This source file includes following definitions.
- mtd_to_omap
- omap_prefetch_enable
- omap_prefetch_reset
- omap_hwcontrol
- omap_read_buf8
- omap_write_buf8
- omap_read_buf16
- omap_write_buf16
- omap_read_buf_pref
- omap_write_buf_pref
- omap_nand_dma_callback
- omap_nand_dma_transfer
- omap_read_buf_dma_pref
- omap_write_buf_dma_pref
- omap_nand_irq
- omap_read_buf_irq_pref
- omap_write_buf_irq_pref
- gen_true_ecc
- omap_compare_ecc
- omap_correct_data
- omap_calculate_ecc
- omap_enable_hwecc
- omap_wait
- omap_dev_ready
- omap_enable_hwecc_bch
- _omap_calculate_ecc_bch
- omap_calculate_ecc_bch_sw
- omap_calculate_ecc_bch_multi
- erased_sector_bitflips
- omap_elm_correct_data
- omap_write_page_bch
- omap_write_subpage_bch
- omap_read_page_bch
- is_elm_present
- omap2_nand_ecc_check
- omap_get_dt_info
- omap_ooblayout_ecc
- omap_ooblayout_free
- omap_sw_ooblayout_ecc
- omap_sw_ooblayout_free
- omap_nand_attach_chip
- omap_nand_probe
- omap_nand_remove
1
2
3
4
5
6
7
8 #include <linux/platform_device.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/omap-dma.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25
26 #include <linux/mtd/nand_bch.h>
27 #include <linux/platform_data/elm.h>
28
29 #include <linux/omap-gpmc.h>
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS 5000
34
35 #define NAND_Ecc_P1e (1 << 0)
36 #define NAND_Ecc_P2e (1 << 1)
37 #define NAND_Ecc_P4e (1 << 2)
38 #define NAND_Ecc_P8e (1 << 3)
39 #define NAND_Ecc_P16e (1 << 4)
40 #define NAND_Ecc_P32e (1 << 5)
41 #define NAND_Ecc_P64e (1 << 6)
42 #define NAND_Ecc_P128e (1 << 7)
43 #define NAND_Ecc_P256e (1 << 8)
44 #define NAND_Ecc_P512e (1 << 9)
45 #define NAND_Ecc_P1024e (1 << 10)
46 #define NAND_Ecc_P2048e (1 << 11)
47
48 #define NAND_Ecc_P1o (1 << 16)
49 #define NAND_Ecc_P2o (1 << 17)
50 #define NAND_Ecc_P4o (1 << 18)
51 #define NAND_Ecc_P8o (1 << 19)
52 #define NAND_Ecc_P16o (1 << 20)
53 #define NAND_Ecc_P32o (1 << 21)
54 #define NAND_Ecc_P64o (1 << 22)
55 #define NAND_Ecc_P128o (1 << 23)
56 #define NAND_Ecc_P256o (1 << 24)
57 #define NAND_Ecc_P512o (1 << 25)
58 #define NAND_Ecc_P1024o (1 << 26)
59 #define NAND_Ecc_P2048o (1 << 27)
60
61 #define TF(value) (value ? 1 : 0)
62
63 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
64 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
65 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
66 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
67 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
68 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
69 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
70 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
71
72 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
73 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
74 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
75 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
76 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
77 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
78 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
79 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
80
81 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
82 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
83 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
84 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
85 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
86 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
87 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
88 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
89
90 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
91 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
92 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
93 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
94 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
95 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
96 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
97 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
98
99 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
100 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT 24
103 #define ECC_CONFIG_CS_SHIFT 1
104 #define CS_MASK 0x7
105 #define ENABLE_PREFETCH (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT 2
107 #define ECCSIZE0_SHIFT 12
108 #define ECCSIZE1_SHIFT 22
109 #define ECC1RESULTSIZE 0x1
110 #define ECCCLEAR 0x100
111 #define ECC1 0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
113 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY 0x00000001
117
118 #define SECTOR_BYTES 512
119
120 #define BCH4_BIT_PAD 4
121
122
123 #define BCH_WRAPMODE_1 1
124 #define BCH8R_ECC_SIZE0 0x1a
125 #define BCH8R_ECC_SIZE1 0x2
126 #define BCH4R_ECC_SIZE0 0xd
127 #define BCH4R_ECC_SIZE1 0x3
128
129
130 #define BCH_WRAPMODE_6 6
131 #define BCH_ECC_SIZE0 0x0
132 #define BCH_ECC_SIZE1 0x20
133
134 #define BADBLOCK_MARKER_LENGTH 2
135
136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
137 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
138 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139 0x07, 0x0e};
140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141 0xac, 0x6b, 0xff, 0x99, 0x7b};
142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143
144 struct omap_nand_info {
145 struct nand_chip nand;
146 struct platform_device *pdev;
147
148 int gpmc_cs;
149 bool dev_ready;
150 enum nand_io xfer_type;
151 int devsize;
152 enum omap_ecc ecc_opt;
153 struct device_node *elm_of_node;
154
155 unsigned long phys_base;
156 struct completion comp;
157 struct dma_chan *dma;
158 int gpmc_irq_fifo;
159 int gpmc_irq_count;
160 enum {
161 OMAP_NAND_IO_READ = 0,
162 OMAP_NAND_IO_WRITE,
163 } iomode;
164 u_char *buf;
165 int buf_len;
166
167 struct gpmc_nand_regs reg;
168 struct gpmc_nand_ops *ops;
169 bool flash_bbt;
170
171 struct device *elm_dev;
172
173 struct gpio_desc *ready_gpiod;
174 };
175
176 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
177 {
178 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
179 }
180
181
182
183
184
185
186
187
188
189 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
190 unsigned int u32_count, int is_write, struct omap_nand_info *info)
191 {
192 u32 val;
193
194 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
195 return -1;
196
197 if (readl(info->reg.gpmc_prefetch_control))
198 return -EBUSY;
199
200
201 writel(u32_count, info->reg.gpmc_prefetch_config2);
202
203
204
205
206 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
207 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
208 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
209 writel(val, info->reg.gpmc_prefetch_config1);
210
211
212 writel(0x1, info->reg.gpmc_prefetch_control);
213
214 return 0;
215 }
216
217
218
219
220 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
221 {
222 u32 config1;
223
224
225 config1 = readl(info->reg.gpmc_prefetch_config1);
226 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
