root/drivers/mtd/nand/raw/denali.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_denali_chip
  2. to_denali_controller
  3. denali_direct_read
  4. denali_direct_write
  5. denali_indexed_read
  6. denali_indexed_write
  7. denali_enable_irq
  8. denali_disable_irq
  9. denali_clear_irq
  10. denali_clear_irq_all
  11. denali_isr
  12. denali_reset_irq
  13. denali_wait_for_irq
  14. denali_select_target
  15. denali_change_column
  16. denali_payload_xfer
  17. denali_oob_xfer
  18. denali_read_raw
  19. denali_write_raw
  20. denali_read_page_raw
  21. denali_write_page_raw
  22. denali_read_oob
  23. denali_write_oob
  24. denali_check_erased_page
  25. denali_hw_ecc_fixup
  26. denali_sw_ecc_fixup
  27. denali_setup_dma64
  28. denali_setup_dma32
  29. denali_pio_read
  30. denali_pio_write
  31. denali_pio_xfer
  32. denali_dma_xfer
  33. denali_page_xfer
  34. denali_read_page
  35. denali_write_page
  36. denali_setup_data_interface
  37. denali_calc_ecc_bytes
  38. denali_ooblayout_ecc
  39. denali_ooblayout_free
  40. denali_multidev_fixup
  41. denali_attach_chip
  42. denali_exec_in8
  43. denali_exec_in16
  44. denali_exec_in
  45. denali_exec_out8
  46. denali_exec_out16
  47. denali_exec_out
  48. denali_exec_waitrdy
  49. denali_exec_instr
  50. denali_exec_op
  51. denali_chip_init
  52. denali_init
  53. denali_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * NAND Flash Controller Device Driver
   4  * Copyright © 2009-2010, Intel Corporation and its suppliers.
   5  *
   6  * Copyright (c) 2017-2019 Socionext Inc.
   7  *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
   8  */
   9 
  10 #include <linux/bitfield.h>
  11 #include <linux/completion.h>
  12 #include <linux/dma-mapping.h>
  13 #include <linux/interrupt.h>
  14 #include <linux/io.h>
  15 #include <linux/module.h>
  16 #include <linux/mtd/mtd.h>
  17 #include <linux/mtd/rawnand.h>
  18 #include <linux/slab.h>
  19 #include <linux/spinlock.h>
  20 
  21 #include "denali.h"
  22 
  23 #define DENALI_NAND_NAME    "denali-nand"
  24 #define DENALI_DEFAULT_OOB_SKIP_BYTES   8
  25 
  26 /* for Indexed Addressing */
  27 #define DENALI_INDEXED_CTRL     0x00
  28 #define DENALI_INDEXED_DATA     0x10
  29 
  30 #define DENALI_MAP00            (0 << 26)       /* direct access to buffer */
  31 #define DENALI_MAP01            (1 << 26)       /* read/write pages in PIO */
  32 #define DENALI_MAP10            (2 << 26)       /* high-level control plane */
  33 #define DENALI_MAP11            (3 << 26)       /* direct controller access */
  34 
  35 /* MAP11 access cycle type */
  36 #define DENALI_MAP11_CMD        ((DENALI_MAP11) | 0)    /* command cycle */
  37 #define DENALI_MAP11_ADDR       ((DENALI_MAP11) | 1)    /* address cycle */
  38 #define DENALI_MAP11_DATA       ((DENALI_MAP11) | 2)    /* data cycle */
  39 
  40 #define DENALI_BANK(denali)     ((denali)->active_bank << 24)
  41 
  42 #define DENALI_INVALID_BANK     -1
  43 
  44 static struct denali_chip *to_denali_chip(struct nand_chip *chip)
  45 {
  46         return container_of(chip, struct denali_chip, chip);
  47 }
  48 
  49 static struct denali_controller *to_denali_controller(struct nand_chip *chip)
  50 {
  51         return container_of(chip->controller, struct denali_controller,
  52                             controller);
  53 }
  54 
  55 /*
  56  * Direct Addressing - the slave address forms the control information (command
  57  * type, bank, block, and page address).  The slave data is the actual data to
  58  * be transferred.  This mode requires 28 bits of address region allocated.
  59  */
  60 static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
  61 {
  62         return ioread32(denali->host + addr);
  63 }
  64 
  65 static void denali_direct_write(struct denali_controller *denali, u32 addr,
  66                                 u32 data)
  67 {
  68         iowrite32(data, denali->host + addr);
  69 }
  70 
  71 /*
  72  * Indexed Addressing - address translation module intervenes in passing the
  73  * control information.  This mode reduces the required address range.  The
  74  * control information and transferred data are latched by the registers in
  75  * the translation module.
