This source file includes following definitions.
- kvm_arch_vcpu_setup
- core_reg_offset_is_vreg
- core_reg_offset_from_id
- core_reg_size_from_offset
- validate_core_offset
- get_core_reg
- set_core_reg
- get_sve_vls
- set_sve_vls
- sve_reg_to_region
- get_sve_reg
- set_sve_reg
- kvm_arch_vcpu_ioctl_get_regs
- kvm_arch_vcpu_ioctl_set_regs
- copy_core_reg_indices
- num_core_regs
- is_timer_reg
- copy_timer_indices
- set_timer_reg
- get_timer_reg
- num_sve_regs
- copy_sve_reg_indices
- kvm_arm_num_regs
- kvm_arm_copy_reg_indices
- kvm_arm_get_reg
- kvm_arm_set_reg
- kvm_arch_vcpu_ioctl_get_sregs
- kvm_arch_vcpu_ioctl_set_sregs
- __kvm_arm_vcpu_get_events
- __kvm_arm_vcpu_set_events
- kvm_target_cpu
- kvm_vcpu_preferred_target
- kvm_arch_vcpu_ioctl_get_fpu
- kvm_arch_vcpu_ioctl_set_fpu
- kvm_arch_vcpu_ioctl_translate
- kvm_arch_vcpu_ioctl_set_guest_debug
- kvm_arm_vcpu_arch_set_attr
- kvm_arm_vcpu_arch_get_attr
- kvm_arm_vcpu_arch_has_attr
1
2
3
4
5
6
7
8
9
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_host.h>
29 #include <asm/sigcontext.h>
30
31 #include "trace.h"
32
33 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
34 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
35
36 struct kvm_stats_debugfs_item debugfs_entries[] = {
37 VCPU_STAT(hvc_exit_stat),
38 VCPU_STAT(wfe_exit_stat),
39 VCPU_STAT(wfi_exit_stat),
40 VCPU_STAT(mmio_exit_user),
41 VCPU_STAT(mmio_exit_kernel),
42 VCPU_STAT(exits),
43 { NULL }
44 };
45
46 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
47 {
48 return 0;
49 }
50
51 static bool core_reg_offset_is_vreg(u64 off)
52 {
53 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
54 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
55 }
56
57 static u64 core_reg_offset_from_id(u64 id)
58 {
59 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
60 }
61
62 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
63 {
64 int size;
65
66 switch (off) {
67 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
68 KVM_REG_ARM_CORE_REG(regs.regs[30]):
69 case KVM_REG_ARM_CORE_REG(regs.sp):
70 case KVM_REG_ARM_CORE_REG(regs.pc):
71 case KVM_REG_ARM_CORE_REG(regs.pstate):
72 case KVM_REG_ARM_CORE_REG(sp_el1):
73 case KVM_REG_ARM_CORE_REG(elr_el1):
74 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
75 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
76 size = sizeof(__u64);
77 break;
78
79 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
80 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
81 size = sizeof(__uint128_t);
82 break;
83
84 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
85 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
86 size = sizeof(__u32);
87 break;
88
89 default:
90 return -EINVAL;
91 }
92
93 if (!IS_ALIGNED(off, size / sizeof(__u32)))
94 return -EINVAL;
95
96
97
98
99
100
101 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102 return -EINVAL;
103
104 return size;
105 }
106
107 static int validate_core_offset(const struct kvm_vcpu *vcpu,
108 const struct kvm_one_reg *reg)
109 {
110 u64 off = core_reg_offset_from_id(reg->id);
111 int size = core_reg_size_from_offset(vcpu, off);
112
113 if (size < 0)
114 return -EINVAL;
115
116 if (KVM_REG_SIZE(reg->id) != size)
117 return -EINVAL;
118
119 return 0;
120 }
121
122 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123 {
124
125
126
127
128
129
130 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132 int nr_regs = sizeof(*regs) / sizeof(__u32);
133 u32 off;
134
135
136 off = core_reg_offset_from_id(reg->id);
137 if (off >= nr_regs ||
138 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139 return -ENOENT;
140
141 if (validate_core_offset(vcpu, reg))
142 return -EINVAL;
143
144 if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145 return -EFAULT;
146
147 return 0;
148 }
149
150 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151 {
152 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154 int nr_regs = sizeof(*regs) / sizeof(__u32);
155 __uint128_t tmp;
156 void *valp = &tmp;
157 u64 off;
158 int err = 0;
159
160
161 off = core_reg_offset_from_id(reg->id);
162 if (off >= nr_regs ||
163 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164 return -ENOENT;