227 return -EINVAL;
228
229
230 writel(0x0, info->reg.gpmc_prefetch_control);
231
232
233 writel(0x0, info->reg.gpmc_prefetch_config1);
234
235 return 0;
236 }
237
238
239
240
241
242
243
244
245
246
247
248
249 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
250 {
251 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
252
253 if (cmd != NAND_CMD_NONE) {
254 if (ctrl & NAND_CLE)
255 writeb(cmd, info->reg.gpmc_nand_command);
256
257 else if (ctrl & NAND_ALE)
258 writeb(cmd, info->reg.gpmc_nand_address);
259
260 else
261 writeb(cmd, info->reg.gpmc_nand_data);
262 }
263 }
264
265
266
267
268
269
270
271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
272 {
273 struct nand_chip *nand = mtd_to_nand(mtd);
274
275 ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
276 }
277
278
279
280
281
282
283
284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
285 {
286 struct omap_nand_info *info = mtd_to_omap(mtd);
287 u_char *p = (u_char *)buf;
288 bool status;
289
290 while (len--) {
291 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
292
293 do {
294 status = info->ops->nand_writebuffer_empty();
295 } while (!status);
296 }
297 }
298
299
300
301
302
303
304
305 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
306 {
307 struct nand_chip *nand = mtd_to_nand(mtd);
308
309 ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
310 }
311
312
313
314
315
316
317
318 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
319 {
320 struct omap_nand_info *info = mtd_to_omap(mtd);
321 u16 *p = (u16 *) buf;
322 bool status;
323
324 len >>= 1;
325
326 while (len--) {
327 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
328
329 do {
330 status = info->ops->nand_writebuffer_empty();
331 } while (!status);
332 }
333 }
334
335
336
337
338
339
340
341 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
342 {
343 struct mtd_info *mtd = nand_to_mtd(chip);
344 struct omap_nand_info *info = mtd_to_omap(mtd);
345 uint32_t r_count = 0;
346 int ret = 0;
347 u32 *p = (u32 *)buf;
348
349
350 if (len % 4) {
351 if (info->nand.options & NAND_BUSWIDTH_16)
352 omap_read_buf16(mtd, buf, len % 4);
353 else
354 omap_read_buf8(mtd, buf, len % 4);
355 p = (u32 *) (buf + len % 4);
356 len -= len % 4;
357 }
358
359
360 ret = omap_prefetch_enable(info->gpmc_cs,
361 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
362 if (ret) {
363
364 if (info->nand.options & NAND_BUSWIDTH_16)
365 omap_read_buf16(mtd, (u_char *)p, len);
366 else
367 omap_read_buf8(mtd, (u_char *)p, len);
368 } else {
369 do {
370 r_count = readl(info->reg.gpmc_prefetch_status);
371 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
372 r_count = r_count >> 2;
373 ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
374 p += r_count;
375 len -= r_count << 2;
376 } while (len);
377
378 omap_prefetch_reset(info->gpmc_cs, info);
379 }
380 }
381
382
383
384
385
386
387
388 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
389 int len)
390 {
391 struct mtd_info *mtd = nand_to_mtd(chip);
392 struct omap_nand_info *info = mtd_to_omap(mtd);
393 uint32_t w_count = 0;
394 int i = 0, ret = 0;
395 u16 *p = (u16 *)buf;
396 unsigned long tim, limit;
397 u32 val;
398
399
400 if (len % 2 != 0) {
401 writeb(*buf, info->nand.legacy.IO_ADDR_W);
402 p = (u16 *)(buf + 1);
403 len--;
404 }
405
406
407 ret = omap_prefetch_enable(info->gpmc_cs,
408 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
409 if (ret) {
410
411 if (info->nand.options & NAND_BUSWIDTH_16)
412 omap_write_buf16(mtd, (u_char *)p, len);
413 else
414 omap_write_buf8(mtd, (u_char *)p, len);
415 } else {
416 while (len) {
417 w_count = readl(info->reg.gpmc_prefetch_status);
418 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
419 w_count = w_count >> 1;
420 for (i = 0; (i < w_count) && len; i++, len -= 2)
421 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
422 }
423
424 tim = 0;
425 limit = (loops_per_jiffy *
426 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
427 do {
428 cpu_relax();
429 val = readl(info->reg.gpmc_prefetch_status);
430 val = PREFETCH_STATUS_COUNT(val);
431 } while (val && (tim++ < limit));
432
433
434 omap_prefetch_reset(info->gpmc_cs, info);
435 }
436 }
437
438
439
440
441
442 static void omap_nand_dma_callback(void *data)
443 {
444 complete((struct completion *) data);
445 }
446
447
448
449
450
451
452
453
454 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
455 unsigned int len, int is_write)
456 {
457 struct omap_nand_info *info = mtd_to_omap(mtd);
458 struct dma_async_tx_descriptor *tx;
459 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
460 DMA_FROM_DEVICE;
461 struct scatterlist sg;
462 unsigned long tim, limit;
463 unsigned n;
464 int ret;
465 u32 val;
466
467 if (!virt_addr_valid(addr))
468 goto out_copy;
469
470 sg_init_one(&sg, addr, len);
471 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
472 if (n == 0) {
473 dev_err(&info->pdev->dev,
474 "Couldn't DMA map a %d byte buffer\n", len);
475 goto out_copy;
476 }
477
478 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
479 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
480 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
481 if (!tx)
482 goto out_copy_unmap;
483
484 tx->callback = omap_nand_dma_callback;
485 tx->callback_param = &info->comp;
486 dmaengine_submit(tx);
487
488 init_completion(&info->comp);
489
490
491 dma_async_issue_pending(info->dma);
492
493
494 ret = omap_prefetch_enable(info->gpmc_cs,
495 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
496 if (ret)
497
498 goto out_copy_unmap;
499
500 wait_for_completion(&info->comp);
501 tim = 0;
502 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
503
504 do {
505 cpu_relax();
506 val = readl(info->reg.gpmc_prefetch_status);
507 val = PREFETCH_STATUS_COUNT(val);
508 } while (val && (tim++ < limit));
509
510
511 omap_prefetch_reset(info->gpmc_cs, info);
512
513 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
514 return 0;
515
516 out_copy_unmap:
517 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
518 out_copy:
519 if (info->nand.options & NAND_BUSWIDTH_16)
520 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
521 : omap_write_buf16(mtd, (u_char *) addr, len);
522 else
523 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
524 : omap_write_buf8(mtd, (u_char *) addr, len);
525 return 0;
526 }
527
528
529
530
531
532
533
534 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
535 int len)
536 {
537 struct mtd_info *mtd = nand_to_mtd(chip);
538
539 if (len <= mtd->oobsize)
540 omap_read_buf_pref(chip, buf, len);
541 else
542
543 omap_nand_dma_transfer(mtd, buf, len, 0x0);
544 }
545
546
547
548
549
550
551
552 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
553 int len)
554 {
555 struct mtd_info *mtd = nand_to_mtd(chip);
556
557 if (len <= mtd->oobsize)
558 omap_write_buf_pref(chip, buf, len);
559 else
560
561 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
562 }
563
564
565
566
567
568
569 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