  76  */
  77 static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
  78 {
  79         iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
  80         return ioread32(denali->host + DENALI_INDEXED_DATA);
  81 }
  82 
  83 static void denali_indexed_write(struct denali_controller *denali, u32 addr,
  84                                  u32 data)
  85 {
  86         iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
  87         iowrite32(data, denali->host + DENALI_INDEXED_DATA);
  88 }
  89 
  90 static void denali_enable_irq(struct denali_controller *denali)
  91 {
  92         int i;
  93 
  94         for (i = 0; i < denali->nbanks; i++)
  95                 iowrite32(U32_MAX, denali->reg + INTR_EN(i));
  96         iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
  97 }
  98 
  99 static void denali_disable_irq(struct denali_controller *denali)
 100 {
 101         int i;
 102 
 103         for (i = 0; i < denali->nbanks; i++)
 104                 iowrite32(0, denali->reg + INTR_EN(i));
 105         iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
 106 }
 107 
 108 static void denali_clear_irq(struct denali_controller *denali,
 109                              int bank, u32 irq_status)
 110 {
 111         /* write one to clear bits */
 112         iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
 113 }
 114 
 115 static void denali_clear_irq_all(struct denali_controller *denali)
 116 {
 117         int i;
 118 
 119         for (i = 0; i < denali->nbanks; i++)
 120                 denali_clear_irq(denali, i, U32_MAX);
 121 }
 122 
 123 static irqreturn_t denali_isr(int irq, void *dev_id)
 124 {
 125         struct denali_controller *denali = dev_id;
 126         irqreturn_t ret = IRQ_NONE;
 127         u32 irq_status;
 128         int i;
 129 
 130         spin_lock(&denali->irq_lock);
 131 
 132         for (i = 0; i < denali->nbanks; i++) {
 133                 irq_status = ioread32(denali->reg + INTR_STATUS(i));
 134                 if (irq_status)
 135                         ret = IRQ_HANDLED;
 136 
 137                 denali_clear_irq(denali, i, irq_status);
 138 
 139                 if (i != denali->active_bank)
 140                         continue;
 141 
 142                 denali->irq_status |= irq_status;
 143 
 144                 if (denali->irq_status & denali->irq_mask)
 145                         complete(&denali->complete);
 146         }
 147 
 148         spin_unlock(&denali->irq_lock);
 149 
 150         return ret;
 151 }
 152 
 153 static void denali_reset_irq(struct denali_controller *denali)
 154 {
 155         unsigned long flags;
 156 
 157         spin_lock_irqsave(&denali->irq_lock, flags);
 158         denali->irq_status = 0;
 159         denali->irq_mask = 0;
 160         spin_unlock_irqrestore(&denali->irq_lock, flags);
 161 }
 162 
 163 static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
 164 {
 165         unsigned long time_left, flags;
 166         u32 irq_status;
 167 
 168         spin_lock_irqsave(&denali->irq_lock, flags);
 169 
 170         irq_status = denali->irq_status;
 171 
 172         if (irq_mask & irq_status) {
 173                 /* return immediately if the IRQ has already happened. */
 174                 spin_unlock_irqrestore(&denali->irq_lock, flags);
 175                 return irq_status;
 176         }
 177 
 178         denali->irq_mask = irq_mask;
 179         reinit_completion(&denali->complete);
 180         spin_unlock_irqrestore(&denali->irq_lock, flags);
 181 
 182         time_left = wait_for_completion_timeout(&denali->complete,
 183                                                 msecs_to_jiffies(1000));
 184         if (!time_left) {
 185                 dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
 186                         irq_mask);
 187                 return 0;
 188         }
 189 
 190         return denali->irq_status;
 191 }
 192 
 193 static void denali_select_target(struct nand_chip *chip, int cs)
 194 {
 195         struct denali_controller *denali = to_denali_controller(chip);
 196         struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
 197         struct mtd_info *mtd = nand_to_mtd(chip);
 198 
 199         denali->active_bank = sel->bank;
 200 
 201         iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
 202                   denali->reg + PAGES_PER_BLOCK);
 203         iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
 204                   denali->reg + DEVICE_WIDTH);
 205         iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
 206         iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
 207         iowrite32(chip->options & NAND_ROW_ADDR_3 ?
 208                   0 : TWO_ROW_ADDR_CYCLES__FLAG,
 209                   denali->reg + TWO_ROW_ADDR_CYCLES);
 210         iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
 211                   FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
 212                   denali->reg + ECC_CORRECTION);
 213         iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
 214         iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
 215         iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
 216 
 217         if (chip->options & NAND_KEEP_TIMINGS)
 218                 return;
 219 
 220         /* update timing registers unless NAND_KEEP_TIMINGS is set */
 221         iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
 222         iowrite32(sel->tcwaw_and_addr_2_data,
 223                   denali->reg + TCWAW_AND_ADDR_2_DATA);
 224         iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
 225         iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
 226         iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
 227         iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
 228         iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
 229         iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
 230 }
 231 
 232 static int denali_change_column(struct nand_chip *chip, unsigned int offset,
 233                                 void *buf, unsigned int len, bool write)
 234 {
 235         if (write)
 236                 return nand_change_write_column_op(chip, offset, buf, len,
 237                                                    false);
 238         else
 239                 return nand_change_read_column_op(chip, offset, buf, len,
 240                                                   false);
 241 }
 242 
 243 static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
 244 {
 245         struct denali_controller *denali = to_denali_controller(chip);
 246         struct mtd_info *mtd = nand_to_mtd(chip);
 247         struct nand_ecc_ctrl *ecc = &chip->ecc;
 248         int writesize = mtd->writesize;
 249         int oob_skip = denali->oob_skip_bytes;
 250         int ret, i, pos, len;
 251 
 252         for (i = 0; i < ecc->steps; i++) {
 253                 pos = i * (ecc->size + ecc->bytes);
 254                 len = ecc->size;
 255 
 256                 if (pos >= writesize) {
 257                         pos += oob_skip;
 258                 } else if (pos + len > writesize) {
 259                         /* This chunk overwraps the BBM area. Must be split */
 260                         ret = denali_change_column(chip, pos, buf,
 261                                                    writesize - pos, write);
 262                         if (ret)