165
166 if (validate_core_offset(vcpu, reg))
167 return -EINVAL;
168
169 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170 return -EINVAL;
171
172 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173 err = -EFAULT;
174 goto out;
175 }
176
177 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179 switch (mode) {
180 case PSR_AA32_MODE_USR:
181 if (!system_supports_32bit_el0())
182 return -EINVAL;
183 break;
184 case PSR_AA32_MODE_FIQ:
185 case PSR_AA32_MODE_IRQ:
186 case PSR_AA32_MODE_SVC:
187 case PSR_AA32_MODE_ABT:
188 case PSR_AA32_MODE_UND:
189 if (!vcpu_el1_is_32bit(vcpu))
190 return -EINVAL;
191 break;
192 case PSR_MODE_EL0t:
193 case PSR_MODE_EL1t:
194 case PSR_MODE_EL1h:
195 if (vcpu_el1_is_32bit(vcpu))
196 return -EINVAL;
197 break;
198 default:
199 err = -EINVAL;
200 goto out;
201 }
202 }
203
204 memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
205
206 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
207 int i;
208
209 for (i = 0; i < 16; i++)
210 *vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
211 }
212 out:
213 return err;
214 }
215
216 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
217 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
218 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
219
220 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
221 {
222 unsigned int max_vq, vq;
223 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
224
225 if (!vcpu_has_sve(vcpu))
226 return -ENOENT;
227
228 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
229 return -EINVAL;
230
231 memset(vqs, 0, sizeof(vqs));
232
233 max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
234 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
235 if (sve_vq_available(vq))
236 vqs[vq_word(vq)] |= vq_mask(vq);
237
238 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
239 return -EFAULT;
240
241 return 0;
242 }
243
244 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
245 {
246 unsigned int max_vq, vq;
247 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
248
249 if (!vcpu_has_sve(vcpu))
250 return -ENOENT;
251
252 if (kvm_arm_vcpu_sve_finalized(vcpu))
253 return -EPERM;
254
255 if (WARN_ON(vcpu->arch.sve_state))
256 return -EINVAL;
257
258 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
259 return -EFAULT;
260
261 max_vq = 0;
262 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
263 if (vq_present(vqs, vq))
264 max_vq = vq;
265
266 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
267 return -EINVAL;
268
269
270
271
272
273
274
275
276 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
277 if (vq_present(vqs, vq) != sve_vq_available(vq))
278 return -EINVAL;
279
280
281 if (max_vq < SVE_VQ_MIN)
282 return -EINVAL;
283
284
285 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
286
287 return 0;
288 }
289
290 #define SVE_REG_SLICE_SHIFT 0
291 #define SVE_REG_SLICE_BITS 5
292 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
293 #define SVE_REG_ID_BITS 5
294
295 #define SVE_REG_SLICE_MASK \
296 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
297 SVE_REG_SLICE_SHIFT)
298 #define SVE_REG_ID_MASK \
299 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
300
301 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
302
303 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
304 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
305
306
307
308
309
310
311
312 #define vcpu_sve_slices(vcpu) 1
313
314
315 struct sve_state_reg_region {
316 unsigned int koffset;
317 unsigned int klen;
318 unsigned int upad;
319 };
320
321
322
323
324
325 static int sve_reg_to_region(struct sve_state_reg_region *region,
326 struct kvm_vcpu *vcpu,
327 const struct kvm_one_reg *reg)
328 {
329
330 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
331 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
332 SVE_NUM_SLICES - 1);
333
334
335 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
336 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
337
338 unsigned int vq;
339 unsigned int reg_num;
340
341 unsigned int reqoffset, reqlen;
342 unsigned int maxlen;
343
344 size_t sve_state_size;
345