570 {
571 struct omap_nand_info *info = (struct omap_nand_info *) dev;
572 u32 bytes;
573
574 bytes = readl(info->reg.gpmc_prefetch_status);
575 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
576 bytes = bytes & 0xFFFC;
577 if (info->iomode == OMAP_NAND_IO_WRITE) {
578 if (this_irq == info->gpmc_irq_count)
579 goto done;
580
581 if (info->buf_len && (info->buf_len < bytes))
582 bytes = info->buf_len;
583 else if (!info->buf_len)
584 bytes = 0;
585 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
586 bytes >> 2);
587 info->buf = info->buf + bytes;
588 info->buf_len -= bytes;
589
590 } else {
591 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
592 bytes >> 2);
593 info->buf = info->buf + bytes;
594
595 if (this_irq == info->gpmc_irq_count)
596 goto done;
597 }
598
599 return IRQ_HANDLED;
600
601 done:
602 complete(&info->comp);
603
604 disable_irq_nosync(info->gpmc_irq_fifo);
605 disable_irq_nosync(info->gpmc_irq_count);
606
607 return IRQ_HANDLED;
608 }
609
610
611
612
613
614
615
616 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
617 int len)
618 {
619 struct mtd_info *mtd = nand_to_mtd(chip);
620 struct omap_nand_info *info = mtd_to_omap(mtd);
621 int ret = 0;
622
623 if (len <= mtd->oobsize) {
624 omap_read_buf_pref(chip, buf, len);
625 return;
626 }
627
628 info->iomode = OMAP_NAND_IO_READ;
629 info->buf = buf;
630 init_completion(&info->comp);
631
632
633 ret = omap_prefetch_enable(info->gpmc_cs,
634 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
635 if (ret)
636
637 goto out_copy;
638
639 info->buf_len = len;
640
641 enable_irq(info->gpmc_irq_count);
642 enable_irq(info->gpmc_irq_fifo);
643
644
645 wait_for_completion(&info->comp);
646
647
648 omap_prefetch_reset(info->gpmc_cs, info);
649 return;
650
651 out_copy:
652 if (info->nand.options & NAND_BUSWIDTH_16)
653 omap_read_buf16(mtd, buf, len);
654 else
655 omap_read_buf8(mtd, buf, len);
656 }
657
658
659
660
661
662
663
664 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
665 int len)
666 {
667 struct mtd_info *mtd = nand_to_mtd(chip);
668 struct omap_nand_info *info = mtd_to_omap(mtd);
669 int ret = 0;
670 unsigned long tim, limit;
671 u32 val;
672
673 if (len <= mtd->oobsize) {
674 omap_write_buf_pref(chip, buf, len);
675 return;
676 }
677
678 info->iomode = OMAP_NAND_IO_WRITE;
679 info->buf = (u_char *) buf;
680 init_completion(&info->comp);
681
682
683 ret = omap_prefetch_enable(info->gpmc_cs,
684 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
685 if (ret)
686
687 goto out_copy;
688
689 info->buf_len = len;
690
691 enable_irq(info->gpmc_irq_count);
692 enable_irq(info->gpmc_irq_fifo);
693
694
695 wait_for_completion(&info->comp);
696
697
698 tim = 0;
699 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
700 do {
701 val = readl(info->reg.gpmc_prefetch_status);
702 val = PREFETCH_STATUS_COUNT(val);
703 cpu_relax();
704 } while (val && (tim++ < limit));
705
706
707 omap_prefetch_reset(info->gpmc_cs, info);
708 return;
709
710 out_copy:
711 if (info->nand.options & NAND_BUSWIDTH_16)
712 omap_write_buf16(mtd, buf, len);
713 else
714 omap_write_buf8(mtd, buf, len);
715 }
716
717
718
719
720
721
722
723
724 static void gen_true_ecc(u8 *ecc_buf)
725 {
726 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
727 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
728
729 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
730 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
731 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
732 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
733 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
734 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
735 }
736
737
738
739
740
741
742
743
744
745
746
747
748 static int omap_compare_ecc(u8 *ecc_data1,
749 u8 *ecc_data2,
750 u8 *page_data)
751 {
752 uint i;
753 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
754 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
755 u8 ecc_bit[24];
756 u8 ecc_sum = 0;
757 u8 find_bit = 0;
758 uint find_byte = 0;
759 int isEccFF;
760
761 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
762
763 gen_true_ecc(ecc_data1);
764 gen_true_ecc(ecc_data2);
765
766 for (i = 0; i <= 2; i++) {
767 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
768 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
769 }
770
771 for (i = 0; i < 8; i++) {
772 tmp0_bit[i] = *ecc_data1 % 2;
773 *ecc_data1 = *ecc_data1 / 2;
774 }
775
776 for (i = 0; i < 8; i++) {
777 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
778 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
779 }
780
781 for (i = 0; i < 8; i++) {
782 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
783 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
784 }
785
786 for (i = 0; i < 8; i++) {
787 comp0_bit[i] = *ecc_data2 % 2;
788 *ecc_data2 = *ecc_data2 / 2;
789 }
790
791 for (i = 0; i < 8; i++) {
792 comp1_bit[i] = *(ecc_data2 + 1) % 2;
793 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
794 }
795
796 for (i = 0; i < 8; i++) {
797 comp2_bit[i] = *(ecc_data2 + 2) % 2;
798 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
799 }
800
801 for (i = 0; i < 6; i++)
802 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
803
804 for (i = 0; i < 8; i++)
805 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
806
807 for (i = 0; i < 8; i++)
808 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
809
810 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
811 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
812
813 for (i = 0; i < 24; i++)
814 ecc_sum += ecc_bit[i];
815
816 switch (ecc_sum) {
817 case 0:
818
819
820
821 return 0;
822
823 case 1:
824
825 pr_debug("ECC UNCORRECTED_ERROR 1\n");
826 return -EBADMSG;
827
828 case 11:
829
830 pr_debug("ECC UNCORRECTED_ERROR B\n");
831 return -EBADMSG;
832
833 case 12:
834
835 find_byte = (ecc_bit[23] << 8) +
836 (ecc_bit[21] << 7) +
837 (ecc_bit[19] << 6) +
838 (ecc_bit[17] << 5) +
839 (ecc_bit[15] << 4) +
840 (ecc_bit[13] << 3) +
841 (ecc_bit[11] << 2) +
842 (ecc_bit[9] << 1) +
843 ecc_bit[7];
844
845 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
846
847 pr_debug("Correcting single bit ECC error at offset: "
848 "%d, bit: %d\n", find_byte, find_bit);
849
850 page_data[find_byte] ^= (1 << find_bit);
851
852 return 1;
853 default:
854 if (isEccFF) {
855 if (ecc_data2[0] == 0 &&
856 ecc_data2[1] == 0 &&
857 ecc_data2[2] == 0)
858 return 0;
859 }
860 pr_debug("UNCORRECTED_ERROR default\n");
861 return -EBADMSG;
862 }
863 }
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
880 u_char *read_ecc, u_char *calc_ecc)
881 {
882 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
883 int blockCnt = 0, i = 0, ret = 0;
884 int stat = 0;
885
886
887 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
888 (info->nand.ecc.size == 2048))
889 blockCnt = 4;
890 else
891 blockCnt = 1;
892
893 for (i = 0; i < blockCnt; i++) {
894 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