 263                                 return ret;
 264 
 265                         buf += writesize - pos;
 266                         len -= writesize - pos;
 267                         pos = writesize + oob_skip;
 268                 }
 269 
 270                 ret = denali_change_column(chip, pos, buf, len, write);
 271                 if (ret)
 272                         return ret;
 273 
 274                 buf += len;
 275         }
 276 
 277         return 0;
 278 }
 279 
 280 static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
 281 {
 282         struct denali_controller *denali = to_denali_controller(chip);
 283         struct mtd_info *mtd = nand_to_mtd(chip);
 284         struct nand_ecc_ctrl *ecc = &chip->ecc;
 285         int writesize = mtd->writesize;
 286         int oobsize = mtd->oobsize;
 287         int oob_skip = denali->oob_skip_bytes;
 288         int ret, i, pos, len;
 289 
 290         /* BBM at the beginning of the OOB area */
 291         ret = denali_change_column(chip, writesize, buf, oob_skip, write);
 292         if (ret)
 293                 return ret;
 294 
 295         buf += oob_skip;
 296 
 297         for (i = 0; i < ecc->steps; i++) {
 298                 pos = ecc->size + i * (ecc->size + ecc->bytes);
 299 
 300                 if (i == ecc->steps - 1)
 301                         /* The last chunk includes OOB free */
 302                         len = writesize + oobsize - pos - oob_skip;
 303                 else
 304                         len = ecc->bytes;
 305 
 306                 if (pos >= writesize) {
 307                         pos += oob_skip;
 308                 } else if (pos + len > writesize) {
 309                         /* This chunk overwraps the BBM area. Must be split */
 310                         ret = denali_change_column(chip, pos, buf,
 311                                                    writesize - pos, write);
 312                         if (ret)
 313                                 return ret;
 314 
 315                         buf += writesize - pos;
 316                         len -= writesize - pos;
 317                         pos = writesize + oob_skip;
 318                 }
 319 
 320                 ret = denali_change_column(chip, pos, buf, len, write);
 321                 if (ret)
 322                         return ret;
 323 
 324                 buf += len;
 325         }
 326 
 327         return 0;
 328 }
 329 
 330 static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
 331                            int page)
 332 {
 333         int ret;
 334 
 335         if (!buf && !oob_buf)
 336                 return -EINVAL;
 337 
 338         ret = nand_read_page_op(chip, page, 0, NULL, 0);
 339         if (ret)
 340                 return ret;
 341 
 342         if (buf) {
 343                 ret = denali_payload_xfer(chip, buf, false);
 344                 if (ret)
 345                         return ret;
 346         }
 347 
 348         if (oob_buf) {
 349                 ret = denali_oob_xfer(chip, oob_buf, false);
 350                 if (ret)
 351                         return ret;
 352         }
 353 
 354         return 0;
 355 }
 356 
 357 static int denali_write_raw(struct nand_chip *chip, const void *buf,
 358                             const void *oob_buf, int page)
 359 {
 360         int ret;
 361 
 362         if (!buf && !oob_buf)
 363                 return -EINVAL;
 364 
 365         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 366         if (ret)
 367                 return ret;
 368 
 369         if (buf) {
 370                 ret = denali_payload_xfer(chip, (void *)buf, true);
 371                 if (ret)
 372                         return ret;
 373         }
 374 
 375         if (oob_buf) {
 376                 ret = denali_oob_xfer(chip, (void *)oob_buf, true);
 377                 if (ret)
 378                         return ret;
 379         }
 380 
 381         return nand_prog_page_end_op(chip);
 382 }
 383 
 384 static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
 385                                 int oob_required, int page)
 386 {
 387         return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
 388                                page);
 389 }
 390 
 391 static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
 392                                  int oob_required, int page)
 393 {
 394         return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
 395                                 page);
 396 }
 397 
 398 static int denali_read_oob(struct nand_chip *chip, int page)
 399 {
 400         return denali_read_raw(chip, NULL, chip->oob_poi, page);
 401 }
 402 
 403 static int denali_write_oob(struct nand_chip *chip, int page)
 404 {
 405         return denali_write_raw(chip, NULL, chip->oob_poi, page);
 406 }
 407 
 408 static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
 409                                     unsigned long uncor_ecc_flags,
 410                                     unsigned int max_bitflips)
 411 {
 412         struct denali_controller *denali = to_denali_controller(chip);
 413         struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 414         struct nand_ecc_ctrl *ecc = &chip->ecc;
 415         u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
 416         int i, stat;
 417 
 418         for (i = 0; i < ecc->steps; i++) {
 419                 if (!(uncor_ecc_flags & BIT(i)))
 420                         continue;
 421 
 422                 stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
 423                                                    ecc->bytes, NULL, 0,
 424                                                    ecc->strength);
 425                 if (stat < 0) {
 426                         ecc_stats->failed++;
 427                 } else {
 428                         ecc_stats->corrected += stat;
 429                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
 430                 }
 431 
 432                 buf += ecc->size;
 433                 ecc_code += ecc->bytes;
 434         }
 435 
 436         return max_bitflips;
 437 }
 438 
 439 static int denali_hw_ecc_fixup(struct nand_chip *chip,
 440                                unsigned long *uncor_ecc_flags)
 441 {
 442         struct denali_controller *denali = to_denali_controller(chip);
 443         struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 444         int bank = denali->active_bank;
 445         u32 ecc_cor;
 446         unsigned int max_bitflips;
 447 
 448         ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
 449         ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
 450 
 451         if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
 452                 /*
 453                  * This flag is set when uncorrectable error occurs at least in
 454                  * one ECC sector.  We can not know "how many sectors", or
 455                  * "which sector(s)".  We need erase-page check for all sectors.
 456                  */
 457                 *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
 458                 return 0;
 459         }
 460 
 461         max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
 462 
 463         /*
 464          * The register holds the maximum of per-sector corrected bitflips.
 465          * This is suitable for the return value of the ->read_page() callback.
