ONEBLOCK_GETLOCK      ((void *)3)
2720 
2721 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2722                                         struct flchip *chip,
2723                                         unsigned long adr, int len, void *thunk)
2724 {
2725         struct cfi_private *cfi = map->fldrv_priv;
2726         unsigned long timeo;
2727         int ret;
2728 
2729         adr += chip->start;
2730         mutex_lock(&chip->mutex);
2731         ret = get_chip(map, chip, adr, FL_LOCKING);
2732         if (ret) {
2733                 mutex_unlock(&chip->mutex);
2734                 return ret;
2735         }
2736 
2737         pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2738 
2739         cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2740                          cfi->device_type, NULL);
2741         cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2742                          cfi->device_type, NULL);
2743         /* PPB entry command */
2744         cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2745                          cfi->device_type, NULL);
2746 
2747         if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2748                 chip->state = FL_LOCKING;
2749                 map_write(map, CMD(0xA0), adr);
2750                 map_write(map, CMD(0x00), adr);
2751         } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2752                 /*
2753                  * Unlocking of one specific sector is not supported, so we
2754                  * have to unlock all sectors of this device instead
2755                  */
2756                 chip->state = FL_UNLOCKING;
2757                 map_write(map, CMD(0x80), chip->start);
2758                 map_write(map, CMD(0x30), chip->start);
2759         } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2760                 chip->state = FL_JEDEC_QUERY;
2761                 /* Return locked status: 0->locked, 1->unlocked */
2762                 ret = !cfi_read_query(map, adr);
2763         } else
2764                 BUG();
2765 
2766         /*
2767          * Wait for some time as unlocking of all sectors takes quite long
2768          */
2769         timeo = jiffies + msecs_to_jiffies(2000);       /* 2s max (un)locking */
2770         for (;;) {
2771                 if (chip_ready(map, chip, adr))
2772                         break;
2773 
2774                 if (time_after(jiffies, timeo)) {
2775                         printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2776                         ret = -EIO;
2777                         break;
2778                 }
2779 
2780                 UDELAY(map, chip, adr, 1);
2781         }
2782 
2783         /* Exit BC commands */
2784         map_write(map, CMD(0x90), chip->start);
2785         map_write(map, CMD(0x00), chip->start);
2786 
2787         chip->state = FL_READY;
2788         put_chip(map, chip, adr);
2789         mutex_unlock(&chip->mutex);
2790 
2791         return ret;
2792 }
2793 
2794 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2795                                        uint64_t len)
2796 {
2797         return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2798                                 DO_XXLOCK_ONEBLOCK_LOCK);
2799 }
2800 
2801 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2802                                          uint64_t len)
2803 {
2804         struct mtd_erase_region_info *regions = mtd->eraseregions;
2805         struct map_info *map = mtd->priv;
2806         struct cfi_private *cfi = map->fldrv_priv;
2807         struct ppb_lock *sect;
2808         unsigned long adr;
2809         loff_t offset;
2810         uint64_t length;
2811         int chipnum;
2812         int i;
2813         int sectors;
2814         int ret;
2815         int max_sectors;
2816 
2817         /*
2818          * PPB unlocking always unlocks all sectors of the flash chip.
2819          * We need to re-lock all previously locked sectors. So lets
2820          * first check the locking status of all sectors and save
2821          * it for future use.
2822          */
2823         max_sectors = 0;
2824         for (i = 0; i < mtd->numeraseregions; i++)
2825                 max_sectors += regions[i].numblocks;
2826 
2827         sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2828         if (!sect)
2829                 return -ENOMEM;
2830 
2831         /*
2832          * This code to walk all sectors is a slightly modified version
2833          * of the cfi_varsize_frob() code.
2834          */
2835         i = 0;
2836         chipnum = 0;
2837         adr = 0;
2838         sectors = 0;
2839         offset = 0;
2840         length = mtd->size;
2841 
2842         while (length) {
2843                 int size = regions[i].erasesize;
2844 
2845                 /*
2846                  * Only test sectors that shall not be unlocked. The other
2847                  * sectors shall be unlocked, so lets keep their locking
2848                  * status at "unlocked" (locked=0) for the final re-locking.