895 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
896 if (ret < 0)
897 return ret;
898
899 stat += ret;
900 }
901 read_ecc += 3;
902 calc_ecc += 3;
903 dat += 512;
904 }
905 return stat;
906 }
907
908
909
910
911
912
913
914
915
916
917
918
919
920 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
921 u_char *ecc_code)
922 {
923 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
924 u32 val;
925
926 val = readl(info->reg.gpmc_ecc_config);
927 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
928 return -EINVAL;
929
930
931 val = readl(info->reg.gpmc_ecc1_result);
932 *ecc_code++ = val;
933 *ecc_code++ = val >> 16;
934
935 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
936
937 return 0;
938 }
939
940
941
942
943
944
945 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
946 {
947 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
948 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
949 u32 val;
950
951
952 val = ECCCLEAR | ECC1;
953 writel(val, info->reg.gpmc_ecc_control);
954
955
956 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
957 ECC1RESULTSIZE);
958 writel(val, info->reg.gpmc_ecc_size_config);
959
960 switch (mode) {
961 case NAND_ECC_READ:
962 case NAND_ECC_WRITE:
963 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
964 break;
965 case NAND_ECC_READSYN:
966 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
967 break;
968 default:
969 dev_info(&info->pdev->dev,
970 "error: unrecognized Mode[%d]!\n", mode);
971 break;
972 }
973
974
975 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
976 writel(val, info->reg.gpmc_ecc_config);
977 }
978
979
980
981
982
983
984
985
986
987
988
989
990 static int omap_wait(struct nand_chip *this)
991 {
992 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
993 unsigned long timeo = jiffies;
994 int status;
995
996 timeo += msecs_to_jiffies(400);
997
998 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
999 while (time_before(jiffies, timeo)) {
1000 status = readb(info->reg.gpmc_nand_data);
1001 if (status & NAND_STATUS_READY)
1002 break;
1003 cond_resched();
1004 }
1005
1006 status = readb(info->reg.gpmc_nand_data);
1007 return status;
1008 }
1009
1010
1011
1012
1013
1014
1015
1016 static int omap_dev_ready(struct nand_chip *chip)
1017 {
1018 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1019
1020 return gpiod_get_value(info->ready_gpiod);
1021 }
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1035 int mode)
1036 {
1037 unsigned int bch_type;
1038 unsigned int dev_width, nsectors;
1039 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1040 enum omap_ecc ecc_opt = info->ecc_opt;
1041 u32 val, wr_mode;
1042 unsigned int ecc_size1, ecc_size0;
1043
1044
1045 switch (ecc_opt) {
1046 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1047 bch_type = 0;
1048 nsectors = 1;
1049 wr_mode = BCH_WRAPMODE_6;
1050 ecc_size0 = BCH_ECC_SIZE0;
1051 ecc_size1 = BCH_ECC_SIZE1;
1052 break;
1053 case OMAP_ECC_BCH4_CODE_HW:
1054 bch_type = 0;
1055 nsectors = chip->ecc.steps;
1056 if (mode == NAND_ECC_READ) {
1057 wr_mode = BCH_WRAPMODE_1;
1058 ecc_size0 = BCH4R_ECC_SIZE0;
1059 ecc_size1 = BCH4R_ECC_SIZE1;
1060 } else {
1061 wr_mode = BCH_WRAPMODE_6;
1062 ecc_size0 = BCH_ECC_SIZE0;
1063 ecc_size1 = BCH_ECC_SIZE1;
1064 }
1065 break;
1066 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1067 bch_type = 1;
1068 nsectors = 1;
1069 wr_mode = BCH_WRAPMODE_6;
1070 ecc_size0 = BCH_ECC_SIZE0;
1071 ecc_size1 = BCH_ECC_SIZE1;
1072 break;
1073 case OMAP_ECC_BCH8_CODE_HW:
1074 bch_type = 1;
1075 nsectors = chip->ecc.steps;
1076 if (mode == NAND_ECC_READ) {
1077 wr_mode = BCH_WRAPMODE_1;
1078 ecc_size0 = BCH8R_ECC_SIZE0;
1079 ecc_size1 = BCH8R_ECC_SIZE1;
1080 } else {
1081 wr_mode = BCH_WRAPMODE_6;
1082 ecc_size0 = BCH_ECC_SIZE0;
1083 ecc_size1 = BCH_ECC_SIZE1;
1084 }
1085 break;
1086 case OMAP_ECC_BCH16_CODE_HW:
1087 bch_type = 0x2;
1088 nsectors = chip->ecc.steps;
1089 if (mode == NAND_ECC_READ) {
1090 wr_mode = 0x01;
1091 ecc_size0 = 52;
1092 ecc_size1 = 0;
1093 } else {
1094 wr_mode = 0x01;
1095 ecc_size0 = 0;
1096 ecc_size1 = 52;
1097 }
1098 break;
1099 default:
1100 return;
1101 }
1102
1103 writel(ECC1, info->reg.gpmc_ecc_control);
1104
1105
1106 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1107 writel(val, info->reg.gpmc_ecc_size_config);
1108
1109 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1110
1111
1112 val = ((1 << 16) |
1113 (bch_type << 12) |
1114 (wr_mode << 8) |
1115 (dev_width << 7) |
1116 (((nsectors-1) & 0x7) << 4) |
1117 (info->gpmc_cs << 1) |
1118 (0x1));
1119
1120 writel(val, info->reg.gpmc_ecc_config);
1121
1122
1123 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1124 }
1125
1126 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1127 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1128 0x97, 0x79, 0xe5, 0x24, 0xb5};
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1141 const u_char *dat, u_char *ecc_calc, int i)
1142 {
1143 struct omap_nand_info *info = mtd_to_omap(mtd);
1144 int eccbytes = info->nand.ecc.bytes;
1145 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1146 u8 *ecc_code;
1147 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1148 u32 val;
1149 int j;
1150
1151 ecc_code = ecc_calc;
1152 switch (info->ecc_opt) {
1153 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1154 case OMAP_ECC_BCH8_CODE_HW:
1155 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1156 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1157 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1158 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1159 *ecc_code++ = (bch_val4 & 0xFF);
1160 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1161 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1162 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1163 *ecc_code++ = (bch_val3 & 0xFF);
1164 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1165 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1166 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1167 *ecc_code++ = (bch_val2 & 0xFF);
1168 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1169 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1170 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1171 *ecc_code++ = (bch_val1 & 0xFF);
1172 break;
1173 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1174 case OMAP_ECC_BCH4_CODE_HW:
1175 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1176 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1177 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1178 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1179 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1180 ((bch_val1 >> 28) & 0xF);
1181 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1182 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1183 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1184 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1185 break;
1186 case OMAP_ECC_BCH16_CODE_HW:
1187 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1188 ecc_code[0] = ((val >> 8) & 0xFF);
1189 ecc_code[1] = ((val >> 0) & 0xFF);
1190 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1191 ecc_code[2] = ((val >> 24) & 0xFF);
1192 ecc_code[3] = ((val >> 16) & 0xFF);
1193 ecc_code[4] = ((val >> 8) & 0xFF);
1194 ecc_code[5] = ((val >> 0) & 0xFF);
1195 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1196 ecc_code[6] = ((val >> 24) & 0xFF);
1197 ecc_code[7] = ((val >> 16) & 0xFF);
1198 ecc_code[8] = ((val >> 8) & 0xFF);
1199 ecc_code[9] = ((val >> 0) & 0xFF);
1200 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1201 ecc_code[10] = ((val >> 24) & 0xFF);
1202 ecc_code[11] = ((val >> 16) & 0xFF);
1203 ecc_code[12] = ((val >> 8) & 0xFF);
1204 ecc_code[13] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1206 ecc_code[14] = ((val >> 24) & 0xFF);
1207 ecc_code[15] = ((val >> 16) & 0xFF);
1208 ecc_code[16] = ((val >> 8) & 0xFF);
1209 ecc_code[17] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1211 ecc_code[18] = ((val >> 24) & 0xFF);
1212 ecc_code[19] = ((val >> 16) & 0xFF);
1213 ecc_code[20] = ((val >> 8) & 0xFF);
1214 ecc_code[21] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1216 ecc_code[22] = ((val >> 24) & 0xFF);
1217 ecc_code[23] = ((val >> 16) & 0xFF);
1218 ecc_code[24] = ((val >> 8) & 0xFF);
1219 ecc_code[25] = ((val >> 0) & 0xFF);
1220 break;
1221 default:
1222 return -EINVAL;
1223 }
1224
1225
1226 switch (info->ecc_opt) {
1227 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1228
1229
1230
1231 for (j = 0; j < eccbytes; j++)
1232 ecc_calc[j] ^= bch4_polynomial[j];
1233 break;
1234 case OMAP_ECC_BCH4_CODE_HW:
1235
1236 ecc_calc[eccbytes - 1] = 0x0;
1237 break;
1238 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1239
1240
1241
1242 for (j = 0; j < eccbytes; j++)
1243 ecc_calc[j] ^= bch8_polynomial[j];
1244 break;
1245 case OMAP_ECC_BCH8_CODE_HW:
1246
1247 ecc_calc[eccbytes - 1] = 0x0;
1248 break;
1249 case OMAP_ECC_BCH16_CODE_HW:
1250 break;
1251 default:
1252 return -EINVAL;
1253 }
1254
1255 return 0;
1256 }
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1269 const u_char *dat, u_char *ecc_calc)
1270 {
1271 return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1272 }
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1283 const u_char *dat, u_char *ecc_calc)
1284 {
1285 struct omap_nand_info *info = mtd_to_omap(mtd);
1286 int eccbytes = info->nand.ecc.bytes;
1287 unsigned long nsectors;
1288 int i, ret;
1289
1290 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1291 for (i = 0; i < nsectors; i++) {
1292 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1293 if (ret)
1294 return ret;
1295
1296 ecc_calc += eccbytes;
1297 }
1298
1299 return 0;
1300 }
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312 static int erased_sector_bitflips(u_char *data, u_char *oob,
1313 struct omap_nand_info *info)
1314 {
1315 int flip_bits = 0, i;
1316
1317 for (i = 0; i < info->nand.ecc.size; i++) {
1318 flip_bits += hweight8(~data[i]);
1319 if (flip_bits > info->nand.ecc.strength)
1320 return 0;
1321 }
1322
1323 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1324 flip_bits += hweight8(~oob[i]);
1325 if (flip_bits > info->nand.ecc.strength)
1326 return 0;
1327 }
1328
1329
1330
1331
1332
1333 if (flip_bits) {
1334 memset(data, 0xFF, info->nand.ecc.size);
1335 memset(oob, 0xFF, info->nand.ecc.bytes);
1336 }
1337
1338 return flip_bits;
1339 }
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1353 u_char *read_ecc, u_char *calc_ecc)
1354 {
1355 struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1356 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1357 int eccsteps = info->nand.ecc.steps;
1358 int i , j, stat = 0;
1359 int eccflag, actual_eccbytes;
1360 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1361 u_char *ecc_vec = calc_ecc;
1362 u_char *spare_ecc = read_ecc;
1363 u_char *erased_ecc_vec;
1364 u_char *buf;
1365 int bitflip_count;
1366 bool is_error_reported = false;
1367 u32 bit_pos, byte_pos, error_max, pos;
1368 int err;
1369
1370 switch (info->ecc_opt) {
1371 case OMAP_ECC_BCH4_CODE_HW:
1372
1373 actual_eccbytes = ecc->bytes - 1;
1374 erased_ecc_vec = bch4_vector;
1375 break;
1376 case OMAP_ECC_BCH8_CODE_HW:
1377
1378 actual_eccbytes = ecc->bytes - 1;
1379 erased_ecc_vec = bch8_vector;
1380 break;
1381 case OMAP_ECC_BCH16_CODE_HW:
1382 actual_eccbytes = ecc->bytes;
1383 erased_ecc_vec = bch16_vector;
1384 break;
1385 default:
1386 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1387 return -EINVAL;
1388 }
1389
1390
1391 memset(err_vec, 0, sizeof(err_vec));
1392
1393 for (i = 0; i < eccsteps ; i++) {
1394 eccflag = 0;
1395
1396
1397
1398
1399
1400 for (j = 0; j < actual_eccbytes; j++) {
1401 if (calc_ecc[j] != 0) {
1402 eccflag = 1;
1403 break;
1404 }
1405 }
1406
1407 if (eccflag == 1) {
1408 if (memcmp(calc_ecc, erased_ecc_vec,
1409 actual_eccbytes) == 0) {
1410
1411
1412
1413
1414 } else {
1415 buf = &data[info->nand.ecc.size * i];
1416
1417
1418
1419
1420
1421 bitflip_count = erased_sector_bitflips(
1422 buf, read_ecc, info);
1423 if (bitflip_count) {
1424
1425
1426
1427
1428 stat += bitflip_count;
1429 } else {
1430
1431
1432
1433
1434
1435
1436 err_vec[i].error_reported = true;
1437 is_error_reported = true;
1438 }
1439 }
1440 }
1441
1442
1443 calc_ecc += ecc->bytes;
1444 read_ecc += ecc->bytes;
1445 }
1446
1447
1448 if (!is_error_reported)
1449 return stat;
1450
1451
1452 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1453
1454 err = 0;
1455 for (i = 0; i < eccsteps; i++) {
1456 if (err_vec[i].error_uncorrectable) {
1457 dev_err(&info->pdev->dev,
1458 "uncorrectable bit-flips found\n");
1459 err = -EBADMSG;
1460 } else if (err_vec[i].error_reported) {
1461 for (j = 0; j < err_vec[i].error_count; j++) {
1462 switch (info->ecc_opt) {
1463 case OMAP_ECC_BCH4_CODE_HW:
1464
1465 pos = err_vec[i].error_loc[j] +
1466 BCH4_BIT_PAD;
1467 break;
1468 case OMAP_ECC_BCH8_CODE_HW:
1469 case OMAP_ECC_BCH16_CODE_HW:
1470 pos = err_vec[i].error_loc[j];
1471 break;
1472 default:
1473 return -EINVAL;
1474 }
1475 error_max = (ecc->size + actual_eccbytes) * 8;
1476
1477 bit_pos = pos % 8;
1478
1479
1480 byte_pos = (error_max - pos - 1) / 8;
1481
1482 if (pos < error_max) {
1483 if (byte_pos < 512) {
1484 pr_debug("bitflip@dat[%d]=%x\n",
1485 byte_pos, data[byte_pos]);
1486 data[byte_pos] ^= 1 << bit_pos;
1487 } else {
1488 pr_debug("bitflip@oob[%d]=%x\n",
1489 (byte_pos - 512),
1490 spare_ecc[byte_pos - 512]);
1491 spare_ecc[byte_pos - 512] ^=
1492 1 << bit_pos;
1493 }
1494 } else {
1495 dev_err(&info->pdev->dev,
1496 "invalid bit-flip @ %d:%d\n",
1497 byte_pos, bit_pos);
1498 err = -EBADMSG;
1499 }
1500 }
1501 }
1502
1503
1504 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1505
1506
1507 data += ecc->size;
1508 spare_ecc += ecc->bytes;
1509 }
1510
1511 return (err) ? err : stat;
1512 }
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1524 int oob_required, int page)
1525 {