 466          * Unfortunately, we can not know the total number of corrected bits in
 467          * the page.  Increase the stats by max_bitflips. (compromised solution)
 468          */
 469         ecc_stats->corrected += max_bitflips;
 470 
 471         return max_bitflips;
 472 }
 473 
 474 static int denali_sw_ecc_fixup(struct nand_chip *chip,
 475                                unsigned long *uncor_ecc_flags, u8 *buf)
 476 {
 477         struct denali_controller *denali = to_denali_controller(chip);
 478         struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 479         unsigned int ecc_size = chip->ecc.size;
 480         unsigned int bitflips = 0;
 481         unsigned int max_bitflips = 0;
 482         u32 err_addr, err_cor_info;
 483         unsigned int err_byte, err_sector, err_device;
 484         u8 err_cor_value;
 485         unsigned int prev_sector = 0;
 486         u32 irq_status;
 487 
 488         denali_reset_irq(denali);
 489 
 490         do {
 491                 err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
 492                 err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
 493                 err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
 494 
 495                 err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
 496                 err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
 497                                           err_cor_info);
 498                 err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
 499                                        err_cor_info);
 500 
 501                 /* reset the bitflip counter when crossing ECC sector */
 502                 if (err_sector != prev_sector)
 503                         bitflips = 0;
 504 
 505                 if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
 506                         /*
 507                          * Check later if this is a real ECC error, or
 508                          * an erased sector.
 509                          */
 510                         *uncor_ecc_flags |= BIT(err_sector);
 511                 } else if (err_byte < ecc_size) {
 512                         /*
 513                          * If err_byte is larger than ecc_size, means error
 514                          * happened in OOB, so we ignore it. It's no need for
 515                          * us to correct it err_device is represented the NAND
 516                          * error bits are happened in if there are more than
 517                          * one NAND connected.
 518                          */
 519                         int offset;
 520                         unsigned int flips_in_byte;
 521 
 522                         offset = (err_sector * ecc_size + err_byte) *
 523                                         denali->devs_per_cs + err_device;
 524 
 525                         /* correct the ECC error */
 526                         flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
 527                         buf[offset] ^= err_cor_value;
 528                         ecc_stats->corrected += flips_in_byte;
 529                         bitflips += flips_in_byte;
 530 
 531                         max_bitflips = max(max_bitflips, bitflips);
 532                 }
 533 
 534                 prev_sector = err_sector;
 535         } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
 536 
 537         /*
 538          * Once handle all ECC errors, controller will trigger an
 539          * ECC_TRANSACTION_DONE interrupt.
 540          */
 541         irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
 542         if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
 543                 return -EIO;
 544 
 545         return max_bitflips;
 546 }
 547 
 548 static void denali_setup_dma64(struct denali_controller *denali,
 549                                dma_addr_t dma_addr, int page, bool write)
 550 {
 551         u32 mode;
 552         const int page_count = 1;
 553 
 554         mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
 555 
 556         /* DMA is a three step process */
 557 
 558         /*
 559          * 1. setup transfer type, interrupt when complete,
 560          *    burst len = 64 bytes, the number of pages
 561          */
 562         denali->host_write(denali, mode,
 563                            0x01002000 | (64 << 16) |
 564                            (write ? BIT(8) : 0) | page_count);
 565 
 566         /* 2. set memory low address */
 567         denali->host_write(denali, mode, lower_32_bits(dma_addr));
 568 
 569         /* 3. set memory high address */
 570         denali->host_write(denali, mode, upper_32_bits(dma_addr));
 571 }
 572 
 573 static void denali_setup_dma32(struct denali_controller *denali,
 574                                dma_addr_t dma_addr, int page, bool write)
 575 {
 576         u32 mode;
 577         const int page_count = 1;
 578 
 579         mode = DENALI_MAP10 | DENALI_BANK(denali);
 580 
 581         /* DMA is a four step process */
 582 
 583         /* 1. setup transfer type and # of pages */
 584         denali->host_write(denali, mode | page,
 585                            0x2000 | (write ? BIT(8) : 0) | page_count);
 586 
 587         /* 2. set memory high address bits 23:8 */
 588         denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
 589 
 590         /* 3. set memory low address bits 23:8 */
 591         denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
 592 
 593         /* 4. interrupt when complete, burst len = 64 bytes */
 594         denali->host_write(denali, mode | 0x14000, 0x2400);
 595 }
 596 
 597 static int denali_pio_read(struct denali_controller *denali, u32 *buf,
 598                            size_t size, int page)
 599 {
 600         u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 601         u32 irq_status, ecc_err_mask;
 602         int i;
 603 
 604         if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 605                 ecc_err_mask = INTR__ECC_UNCOR_ERR;
 606         else
 607                 ecc_err_mask = INTR__ECC_ERR;
 608 
 609         denali_reset_irq(denali);
 610 
 611         for (i = 0; i < size / 4; i++)
 612                 buf[i] = denali->host_read(denali, addr);
 613 
 614         irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
 615         if (!(irq_status & INTR__PAGE_XFER_INC))
 616                 return -EIO;
 617 
 618         if (irq_status & INTR__ERASED_PAGE)
 619                 memset(buf, 0xff, size);
 620 
 621         return irq_status & ecc_err_mask ? -EBADMSG : 0;
 622 }
 623 
 624 static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
 625                             size_t size, int page)
 626 {
 627         u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 628         u32 irq_status;
 629         int i;
 630 
 631         denali_reset_irq(denali);
 632 
 633         for (i = 0; i < size / 4; i++)
 634                 denali->host_write(denali, addr, buf[i]);
 635 
 636         irq_status = denali_wait_for_irq(denali,
 637                                          INTR__PROGRAM_COMP |
 638                                          INTR__PROGRAM_FAIL);
 639         if (!(irq_status & INTR__PROGRAM_COMP))
 640                 return -EIO;
 641 
 642         return 0;
 643 }
 644 
 645 static int denali_pio_xfer(struct denali_controller *denali, void *buf,
 646                            size_t size, int page, bool write)
 647 {
 648         if (write)
 649                 return denali_pio_write(denali, buf, size, page);
 650         else
 651                 return denali_pio_read(denali, buf, size, page);
 652 }
 653 
 654 static int denali_dma_xfer(struct denali_controller *denali, void *buf,
 655                            size_t size, int page, bool write)
 656 {
 657         dma_addr_t dma_addr;
 658         u32 irq_mask, irq_status, ecc_err_mask;
 659         enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 660         int ret = 0;
 661 
 662         dma_addr = dma_map_single(denali->dev, buf, size, dir);
 663         if (dma_mapping_error(denali->dev, dma_addr)) {
 664                 dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
 665                 return denali_pio_xfer(denali, buf, size, page, write);
 666         }
 667 
 668         if (write) {
 669                 /*
 670                  * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
 671                  * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
 672                  * when the page program is completed.