346 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
347 SVE_NUM_SLICES - 1);
348
349
350 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
351
352
353 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
354
355 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
356
357 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
358 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
359 return -ENOENT;
360
361 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
362
363 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
364 SVE_SIG_REGS_OFFSET;
365 reqlen = KVM_SVE_ZREG_SIZE;
366 maxlen = SVE_SIG_ZREG_SIZE(vq);
367 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
368 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
369 return -ENOENT;
370
371 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
372
373 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
374 SVE_SIG_REGS_OFFSET;
375 reqlen = KVM_SVE_PREG_SIZE;
376 maxlen = SVE_SIG_PREG_SIZE(vq);
377 } else {
378 return -EINVAL;
379 }
380
381 sve_state_size = vcpu_sve_state_size(vcpu);
382 if (WARN_ON(!sve_state_size))
383 return -EINVAL;
384
385 region->koffset = array_index_nospec(reqoffset, sve_state_size);
386 region->klen = min(maxlen, reqlen);
387 region->upad = reqlen - region->klen;
388
389 return 0;
390 }
391
392 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
393 {
394 int ret;
395 struct sve_state_reg_region region;
396 char __user *uptr = (char __user *)reg->addr;
397
398
399 if (reg->id == KVM_REG_ARM64_SVE_VLS)
400 return get_sve_vls(vcpu, reg);
401
402
403 ret = sve_reg_to_region(®ion, vcpu, reg);
404 if (ret)
405 return ret;
406
407 if (!kvm_arm_vcpu_sve_finalized(vcpu))
408 return -EPERM;
409
410 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
411 region.klen) ||
412 clear_user(uptr + region.klen, region.upad))
413 return -EFAULT;
414
415 return 0;
416 }
417
418 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
419 {
420 int ret;
421 struct sve_state_reg_region region;
422 const char __user *uptr = (const char __user *)reg->addr;
423
424
425 if (reg->id == KVM_REG_ARM64_SVE_VLS)
426 return set_sve_vls(vcpu, reg);
427
428
429 ret = sve_reg_to_region(®ion, vcpu, reg);
430 if (ret)
431 return ret;
432
433 if (!kvm_arm_vcpu_sve_finalized(vcpu))
434 return -EPERM;
435
436 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
437 region.klen))
438 return -EFAULT;
439
440 return 0;
441 }
442
443 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
444 {
445 return -EINVAL;
446 }
447
448 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
449 {
450 return -EINVAL;
451 }
452
453 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
454 u64 __user *uindices)
455 {
456 unsigned int i;
457 int n = 0;
458
459 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
460 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
461 int size = core_reg_size_from_offset(vcpu, i);
462
463 if (size < 0)
464 continue;
465
466 switch (size) {
467 case sizeof(__u32):
468 reg |= KVM_REG_SIZE_U32;
469 break;
470
471 case sizeof(__u64):
472 reg |= KVM_REG_SIZE_U64;
473 break;
474
475 case sizeof(__uint128_t):
476 reg |= KVM_REG_SIZE_U128;
477 break;
478
479 default:
480 WARN_ON(1);
481 continue;
482 }
483
484 if (uindices) {
485 if (put_user(reg, uindices))
486 return -EFAULT;
487 uindices++;
488 }
489
490 n++;
491 }
492
493 return n;
494 }
495
496 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
497 {
498 return copy_core_reg_indices(vcpu, NULL);
499 }
500
501
502
503
504
505 #define NUM_TIMER_REGS 3
506
507 static bool is_timer_reg(u64 index)
508 {
509 switch (index) {
510 case KVM_REG_ARM_TIMER_CTL:
511 case KVM_REG_ARM_TIMER_CNT:
512 case KVM_REG_ARM_TIMER_CVAL:
513 return true;
514 }
515 return false;
516 }
517
518 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
519 {
520 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
521 return -EFAULT;
522 uindices++;
523 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
524 return -EFAULT;
525 uindices++;
526 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
527 return -EFAULT;
528
529 return 0;
530 }
531
532 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
533 {