2849                  */
2850                 if ((offset < ofs) || (offset >= (ofs + len))) {
2851                         sect[sectors].chip = &cfi->chips[chipnum];
2852                         sect[sectors].adr = adr;
2853                         sect[sectors].locked = do_ppb_xxlock(
2854                                 map, &cfi->chips[chipnum], adr, 0,
2855                                 DO_XXLOCK_ONEBLOCK_GETLOCK);
2856                 }
2857 
2858                 adr += size;
2859                 offset += size;
2860                 length -= size;
2861 
2862                 if (offset == regions[i].offset + size * regions[i].numblocks)
2863                         i++;
2864 
2865                 if (adr >> cfi->chipshift) {
2866                         if (offset >= (ofs + len))
2867                                 break;
2868                         adr = 0;
2869                         chipnum++;
2870 
2871                         if (chipnum >= cfi->numchips)
2872                                 break;
2873                 }
2874 
2875                 sectors++;
2876                 if (sectors >= max_sectors) {
2877                         printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2878                                max_sectors);
2879                         kfree(sect);
2880                         return -EINVAL;
2881                 }
2882         }
2883 
2884         /* Now unlock the whole chip */
2885         ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2886                                DO_XXLOCK_ONEBLOCK_UNLOCK);
2887         if (ret) {
2888                 kfree(sect);
2889                 return ret;
2890         }
2891 
2892         /*
2893          * PPB unlocking always unlocks all sectors of the flash chip.
2894          * We need to re-lock all previously locked sectors.
2895          */
2896         for (i = 0; i < sectors; i++) {
2897                 if (sect[i].locked)
2898                         do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2899                                       DO_XXLOCK_ONEBLOCK_LOCK);
2900         }
2901 
2902         kfree(sect);
2903         return ret;
2904 }
2905 
2906 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2907                                             uint64_t len)
2908 {
2909         return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2910                                 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2911 }
2912 
2913 static void cfi_amdstd_sync (struct mtd_info *mtd)
2914 {
2915         struct map_info *map = mtd->priv;
2916         struct cfi_private *cfi = map->fldrv_priv;
2917         int i;
2918         struct flchip *chip;
2919         int ret = 0;
2920         DECLARE_WAITQUEUE(wait, current);
2921 
2922         for (i=0; !ret && i<cfi->numchips; i++) {
2923                 chip = &cfi->chips[i];
2924 
2925         retry:
2926                 mutex_lock(&chip->mutex);
2927 
2928                 switch(chip->state) {
2929                 case FL_READY:
2930                 case FL_STATUS:
2931                 case FL_CFI_QUERY:
2932                 case FL_JEDEC_QUERY:
2933                         chip->oldstate = chip->state;
2934                         chip->state = FL_SYNCING;
2935                         /* No need to wake_up() on this state change -
2936                          * as the whole point is that nobody can do anything
2937                          * with the chip now anyway.
2938                          */
2939                         /* fall through */
2940                 case FL_SYNCING:
2941                         mutex_unlock(&chip->mutex);
2942                         break;
2943 
2944                 default:
2945                         /* Not an idle state */
2946                         set_current_state(TASK_UNINTERRUPTIBLE);
2947                         add_wait_queue(&chip->wq, &wait);
2948 
2949                         mutex_unlock(&chip->mutex);
2950 
2951                         schedule();
2952 
2953                         remove_wait_queue(&chip->wq, &wait);
2954 
2955                         goto retry;
2956                 }
2957         }
2958 
2959         /* Unlock the chips again */
2960 
2961         for (i--; i >=0; i--) {
2962                 chip = &cfi->chips[i];
2963 
2964                 mutex_lock(&chip->mutex);
2965 
2966                 if (chip->state == FL_SYNCING) {
2967                         chip->state = chip->oldstate;
2968                         wake_up(&chip->wq);
2969                 }
2970                 mutex_unlock(&chip->mutex);
2971         }
2972 }
2973 
2974 
2975 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2976 {
2977         struct map_info *map = mtd->priv;
2978         struct cfi_private *cfi = map->fldrv_priv;
2979         int i;
2980         struct flchip *chip;
2981         int ret = 0;
2982 
2983         for (i=0; !ret && i<cfi->numchips; i++) {
2984                 chip = &cfi->chips[i];
2985 
2986                 mutex_lock(&chip->mutex);
2987 
2988                 switch(chip->state) {
2989                 case FL_READY:
2990                 case FL_STATUS:
2991                 case FL_CFI_QUERY:
2992                 case FL_JEDEC_QUERY:
2993                         chip->oldstate = chip->state;
2994                         chip->state = FL_PM_SUSPENDED;
2995                         /* No need to wake_up() on this state change -
2996                          * as the whole point is that nobody can do anything
2997                          * with the chip now anyway.