 673                  */
 674                 irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
 675                 ecc_err_mask = 0;
 676         } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
 677                 irq_mask = INTR__DMA_CMD_COMP;
 678                 ecc_err_mask = INTR__ECC_UNCOR_ERR;
 679         } else {
 680                 irq_mask = INTR__DMA_CMD_COMP;
 681                 ecc_err_mask = INTR__ECC_ERR;
 682         }
 683 
 684         iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
 685         /*
 686          * The ->setup_dma() hook kicks DMA by using the data/command
 687          * interface, which belongs to a different AXI port from the
 688          * register interface.  Read back the register to avoid a race.
 689          */
 690         ioread32(denali->reg + DMA_ENABLE);
 691 
 692         denali_reset_irq(denali);
 693         denali->setup_dma(denali, dma_addr, page, write);
 694 
 695         irq_status = denali_wait_for_irq(denali, irq_mask);
 696         if (!(irq_status & INTR__DMA_CMD_COMP))
 697                 ret = -EIO;
 698         else if (irq_status & ecc_err_mask)
 699                 ret = -EBADMSG;
 700 
 701         iowrite32(0, denali->reg + DMA_ENABLE);
 702 
 703         dma_unmap_single(denali->dev, dma_addr, size, dir);
 704 
 705         if (irq_status & INTR__ERASED_PAGE)
 706                 memset(buf, 0xff, size);
 707 
 708         return ret;
 709 }
 710 
 711 static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
 712                             int page, bool write)
 713 {
 714         struct denali_controller *denali = to_denali_controller(chip);
 715 
 716         denali_select_target(chip, chip->cur_cs);
 717 
 718         if (denali->dma_avail)
 719                 return denali_dma_xfer(denali, buf, size, page, write);
 720         else
 721                 return denali_pio_xfer(denali, buf, size, page, write);
 722 }
 723 
 724 static int denali_read_page(struct nand_chip *chip, u8 *buf,
 725                             int oob_required, int page)
 726 {
 727         struct denali_controller *denali = to_denali_controller(chip);
 728         struct mtd_info *mtd = nand_to_mtd(chip);
 729         unsigned long uncor_ecc_flags = 0;
 730         int stat = 0;
 731         int ret;
 732 
 733         ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
 734         if (ret && ret != -EBADMSG)
 735                 return ret;
 736 
 737         if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 738                 stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
 739         else if (ret == -EBADMSG)
 740                 stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
 741 
 742         if (stat < 0)
 743                 return stat;
 744 
 745         if (uncor_ecc_flags) {
 746                 ret = denali_read_oob(chip, page);
 747                 if (ret)
 748                         return ret;
 749 
 750                 stat = denali_check_erased_page(chip, buf,
 751                                                 uncor_ecc_flags, stat);
 752         }
 753 
 754         return stat;
 755 }
 756 
 757 static int denali_write_page(struct nand_chip *chip, const u8 *buf,
 758                              int oob_required, int page)
 759 {
 760         struct mtd_info *mtd = nand_to_mtd(chip);
 761 
 762         return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
 763 }
 764 
 765 static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
 766                                        const struct nand_data_interface *conf)
 767 {
 768         struct denali_controller *denali = to_denali_controller(chip);
 769         struct denali_chip_sel *sel;
 770         const struct nand_sdr_timings *timings;
 771         unsigned long t_x, mult_x;
 772         int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
 773         int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
 774         int addr_2_data_mask;
 775         u32 tmp;
 776 
 777         timings = nand_get_sdr_timings(conf);
 778         if (IS_ERR(timings))
 779                 return PTR_ERR(timings);
 780 
 781         /* clk_x period in picoseconds */
 782         t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
 783         if (!t_x)
 784                 return -EINVAL;
 785 
 786         /*
 787          * The bus interface clock, clk_x, is phase aligned with the core clock.
 788          * The clk_x is an integral multiple N of the core clk.  The value N is
 789          * configured at IP delivery time, and its available value is 4, 5, 6.
 790          */
 791         mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
 792         if (mult_x < 4 || mult_x > 6)
 793                 return -EINVAL;
 794 
 795         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
 796                 return 0;
 797 
 798         sel = &to_denali_chip(chip)->sels[chipnr];
 799 
 800         /* tREA -> ACC_CLKS */
 801         acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
 802         acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
 803 
 804         tmp = ioread32(denali->reg + ACC_CLKS);
 805         tmp &= ~ACC_CLKS__VALUE;
 806         tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
 807         sel->acc_clks = tmp;
 808 
 809         /* tRWH -> RE_2_WE */
 810         re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
 811         re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
 812 
 813         tmp = ioread32(denali->reg + RE_2_WE);
 814         tmp &= ~RE_2_WE__VALUE;
 815         tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
 816         sel->re_2_we = tmp;
 817 
 818         /* tRHZ -> RE_2_RE */
 819         re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
 820         re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
 821 
 822         tmp = ioread32(denali->reg + RE_2_RE);
 823         tmp &= ~RE_2_RE__VALUE;
 824         tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
 825         sel->re_2_re = tmp;
 826 
 827         /*
 828          * tCCS, tWHR -> WE_2_RE
 829          *
 830          * With WE_2_RE properly set, the Denali controller automatically takes
 831          * care of the delay; the driver need not set NAND_WAIT_TCCS.