534 void __user *uaddr = (void __user *)(long)reg->addr;
535 u64 val;
536 int ret;
537
538 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
539 if (ret != 0)
540 return -EFAULT;
541
542 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
543 }
544
545 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
546 {
547 void __user *uaddr = (void __user *)(long)reg->addr;
548 u64 val;
549
550 val = kvm_arm_timer_get_reg(vcpu, reg->id);
551 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
552 }
553
554 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
555 {
556 const unsigned int slices = vcpu_sve_slices(vcpu);
557
558 if (!vcpu_has_sve(vcpu))
559 return 0;
560
561
562 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
563
564 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 )
565 + 1;
566 }
567
568 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
569 u64 __user *uindices)
570 {
571 const unsigned int slices = vcpu_sve_slices(vcpu);
572 u64 reg;
573 unsigned int i, n;
574 int num_regs = 0;
575
576 if (!vcpu_has_sve(vcpu))
577 return 0;
578
579
580 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
581
582
583
584
585
586 reg = KVM_REG_ARM64_SVE_VLS;
587 if (put_user(reg, uindices++))
588 return -EFAULT;
589 ++num_regs;
590
591 for (i = 0; i < slices; i++) {
592 for (n = 0; n < SVE_NUM_ZREGS; n++) {
593 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
594 if (put_user(reg, uindices++))
595 return -EFAULT;
596 num_regs++;
597 }
598
599 for (n = 0; n < SVE_NUM_PREGS; n++) {
600 reg = KVM_REG_ARM64_SVE_PREG(n, i);
601 if (put_user(reg, uindices++))
602 return -EFAULT;
603 num_regs++;
604 }
605
606 reg = KVM_REG_ARM64_SVE_FFR(i);
607 if (put_user(reg, uindices++))
608 return -EFAULT;
609 num_regs++;
610 }
611
612 return num_regs;
613 }
614
615
616
617
618
619
620 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
621 {
622 unsigned long res = 0;
623
624 res += num_core_regs(vcpu);
625 res += num_sve_regs(vcpu);
626 res += kvm_arm_num_sys_reg_descs(vcpu);
627 res += kvm_arm_get_fw_num_regs(vcpu);
628 res += NUM_TIMER_REGS;
629
630 return res;
631 }
632
633
634
635
636
637
638 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
639 {
640 int ret;
641
642 ret = copy_core_reg_indices(vcpu, uindices);
643 if (ret < 0)
644 return ret;
645 uindices += ret;
646
647 ret = copy_sve_reg_indices(vcpu, uindices);
648 if (ret < 0)
649 return ret;
650 uindices += ret;
651
652 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
653 if (ret < 0)
654 return ret;
655 uindices += kvm_arm_get_fw_num_regs(vcpu);
656
657 ret = copy_timer_indices(vcpu, uindices);
658 if (ret < 0)
659 return ret;
660 uindices += NUM_TIMER_REGS;
661
662 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
663 }
664
665 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
666 {
667
668 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
669 return -EINVAL;
670
671 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
672 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
673 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
674 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
675 }
676
677 if (is_timer_reg(reg->id))
678 return get_timer_reg(vcpu, reg);
679
680 return kvm_arm_sys_reg_get_reg(vcpu, reg);
681 }
682
683 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
684 {
685
686 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
687 return -EINVAL;
688
689 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
690 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
691 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
692 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
693 }
694
695 if (is_timer_reg(reg->id))
696 return set_timer_reg(vcpu, reg);
697
698 return kvm_arm_sys_reg_set_reg(vcpu, reg);
699 }
700
701 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
702 struct kvm_sregs *sregs)
703 {
704 return -EINVAL;
705 }
706
707 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
708 struct kvm_sregs *sregs)
709 {
710 return -EINVAL;
711 }
712
713 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
714 struct kvm_vcpu_events *events)
715 {
716 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