1526 struct mtd_info *mtd = nand_to_mtd(chip);
1527 int ret;
1528 uint8_t *ecc_calc = chip->ecc.calc_buf;
1529
1530 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1531
1532
1533 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1534
1535
1536 chip->legacy.write_buf(chip, buf, mtd->writesize);
1537
1538
1539 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1540
1541 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1542 chip->ecc.total);
1543 if (ret)
1544 return ret;
1545
1546
1547 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1548
1549 return nand_prog_page_end_op(chip);
1550 }
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1564 u32 data_len, const u8 *buf,
1565 int oob_required, int page)
1566 {
1567 struct mtd_info *mtd = nand_to_mtd(chip);
1568 u8 *ecc_calc = chip->ecc.calc_buf;
1569 int ecc_size = chip->ecc.size;
1570 int ecc_bytes = chip->ecc.bytes;
1571 int ecc_steps = chip->ecc.steps;
1572 u32 start_step = offset / ecc_size;
1573 u32 end_step = (offset + data_len - 1) / ecc_size;
1574 int step, ret = 0;
1575
1576
1577
1578
1579
1580
1581
1582 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1583
1584
1585 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1586
1587
1588 chip->legacy.write_buf(chip, buf, mtd->writesize);
1589
1590 for (step = 0; step < ecc_steps; step++) {
1591
1592 if (step < start_step || step > end_step)
1593 memset(ecc_calc, 0xff, ecc_bytes);
1594 else
1595 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1596
1597 if (ret)
1598 return ret;
1599
1600 buf += ecc_size;
1601 ecc_calc += ecc_bytes;
1602 }
1603
1604
1605
1606 ecc_calc = chip->ecc.calc_buf;
1607 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1608 chip->ecc.total);
1609 if (ret)
1610 return ret;
1611
1612
1613 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1614
1615 return nand_prog_page_end_op(chip);
1616 }
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1633 int oob_required, int page)
1634 {
1635 struct mtd_info *mtd = nand_to_mtd(chip);
1636 uint8_t *ecc_calc = chip->ecc.calc_buf;
1637 uint8_t *ecc_code = chip->ecc.code_buf;
1638 int stat, ret;
1639 unsigned int max_bitflips = 0;
1640
1641 nand_read_page_op(chip, page, 0, NULL, 0);
1642
1643
1644 chip->ecc.hwctl(chip, NAND_ECC_READ);
1645
1646
1647 chip->legacy.read_buf(chip, buf, mtd->writesize);
1648
1649
1650 nand_change_read_column_op(chip,
1651 mtd->writesize + BADBLOCK_MARKER_LENGTH,
1652 chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1653 chip->ecc.total, false);
1654
1655
1656 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1657
1658 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1659 chip->ecc.total);
1660 if (ret)
1661 return ret;
1662
1663 stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1664
1665 if (stat < 0) {
1666 mtd->ecc_stats.failed++;
1667 } else {
1668 mtd->ecc_stats.corrected += stat;
1669 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1670 }
1671
1672 return max_bitflips;
1673 }
1674
1675
1676
1677
1678
1679 static bool is_elm_present(struct omap_nand_info *info,
1680 struct device_node *elm_node)
1681 {
1682 struct platform_device *pdev;
1683
1684
1685 if (!elm_node) {
1686 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1687 return false;
1688 }
1689 pdev = of_find_device_by_node(elm_node);
1690
1691 if (!pdev) {
1692 dev_err(&info->pdev->dev, "ELM device not found\n");
1693 return false;
1694 }
1695
1696 info->elm_dev = &pdev->dev;
1697 return true;
1698 }
1699
1700 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1701 {
1702 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1703
1704 switch (info->ecc_opt) {
1705 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1706 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1707 ecc_needs_omap_bch = false;
1708 ecc_needs_bch = true;
1709 ecc_needs_elm = false;
1710 break;
1711 case OMAP_ECC_BCH4_CODE_HW:
1712 case OMAP_ECC_BCH8_CODE_HW:
1713 case OMAP_ECC_BCH16_CODE_HW:
1714 ecc_needs_omap_bch = true;
1715 ecc_needs_bch = false;
1716 ecc_needs_elm = true;
1717 break;
1718 default:
1719 ecc_needs_omap_bch = false;
1720 ecc_needs_bch = false;
1721 ecc_needs_elm = false;
1722 break;
1723 }
1724
1725 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1726 dev_err(&info->pdev->dev,
1727 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1728 return false;
1729 }
1730 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1731 dev_err(&info->pdev->dev,
1732 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1733 return false;
1734 }
1735 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1736 dev_err(&info->pdev->dev, "ELM not available\n");
1737 return false;
1738 }
1739
1740 return true;
1741 }
1742
1743 static const char * const nand_xfer_types[] = {
1744 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1745 [NAND_OMAP_POLLED] = "polled",
1746 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1747 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1748 };
1749
1750 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1751 {
1752 struct device_node *child = dev->of_node;
1753 int i;
1754 const char *s;
1755 u32 cs;
1756
1757 if (of_property_read_u32(child, "reg", &cs) < 0) {
1758 dev_err(dev, "reg not found in DT\n");
1759 return -EINVAL;
1760 }
1761
1762 info->gpmc_cs = cs;
1763
1764
1765 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1766 if (!info->elm_of_node) {
1767 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1768 if (!info->elm_of_node)
1769 dev_dbg(dev, "ti,elm-id not in DT\n");
1770 }
1771
1772
1773 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1774 dev_err(dev, "ti,nand-ecc-opt not found\n");
1775 return -EINVAL;
1776 }
1777
1778 if (!strcmp(s, "sw")) {
1779 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1780 } else if (!strcmp(s, "ham1") ||
1781 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1782 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1783 } else if (!strcmp(s, "bch4")) {
1784 if (info->elm_of_node)
1785 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1786 else
1787 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1788 } else if (!strcmp(s, "bch8")) {
1789 if (info->elm_of_node)
1790 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1791 else
1792 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1793 } else if (!strcmp(s, "bch16")) {
1794 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1795 } else {
1796 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1797 return -EINVAL;
1798 }
1799
1800
1801 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1802 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1803 if (!strcasecmp(s, nand_xfer_types[i])) {
1804 info->xfer_type = i;
1805 return 0;
1806 }
1807 }
1808
1809 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1810 return -EINVAL;
1811 }
1812
1813 return 0;
1814 }
1815
1816 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1817 struct mtd_oob_region *oobregion)
1818 {