 832          */
 833         we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
 834         we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
 835 
 836         tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
 837         tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
 838         tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
 839         sel->hwhr2_and_we_2_re = tmp;
 840 
 841         /* tADL -> ADDR_2_DATA */
 842 
 843         /* for older versions, ADDR_2_DATA is only 6 bit wide */
 844         addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
 845         if (denali->revision < 0x0501)
 846                 addr_2_data_mask >>= 1;
 847 
 848         addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
 849         addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
 850 
 851         tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
 852         tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
 853         tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
 854         sel->tcwaw_and_addr_2_data = tmp;
 855 
 856         /* tREH, tWH -> RDWR_EN_HI_CNT */
 857         rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
 858                                   t_x);
 859         rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
 860 
 861         tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
 862         tmp &= ~RDWR_EN_HI_CNT__VALUE;
 863         tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
 864         sel->rdwr_en_hi_cnt = tmp;
 865 
 866         /* tRP, tWP -> RDWR_EN_LO_CNT */
 867         rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
 868         rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
 869                                      t_x);
 870         rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
 871         rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
 872         rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
 873 
 874         tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
 875         tmp &= ~RDWR_EN_LO_CNT__VALUE;
 876         tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
 877         sel->rdwr_en_lo_cnt = tmp;
 878 
 879         /* tCS, tCEA -> CS_SETUP_CNT */
 880         cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
 881                         (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
 882                         0);
 883         cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
 884 
 885         tmp = ioread32(denali->reg + CS_SETUP_CNT);
 886         tmp &= ~CS_SETUP_CNT__VALUE;
 887         tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
 888         sel->cs_setup_cnt = tmp;
 889 
 890         return 0;
 891 }
 892 
 893 int denali_calc_ecc_bytes(int step_size, int strength)
 894 {
 895         /* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
 896         return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
 897 }
 898 EXPORT_SYMBOL(denali_calc_ecc_bytes);
 899 
 900 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 901                                 struct mtd_oob_region *oobregion)
 902 {
 903         struct nand_chip *chip = mtd_to_nand(mtd);
 904         struct denali_controller *denali = to_denali_controller(chip);
 905 
 906         if (section > 0)
 907                 return -ERANGE;
 908 
 909         oobregion->offset = denali->oob_skip_bytes;
 910         oobregion->length = chip->ecc.total;
 911 
 912         return 0;
 913 }
 914 
 915 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
 916                                  struct mtd_oob_region *oobregion)
 917 {
 918         struct nand_chip *chip = mtd_to_nand(mtd);
 919         struct denali_controller *denali = to_denali_controller(chip);
 920 
 921         if (section > 0)
 922                 return -ERANGE;
 923 
 924         oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
 925         oobregion->length = mtd->oobsize - oobregion->offset;
 926 
 927         return 0;
 928 }
 929 
 930 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
 931         .ecc = denali_ooblayout_ecc,
 932         .free = denali_ooblayout_free,
 933 };
 934 
 935 static int denali_multidev_fixup(struct nand_chip *chip)
 936 {
 937         struct denali_controller *denali = to_denali_controller(chip);
 938         struct mtd_info *mtd = nand_to_mtd(chip);
 939         struct nand_memory_organization *memorg;
 940 
 941         memorg = nanddev_get_memorg(&chip->base);
 942 
 943         /*
 944          * Support for multi device:
 945          * When the IP configuration is x16 capable and two x8 chips are
 946          * connected in parallel, DEVICES_CONNECTED should be set to 2.
 947          * In this case, the core framework knows nothing about this fact,
 948          * so we should tell it the _logical_ pagesize and anything necessary.
 949          */
 950         denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
 951 
 952         /*
 953          * On some SoCs, DEVICES_CONNECTED is not auto-detected.
 954          * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
 955          */
 956         if (denali->devs_per_cs == 0) {
 957                 denali->devs_per_cs = 1;
 958                 iowrite32(1, denali->reg + DEVICES_CONNECTED);
 959         }
 960 
 961         if (denali->devs_per_cs == 1)
 962                 return 0;
 963 
 964         if (denali->devs_per_cs != 2) {
 965                 dev_err(denali->dev, "unsupported number of devices %d\n",
 966                         denali->devs_per_cs);
 967                 return -EINVAL;
 968         }
 969 
 970         /* 2 chips in parallel */
 971         memorg->pagesize <<= 1;
 972         memorg->oobsize <<= 1;
 973         mtd->size <<= 1;
 974         mtd->erasesize <<= 1;
 975         mtd->writesize <<= 1;
 976         mtd->oobsize <<= 1;
 977         chip->page_shift += 1;
 978         chip->phys_erase_shift += 1;
 979         chip->bbt_erase_shift += 1;
 980         chip->chip_shift += 1;
 981         chip->pagemask <<= 1;
 982         chip->ecc.size <<= 1;
 983         chip->ecc.bytes <<= 1;
 984         chip->ecc.strength <<= 1;
 985         denali->oob_skip_bytes <<= 1;
 986 
 987         return 0;
 988 }
 989 
 990 static int denali_attach_chip(struct nand_chip *chip)
 991 {
 992         struct denali_controller *denali = to_denali_controller(chip);
 993         struct mtd_info *mtd = nand_to_mtd(chip);
 994         int ret;
 995 
 996         ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
 997                                    mtd->oobsize - denali->oob_skip_bytes);
 998         if (ret) {
 999                 dev_err(denali->dev, "Failed to setup ECC settings.\n");
1000                 return ret;
1001         }
1002 
1003         dev_dbg(denali->dev,
1004                 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1005                 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1006 
1007         ret = denali_multidev_fixup(chip);
1008         if (ret)
1009                 return ret;
1010 
1011         return 0;
1012 }
1013 
1014 static void denali_exec_in8(struct denali_controller *denali, u32 type,