717 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
718
719 if (events->exception.serror_pending && events->exception.serror_has_esr)
720 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
721
722 return 0;
723 }
724
725 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
726 struct kvm_vcpu_events *events)
727 {
728 bool serror_pending = events->exception.serror_pending;
729 bool has_esr = events->exception.serror_has_esr;
730
731 if (serror_pending && has_esr) {
732 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
733 return -EINVAL;
734
735 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
736 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
737 else
738 return -EINVAL;
739 } else if (serror_pending) {
740 kvm_inject_vabt(vcpu);
741 }
742
743 return 0;
744 }
745
746 int __attribute_const__ kvm_target_cpu(void)
747 {
748 unsigned long implementor = read_cpuid_implementor();
749 unsigned long part_number = read_cpuid_part_number();
750
751 switch (implementor) {
752 case ARM_CPU_IMP_ARM:
753 switch (part_number) {
754 case ARM_CPU_PART_AEM_V8:
755 return KVM_ARM_TARGET_AEM_V8;
756 case ARM_CPU_PART_FOUNDATION:
757 return KVM_ARM_TARGET_FOUNDATION_V8;
758 case ARM_CPU_PART_CORTEX_A53:
759 return KVM_ARM_TARGET_CORTEX_A53;
760 case ARM_CPU_PART_CORTEX_A57:
761 return KVM_ARM_TARGET_CORTEX_A57;
762 }
763 break;
764 case ARM_CPU_IMP_APM:
765 switch (part_number) {
766 case APM_CPU_PART_POTENZA:
767 return KVM_ARM_TARGET_XGENE_POTENZA;
768 }
769 break;
770 }
771
772
773 return KVM_ARM_TARGET_GENERIC_V8;
774 }
775
776 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
777 {
778 int target = kvm_target_cpu();
779
780 if (target < 0)
781 return -ENODEV;
782
783 memset(init, 0, sizeof(*init));
784
785
786
787
788
789
790
791 init->target = (__u32)target;
792
793 return 0;
794 }
795
796 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
797 {
798 return -EINVAL;
799 }
800
801 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
802 {
803 return -EINVAL;
804 }
805
806 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
807 struct kvm_translation *tr)
808 {
809 return -EINVAL;
810 }
811
812 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
813 KVM_GUESTDBG_USE_SW_BP | \
814 KVM_GUESTDBG_USE_HW | \
815 KVM_GUESTDBG_SINGLESTEP)
816
817
818
819
820
821
822
823
824
825
826
827 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
828 struct kvm_guest_debug *dbg)
829 {
830 int ret = 0;
831
832 trace_kvm_set_guest_debug(vcpu, dbg->control);
833
834 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
835 ret = -EINVAL;
836 goto out;
837 }
838
839 if (dbg->control & KVM_GUESTDBG_ENABLE) {
840 vcpu->guest_debug = dbg->control;
841
842
843 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
844 vcpu->arch.external_debug_state = dbg->arch;
845 }
846
847 } else {
848
849 vcpu->guest_debug = 0;
850 }
851
852 out:
853 return ret;
854 }
855
856 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
857 struct kvm_device_attr *attr)
858 {
859 int ret;
860
861 switch (attr->group) {
862 case KVM_ARM_VCPU_PMU_V3_CTRL:
863 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
864 break;
865 case KVM_ARM_VCPU_TIMER_CTRL:
866 ret = kvm_arm_timer_set_attr(vcpu, attr);
867 break;
868 default:
869 ret = -ENXIO;
870 break;
871 }
872
873 return ret;
874 }
875
876 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
877 struct kvm_device_attr *attr)
878 {
879 int ret;
880
881 switch (attr->group) {
882 case KVM_ARM_VCPU_PMU_V3_CTRL:
883 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
884 break;
885 case KVM_ARM_VCPU_TIMER_CTRL:
886 ret = kvm_arm_timer_get_attr(vcpu, attr);
887 break;
888 default:
889 ret = -ENXIO;
890 break;
891 }
892
893 return ret;
894 }
895
896 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
897 struct kvm_device_attr *attr)
898 {
899 int ret;
900
901 switch (attr->group) {
902 case KVM_ARM_VCPU_PMU_V3_CTRL:
903 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
904 break;
905 case KVM_ARM_VCPU_TIMER_CTRL:
906 ret = kvm_arm_timer_has_attr(vcpu, attr);
907 break;
908 default:
909 ret = -ENXIO;
910 break;
911 }
912
913 return ret;
914 }