2998                          */
2999                 case FL_PM_SUSPENDED:
3000                         break;
3001 
3002                 default:
3003                         ret = -EAGAIN;
3004                         break;
3005                 }
3006                 mutex_unlock(&chip->mutex);
3007         }
3008 
3009         /* Unlock the chips again */
3010 
3011         if (ret) {
3012                 for (i--; i >=0; i--) {
3013                         chip = &cfi->chips[i];
3014 
3015                         mutex_lock(&chip->mutex);
3016 
3017                         if (chip->state == FL_PM_SUSPENDED) {
3018                                 chip->state = chip->oldstate;
3019                                 wake_up(&chip->wq);
3020                         }
3021                         mutex_unlock(&chip->mutex);
3022                 }
3023         }
3024 
3025         return ret;
3026 }
3027 
3028 
3029 static void cfi_amdstd_resume(struct mtd_info *mtd)
3030 {
3031         struct map_info *map = mtd->priv;
3032         struct cfi_private *cfi = map->fldrv_priv;
3033         int i;
3034         struct flchip *chip;
3035 
3036         for (i=0; i<cfi->numchips; i++) {
3037 
3038                 chip = &cfi->chips[i];
3039 
3040                 mutex_lock(&chip->mutex);
3041 
3042                 if (chip->state == FL_PM_SUSPENDED) {
3043                         chip->state = FL_READY;
3044                         map_write(map, CMD(0xF0), chip->start);
3045                         wake_up(&chip->wq);
3046                 }
3047                 else
3048                         printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3049 
3050                 mutex_unlock(&chip->mutex);
3051         }
3052 }
3053 
3054 
3055 /*
3056  * Ensure that the flash device is put back into read array mode before
3057  * unloading the driver or rebooting.  On some systems, rebooting while
3058  * the flash is in query/program/erase mode will prevent the CPU from
3059  * fetching the bootloader code, requiring a hard reset or power cycle.
3060  */
3061 static int cfi_amdstd_reset(struct mtd_info *mtd)
3062 {
3063         struct map_info *map = mtd->priv;
3064         struct cfi_private *cfi = map->fldrv_priv;
3065         int i, ret;
3066         struct flchip *chip;
3067 
3068         for (i = 0; i < cfi->numchips; i++) {
3069 
3070                 chip = &cfi->chips[i];
3071 
3072                 mutex_lock(&chip->mutex);
3073 
3074                 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3075                 if (!ret) {
3076                         map_write(map, CMD(0xF0), chip->start);
3077                         chip->state = FL_SHUTDOWN;
3078                         put_chip(map, chip, chip->start);
3079                 }
3080 
3081                 mutex_unlock(&chip->mutex);
3082         }
3083 
3084         return 0;
3085 }
3086 
3087 
3088 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3089                                void *v)
3090 {
3091         struct mtd_info *mtd;
3092 
3093         mtd = container_of(nb, struct mtd_info, reboot_notifier);
3094         cfi_amdstd_reset(mtd);
3095         return NOTIFY_DONE;
3096 }
3097 
3098 
3099 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3100 {
3101         struct map_info *map = mtd->priv;
3102         struct cfi_private *cfi = map->fldrv_priv;
3103 
3104         cfi_amdstd_reset(mtd);
3105         unregister_reboot_notifier(&mtd->reboot_notifier);
3106         kfree(cfi->cmdset_priv);
3107         kfree(cfi->cfiq);
3108         kfree(cfi);
3109         kfree(mtd->eraseregions);
3110 }
3111 
3112 MODULE_LICENSE("GPL");
3113 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3114 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3115 MODULE_ALIAS("cfi_cmdset_0006");
3116 MODULE_ALIAS("cfi_cmdset_0701");

/* [<][>][^][v][top][bottom][index][help] */