1015                             u8 *buf, unsigned int len)
1016 {
1017         int i;
1018 
1019         for (i = 0; i < len; i++)
1020                 buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
1021 }
1022 
1023 static void denali_exec_in16(struct denali_controller *denali, u32 type,
1024                              u8 *buf, unsigned int len)
1025 {
1026         u32 data;
1027         int i;
1028 
1029         for (i = 0; i < len; i += 2) {
1030                 data = denali->host_read(denali, type | DENALI_BANK(denali));
1031                 /* bit 31:24 and 15:8 are used for DDR */
1032                 buf[i] = data;
1033                 buf[i + 1] = data >> 16;
1034         }
1035 }
1036 
1037 static void denali_exec_in(struct denali_controller *denali, u32 type,
1038                            u8 *buf, unsigned int len, bool width16)
1039 {
1040         if (width16)
1041                 denali_exec_in16(denali, type, buf, len);
1042         else
1043                 denali_exec_in8(denali, type, buf, len);
1044 }
1045 
1046 static void denali_exec_out8(struct denali_controller *denali, u32 type,
1047                              const u8 *buf, unsigned int len)
1048 {
1049         int i;
1050 
1051         for (i = 0; i < len; i++)
1052                 denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
1053 }
1054 
1055 static void denali_exec_out16(struct denali_controller *denali, u32 type,
1056                               const u8 *buf, unsigned int len)
1057 {
1058         int i;
1059 
1060         for (i = 0; i < len; i += 2)
1061                 denali->host_write(denali, type | DENALI_BANK(denali),
1062                                    buf[i + 1] << 16 | buf[i]);
1063 }
1064 
1065 static void denali_exec_out(struct denali_controller *denali, u32 type,
1066                             const u8 *buf, unsigned int len, bool width16)
1067 {
1068         if (width16)
1069                 denali_exec_out16(denali, type, buf, len);
1070         else
1071                 denali_exec_out8(denali, type, buf, len);
1072 }
1073 
1074 static int denali_exec_waitrdy(struct denali_controller *denali)
1075 {
1076         u32 irq_stat;
1077 
1078         /* R/B# pin transitioned from low to high? */
1079         irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
1080 
1081         /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1082         denali_reset_irq(denali);
1083 
1084         return irq_stat & INTR__INT_ACT ? 0 : -EIO;
1085 }
1086 
1087 static int denali_exec_instr(struct nand_chip *chip,
1088                              const struct nand_op_instr *instr)
1089 {
1090         struct denali_controller *denali = to_denali_controller(chip);
1091 
1092         switch (instr->type) {
1093         case NAND_OP_CMD_INSTR:
1094                 denali_exec_out8(denali, DENALI_MAP11_CMD,
1095                                  &instr->ctx.cmd.opcode, 1);
1096                 return 0;
1097         case NAND_OP_ADDR_INSTR:
1098                 denali_exec_out8(denali, DENALI_MAP11_ADDR,
1099                                  instr->ctx.addr.addrs,
1100                                  instr->ctx.addr.naddrs);
1101                 return 0;
1102         case NAND_OP_DATA_IN_INSTR:
1103                 denali_exec_in(denali, DENALI_MAP11_DATA,
1104                                instr->ctx.data.buf.in,
1105                                instr->ctx.data.len,
1106                                !instr->ctx.data.force_8bit &&
1107                                chip->options & NAND_BUSWIDTH_16);
1108                 return 0;
1109         case NAND_OP_DATA_OUT_INSTR:
1110                 denali_exec_out(denali, DENALI_MAP11_DATA,
1111                                 instr->ctx.data.buf.out,
1112                                 instr->ctx.data.len,
1113                                 !instr->ctx.data.force_8bit &&
1114                                 chip->options & NAND_BUSWIDTH_16);
1115                 return 0;
1116         case NAND_OP_WAITRDY_INSTR:
1117                 return denali_exec_waitrdy(denali);
1118         default:
1119                 WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1120                           instr->type);
1121 
1122                 return -EINVAL;
1123         }
1124 }
1125 
1126 static int denali_exec_op(struct nand_chip *chip,
1127                           const struct nand_operation *op, bool check_only)
1128 {
1129         int i, ret;
1130 
1131         if (check_only)
1132                 return 0;
1133 
1134         denali_select_target(chip, op->cs);
1135 
1136         /*
1137          * Some commands contain NAND_OP_WAITRDY_INSTR.
1138          * irq must be cleared here to catch the R/B# interrupt there.
1139          */
1140         denali_reset_irq(to_denali_controller(chip));
1141 
1142         for (i = 0; i < op->ninstrs; i++) {
1143                 ret = denali_exec_instr(chip, &op->instrs[i]);
1144                 if (ret)
1145                         return ret;
1146         }
1147 
1148         return 0;
1149 }
1150 
1151 static const struct nand_controller_ops denali_controller_ops = {
1152         .attach_chip = denali_attach_chip,
1153         .exec_op = denali_exec_op,
1154         .setup_data_interface = denali_setup_data_interface,
1155 };
1156 
1157 int denali_chip_init(struct denali_controller *denali,
1158                      struct denali_chip *dchip)
1159 {
1160         struct nand_chip *chip = &dchip->chip;
1161         struct mtd_info *mtd = nand_to_mtd(chip);
1162         struct denali_chip *dchip2;
1163         int i, j, ret;
1164 
1165         chip->controller = &denali->controller;
1166 
1167         /* sanity checks for bank numbers */
1168         for (i = 0; i < dchip->nsels; i++) {
1169                 unsigned int bank = dchip->sels[i].bank;
1170 
1171                 if (bank >= denali->nbanks) {
1172                         dev_err(denali->dev, "unsupported bank %d\n", bank);
1173                         return -EINVAL;
1174                 }
1175 
1176                 for (j = 0; j < i; j++) {
1177                         if (bank == dchip->sels[j].bank) {
1178                                 dev_err(denali->dev,
1179                                         "bank %d is assigned twice in the same chip\n",
1180                                         bank);
1181                                 return -EINVAL;
1182                         }
1183                 }
1184 
1185                 list_for_each_entry(dchip2, &denali->chips, node) {
1186                         for (j = 0; j < dchip2->nsels; j++) {
1187                                 if (bank == dchip2->sels[j].bank) {
1188                                         dev_err(denali->dev,
1189                                                 "bank %d is already used\n",
1190                                                 bank);
1191                                         return -EINVAL;
1192                                 }
1193                         }
1194                 }
1195         }
1196 
1197         mtd->dev.parent = denali->dev;
1198 
1199         /*
1200          * Fallback to the default name if DT did not give "label" property.