1819 struct omap_nand_info *info = mtd_to_omap(mtd);
1820 struct nand_chip *chip = &info->nand;
1821 int off = BADBLOCK_MARKER_LENGTH;
1822
1823 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1824 !(chip->options & NAND_BUSWIDTH_16))
1825 off = 1;
1826
1827 if (section)
1828 return -ERANGE;
1829
1830 oobregion->offset = off;
1831 oobregion->length = chip->ecc.total;
1832
1833 return 0;
1834 }
1835
1836 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1837 struct mtd_oob_region *oobregion)
1838 {
1839 struct omap_nand_info *info = mtd_to_omap(mtd);
1840 struct nand_chip *chip = &info->nand;
1841 int off = BADBLOCK_MARKER_LENGTH;
1842
1843 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1844 !(chip->options & NAND_BUSWIDTH_16))
1845 off = 1;
1846
1847 if (section)
1848 return -ERANGE;
1849
1850 off += chip->ecc.total;
1851 if (off >= mtd->oobsize)
1852 return -ERANGE;
1853
1854 oobregion->offset = off;
1855 oobregion->length = mtd->oobsize - off;
1856
1857 return 0;
1858 }
1859
1860 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1861 .ecc = omap_ooblayout_ecc,
1862 .free = omap_ooblayout_free,
1863 };
1864
1865 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1866 struct mtd_oob_region *oobregion)
1867 {
1868 struct nand_chip *chip = mtd_to_nand(mtd);
1869 int off = BADBLOCK_MARKER_LENGTH;
1870
1871 if (section >= chip->ecc.steps)
1872 return -ERANGE;
1873
1874
1875
1876
1877
1878 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1879 oobregion->length = chip->ecc.bytes;
1880
1881 return 0;
1882 }
1883
1884 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1885 struct mtd_oob_region *oobregion)
1886 {
1887 struct nand_chip *chip = mtd_to_nand(mtd);
1888 int off = BADBLOCK_MARKER_LENGTH;
1889
1890 if (section)
1891 return -ERANGE;
1892
1893
1894
1895
1896
1897 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1898 if (off >= mtd->oobsize)
1899 return -ERANGE;
1900
1901 oobregion->offset = off;
1902 oobregion->length = mtd->oobsize - off;
1903
1904 return 0;
1905 }
1906
1907 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1908 .ecc = omap_sw_ooblayout_ecc,
1909 .free = omap_sw_ooblayout_free,
1910 };
1911
1912 static int omap_nand_attach_chip(struct nand_chip *chip)
1913 {
1914 struct mtd_info *mtd = nand_to_mtd(chip);
1915 struct omap_nand_info *info = mtd_to_omap(mtd);
1916 struct device *dev = &info->pdev->dev;
1917 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1918 int oobbytes_per_step;
1919 dma_cap_mask_t mask;
1920 int err;
1921
1922 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1923 chip->bbt_options |= NAND_BBT_NO_OOB;
1924 else
1925 chip->options |= NAND_SKIP_BBTSCAN;
1926
1927
1928 switch (info->xfer_type) {
1929 case NAND_OMAP_PREFETCH_POLLED:
1930 chip->legacy.read_buf = omap_read_buf_pref;
1931 chip->legacy.write_buf = omap_write_buf_pref;
1932 break;
1933
1934 case NAND_OMAP_POLLED:
1935
1936 break;
1937
1938 case NAND_OMAP_PREFETCH_DMA:
1939 dma_cap_zero(mask);
1940 dma_cap_set(DMA_SLAVE, mask);
1941 info->dma = dma_request_chan(dev->parent, "rxtx");
1942
1943 if (IS_ERR(info->dma)) {
1944 dev_err(dev, "DMA engine request failed\n");
1945 return PTR_ERR(info->dma);
1946 } else {
1947 struct dma_slave_config cfg;
1948
1949 memset(&cfg, 0, sizeof(cfg));
1950 cfg.src_addr = info->phys_base;
1951 cfg.dst_addr = info->phys_base;
1952 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1953 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1954 cfg.src_maxburst = 16;
1955 cfg.dst_maxburst = 16;
1956 err = dmaengine_slave_config(info->dma, &cfg);
1957 if (err) {
1958 dev_err(dev,
1959 "DMA engine slave config failed: %d\n",
1960 err);
1961 return err;
1962 }
1963 chip->legacy.read_buf = omap_read_buf_dma_pref;
1964 chip->legacy.write_buf = omap_write_buf_dma_pref;
1965 }
1966 break;
1967
1968 case NAND_OMAP_PREFETCH_IRQ:
1969 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1970 if (info->gpmc_irq_fifo <= 0) {
1971 dev_err(dev, "Error getting fifo IRQ\n");
1972 return -ENODEV;
1973 }
1974 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1975 omap_nand_irq, IRQF_SHARED,
1976 "gpmc-nand-fifo", info);
1977 if (err) {
1978 dev_err(dev, "Requesting IRQ %d, error %d\n",
1979 info->gpmc_irq_fifo, err);
1980 info->gpmc_irq_fifo = 0;
1981 return err;
1982 }
1983
1984 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1985 if (info->gpmc_irq_count <= 0) {
1986 dev_err(dev, "Error getting IRQ count\n");
1987 return -ENODEV;
1988 }
1989 err = devm_request_irq(dev, info->gpmc_irq_count,
1990 omap_nand_irq, IRQF_SHARED,
1991 "gpmc-nand-count", info);
1992 if (err) {
1993 dev_err(dev, "Requesting IRQ %d, error %d\n",
1994 info->gpmc_irq_count, err);
1995 info->gpmc_irq_count = 0;
1996 return err;
1997 }
1998
1999 chip->legacy.read_buf = omap_read_buf_irq_pref;
2000 chip->legacy.write_buf = omap_write_buf_irq_pref;
2001
2002 break;
2003
2004 default:
2005 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2006 return -EINVAL;
2007 }
2008
2009 if (!omap2_nand_ecc_check(info))
2010 return -EINVAL;
2011
2012
2013
2014
2015
2016 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2017 chip->ecc.mode = NAND_ECC_SOFT;
2018 chip->ecc.algo = NAND_ECC_HAMMING;
2019 return 0;
2020 }
2021
2022
2023 switch (info->ecc_opt) {
2024 case OMAP_ECC_HAM1_CODE_HW:
2025 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2026 chip->ecc.mode = NAND_ECC_HW;
2027 chip->ecc.bytes = 3;
2028 chip->ecc.size = 512;
2029 chip->ecc.strength = 1;
2030 chip->ecc.calculate = omap_calculate_ecc;
2031 chip->ecc.hwctl = omap_enable_hwecc;
2032 chip->ecc.correct = omap_correct_data;
2033 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2034 oobbytes_per_step = chip->ecc.bytes;
2035
2036 if (!(chip->options & NAND_BUSWIDTH_16))
2037 min_oobbytes = 1;
2038
2039 break;
2040
2041 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2042 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2043 chip->ecc.mode = NAND_ECC_HW;
2044 chip->ecc.size = 512;
2045 chip->ecc.bytes = 7;
2046 chip->ecc.strength = 4;
2047 chip->ecc.hwctl = omap_enable_hwecc_bch;
2048 chip->ecc.correct = nand_bch_correct_data;
2049 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2050 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2051
2052 oobbytes_per_step = chip->ecc.bytes + 1;
2053
2054 chip->ecc.priv = nand_bch_init(mtd);
2055 if (!chip->ecc.priv) {
2056 dev_err(dev, "Unable to use BCH library\n");
2057 return -EINVAL;
2058 }
2059 break;
2060
2061 case OMAP_ECC_BCH4_CODE_HW:
2062 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2063 chip->ecc.mode = NAND_ECC_HW;
2064 chip->ecc.size = 512;
2065
2066 chip->ecc.bytes = 7 + 1;
2067 chip->ecc.strength = 4;
2068 chip->ecc.hwctl = omap_enable_hwecc_bch;
2069 chip->ecc.correct = omap_elm_correct_data;
2070 chip->ecc.read_page = omap_read_page_bch;
2071 chip->ecc.write_page = omap_write_page_bch;
2072 chip->ecc.write_subpage = omap_write_subpage_bch;
2073 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2074 oobbytes_per_step = chip->ecc.bytes;
2075
2076 err = elm_config(info->elm_dev, BCH4_ECC,
2077 mtd->writesize / chip->ecc.size,
2078 chip->ecc.size, chip->ecc.bytes);
2079 if (err < 0)
2080 return err;
2081 break;
2082
2083 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2084 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2085 chip->ecc.mode = NAND_ECC_HW;
2086 chip->ecc.size = 512;
2087 chip->ecc.bytes = 13;
2088 chip->ecc.strength = 8;
2089 chip->ecc.hwctl = omap_enable_hwecc_bch;
2090 chip->ecc.correct = nand_bch_correct_data;
2091 chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2092 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2093
2094 oobbytes_per_step = chip->ecc.bytes + 1;
2095
2096 chip->ecc.priv = nand_bch_init(mtd);
2097 if (!chip->ecc.priv) {
2098 dev_err(dev, "unable to use BCH library\n");
2099 return -EINVAL;
2100 }
2101 break;
2102
2103 case OMAP_ECC_BCH8_CODE_HW:
2104 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2105 chip->ecc.mode = NAND_ECC_HW;
2106 chip->ecc.size = 512;
2107
2108 chip->ecc.bytes = 13 + 1;
2109 chip->ecc.strength = 8;
2110 chip->ecc.hwctl = omap_enable_hwecc_bch;
2111 chip->ecc.correct = omap_elm_correct_data;
2112 chip->ecc.read_page = omap_read_page_bch;
2113 chip->ecc.write_page = omap_write_page_bch;
2114 chip->ecc.write_subpage = omap_write_subpage_bch;
2115 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2116 oobbytes_per_step = chip->ecc.bytes;
2117
2118 err = elm_config(info->elm_dev, BCH8_ECC,
2119 mtd->writesize / chip->ecc.size,
2120 chip->ecc.size, chip->ecc.bytes);
2121 if (err < 0)
2122 return err;
2123
2124 break;
2125
2126 case OMAP_ECC_BCH16_CODE_HW:
2127 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2128 chip->ecc.mode = NAND_ECC_HW;
2129 chip->ecc.size = 512;
2130 chip->ecc.bytes = 26;
2131 chip->ecc.strength = 16;
2132 chip->ecc.hwctl = omap_enable_hwecc_bch;
2133 chip->ecc.correct = omap_elm_correct_data;
2134 chip->ecc.read_page = omap_read_page_bch;
2135 chip->ecc.write_page = omap_write_page_bch;
2136 chip->ecc.write_subpage = omap_write_subpage_bch;
2137 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2138 oobbytes_per_step = chip->ecc.bytes;
2139
2140 err = elm_config(info->elm_dev, BCH16_ECC,
2141 mtd->writesize / chip->ecc.size,
2142 chip->ecc.size, chip->ecc.bytes);
2143 if (err < 0)
2144 return err;
2145
2146 break;
2147 default:
2148 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2149 return -EINVAL;
2150 }
2151
2152
2153 min_oobbytes += (oobbytes_per_step *
2154 (mtd->writesize / chip->ecc.size));
2155 if (mtd->oobsize < min_oobbytes) {
2156 dev_err(dev,
2157 "Not enough OOB bytes: required = %d, available=%d\n",
2158 min_oobbytes, mtd->oobsize);
2159 return -EINVAL;
2160 }
2161
2162 return 0;
2163 }
2164
2165 static const struct nand_controller_ops omap_nand_controller_ops = {
2166 .attach_chip = omap_nand_attach_chip,
2167 };
2168
2169
2170 static struct nand_controller omap_gpmc_controller;
2171 static bool omap_gpmc_controller_initialized;
2172
2173 static int omap_nand_probe(struct platform_device *pdev)
2174 {
2175 struct omap_nand_info *info;
2176 struct mtd_info *mtd;
2177 struct nand_chip *nand_chip;
2178 int err;
2179 struct resource *res;
2180 struct device *dev = &pdev->dev;
2181
2182 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2183 GFP_KERNEL);
2184 if (!info)
2185 return -ENOMEM;
2186
2187 info->pdev = pdev;
2188
2189 err = omap_get_dt_info(dev, info);
2190 if (err)
2191 return err;
2192
2193 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2194 if (!info->ops) {
2195 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2196 return -ENODEV;
2197 }
2198
2199 nand_chip = &info->nand;
2200 mtd = nand_to_mtd(nand_chip);
2201 mtd->dev.parent = &pdev->dev;
2202 nand_chip->ecc.priv = NULL;
2203 nand_set_flash_node(nand_chip, dev->of_node);
2204
2205 if (!mtd->name) {
2206 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2207 "omap2-nand.%d", info->gpmc_cs);
2208 if (!mtd->name) {
2209 dev_err(&pdev->dev, "Failed to set MTD name\n");
2210 return -ENOMEM;
2211 }
2212 }
2213
2214 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2215 nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2216 if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2217 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2218
2219 info->phys_base = res->start;
2220
2221 if (!omap_gpmc_controller_initialized) {
2222 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2223 nand_controller_init(&omap_gpmc_controller);
2224 omap_gpmc_controller_initialized = true;
2225 }
2226
2227 nand_chip->controller = &omap_gpmc_controller;
2228
2229 nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2230 nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
2231
2232 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2233 GPIOD_IN);
2234 if (IS_ERR(info->ready_gpiod)) {
2235 dev_err(dev, "failed to get ready gpio\n");
2236 return PTR_ERR(info->ready_gpiod);
2237 }
2238
2239
2240
2241
2242
2243
2244
2245
2246 if (info->ready_gpiod) {
2247 nand_chip->legacy.dev_ready = omap_dev_ready;
2248 nand_chip->legacy.chip_delay = 0;
2249 } else {
2250 nand_chip->legacy.waitfunc = omap_wait;
2251 nand_chip->legacy.chip_delay = 50;
2252 }
2253
2254 if (info->flash_bbt)
2255 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2256
2257
2258 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2259
2260 err = nand_scan(nand_chip, 1);
2261 if (err)
2262 goto return_error;
2263
2264 err = mtd_device_register(mtd, NULL, 0);
2265 if (err)
2266 goto cleanup_nand;
2267
2268 platform_set_drvdata(pdev, mtd);
2269
2270 return 0;
2271
2272 cleanup_nand:
2273 nand_cleanup(nand_chip);
2274
2275 return_error:
2276 if (!IS_ERR_OR_NULL(info->dma))
2277 dma_release_channel(info->dma);
2278 if (nand_chip->ecc.priv) {
2279 nand_bch_free(nand_chip->ecc.priv);
2280 nand_chip->ecc.priv = NULL;
2281 }
2282 return err;
2283 }
2284
2285 static int omap_nand_remove(struct platform_device *pdev)
2286 {
2287 struct mtd_info *mtd = platform_get_drvdata(pdev);
2288 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2289 struct omap_nand_info *info = mtd_to_omap(mtd);
2290 if (nand_chip->ecc.priv) {
2291 nand_bch_free(nand_chip->ecc.priv);
2292 nand_chip->ecc.priv = NULL;
2293 }
2294 if (info->dma)
2295 dma_release_channel(info->dma);
2296 nand_release(nand_chip);
2297 return 0;
2298 }
2299
2300 static const struct of_device_id omap_nand_ids[] = {
2301 { .compatible = "ti,omap2-nand", },
2302 {},
2303 };
2304 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2305
2306 static struct platform_driver omap_nand_driver = {
2307 .probe = omap_nand_probe,
2308 .remove = omap_nand_remove,
2309 .driver = {
2310 .name = DRIVER_NAME,
2311 .of_match_table = of_match_ptr(omap_nand_ids),
2312 },
2313 };
2314
2315 module_platform_driver(omap_nand_driver);
2316
2317 MODULE_ALIAS("platform:" DRIVER_NAME);
2318 MODULE_LICENSE("GPL");
2319 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");