1201          * Use "label" property if multiple chips are connected.
1202          */
1203         if (!mtd->name && list_empty(&denali->chips))
1204                 mtd->name = "denali-nand";
1205 
1206         if (denali->dma_avail) {
1207                 chip->options |= NAND_USE_BOUNCE_BUFFER;
1208                 chip->buf_align = 16;
1209         }
1210 
1211         /* clk rate info is needed for setup_data_interface */
1212         if (!denali->clk_rate || !denali->clk_x_rate)
1213                 chip->options |= NAND_KEEP_TIMINGS;
1214 
1215         chip->bbt_options |= NAND_BBT_USE_FLASH;
1216         chip->bbt_options |= NAND_BBT_NO_OOB;
1217         chip->options |= NAND_NO_SUBPAGE_WRITE;
1218         chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1219         chip->ecc.read_page = denali_read_page;
1220         chip->ecc.write_page = denali_write_page;
1221         chip->ecc.read_page_raw = denali_read_page_raw;
1222         chip->ecc.write_page_raw = denali_write_page_raw;
1223         chip->ecc.read_oob = denali_read_oob;
1224         chip->ecc.write_oob = denali_write_oob;
1225 
1226         mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1227 
1228         ret = nand_scan(chip, dchip->nsels);
1229         if (ret)
1230                 return ret;
1231 
1232         ret = mtd_device_register(mtd, NULL, 0);
1233         if (ret) {
1234                 dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1235                 goto cleanup_nand;
1236         }
1237 
1238         list_add_tail(&dchip->node, &denali->chips);
1239 
1240         return 0;
1241 
1242 cleanup_nand:
1243         nand_cleanup(chip);
1244 
1245         return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(denali_chip_init);
1248 
1249 int denali_init(struct denali_controller *denali)
1250 {
1251         u32 features = ioread32(denali->reg + FEATURES);
1252         int ret;
1253 
1254         nand_controller_init(&denali->controller);
1255         denali->controller.ops = &denali_controller_ops;
1256         init_completion(&denali->complete);
1257         spin_lock_init(&denali->irq_lock);
1258         INIT_LIST_HEAD(&denali->chips);
1259         denali->active_bank = DENALI_INVALID_BANK;
1260 
1261         /*
1262          * The REVISION register may not be reliable. Platforms are allowed to
1263          * override it.
1264          */
1265         if (!denali->revision)
1266                 denali->revision = swab16(ioread32(denali->reg + REVISION));
1267 
1268         denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
1269 
1270         /* the encoding changed from rev 5.0 to 5.1 */
1271         if (denali->revision < 0x0501)
1272                 denali->nbanks <<= 1;
1273 
1274         if (features & FEATURES__DMA)
1275                 denali->dma_avail = true;
1276 
1277         if (denali->dma_avail) {
1278                 int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1279 
1280                 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1281                 if (ret) {
1282                         dev_info(denali->dev,
1283                                  "Failed to set DMA mask. Disabling DMA.\n");
1284                         denali->dma_avail = false;
1285                 }
1286         }
1287 
1288         if (denali->dma_avail) {
1289                 if (denali->caps & DENALI_CAP_DMA_64BIT)
1290                         denali->setup_dma = denali_setup_dma64;
1291                 else
1292                         denali->setup_dma = denali_setup_dma32;
1293         }
1294 
1295         if (features & FEATURES__INDEX_ADDR) {
1296                 denali->host_read = denali_indexed_read;
1297                 denali->host_write = denali_indexed_write;
1298         } else {
1299                 denali->host_read = denali_direct_read;
1300                 denali->host_write = denali_direct_write;
1301         }
1302 
1303         /*
1304          * Set how many bytes should be skipped before writing data in OOB.
1305          * If a non-zero value has already been set (by firmware or something),
1306          * just use it. Otherwise, set the driver's default.
1307          */
1308         denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1309         if (!denali->oob_skip_bytes) {
1310                 denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
1311                 iowrite32(denali->oob_skip_bytes,
1312                           denali->reg + SPARE_AREA_SKIP_BYTES);
1313         }
1314 
1315         iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
1316         iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
1317         iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1318         iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
1319         iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1320 
1321         denali_clear_irq_all(denali);
1322 
1323         ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1324                                IRQF_SHARED, DENALI_NAND_NAME, denali);
1325         if (ret) {
1326                 dev_err(denali->dev, "Unable to request IRQ\n");
1327                 return ret;
1328         }
1329 
1330         denali_enable_irq(denali);
1331 
1332         return 0;
1333 }
1334 EXPORT_SYMBOL(denali_init);
1335 
1336 void denali_remove(struct denali_controller *denali)
1337 {
1338         struct denali_chip *dchip;
1339 
1340         list_for_each_entry(dchip, &denali->chips, node)
1341                 nand_release(&dchip->chip);
1342 
1343         denali_disable_irq(denali);
1344 }
1345 EXPORT_SYMBOL(denali_remove);
1346 
1347 MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1348 MODULE_AUTHOR("Intel Corporation and its suppliers");
1349 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */