This source file includes following definitions.
- hynix_nand_has_valid_jedecid
- hynix_nand_cmd_op
- hynix_nand_reg_write_op
- hynix_nand_setup_read_retry
- hynix_get_majority
- hynix_read_rr_otp
- hynix_mlc_1xnm_rr_value
- hynix_mlc_1xnm_rr_init
- hynix_nand_rr_init
- hynix_nand_extract_oobsize
- hynix_nand_extract_ecc_requirements
- hynix_nand_extract_scrambling_requirements
- hynix_nand_decode_id
- hynix_nand_cleanup
- hynix_nand_init
1
2
3
4
5
6
7
8
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11
12 #include "internals.h"
13
14 #define NAND_HYNIX_CMD_SET_PARAMS 0x36
15 #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
16
17 #define NAND_HYNIX_1XNM_RR_REPEAT 8
18
19
20
21
22
23
24
25
26 struct hynix_read_retry {
27 int nregs;
28 const u8 *regs;
29 u8 values[0];
30 };
31
32
33
34
35
36
37 struct hynix_nand {
38 const struct hynix_read_retry *read_retry;
39 };
40
41
42
43
44
45
46
47
48
49
50
51
52 struct hynix_read_retry_otp {
53 int nregs;
54 const u8 *regs;
55 const u8 *values;
56 int page;
57 int size;
58 };
59
60 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
61 {
62 u8 jedecid[5] = { };
63 int ret;
64
65 ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
66 if (ret)
67 return false;
68
69 return !strncmp("JEDEC", jedecid, sizeof(jedecid));
70 }
71
72 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
73 {
74 if (nand_has_exec_op(chip)) {
75 struct nand_op_instr instrs[] = {
76 NAND_OP_CMD(cmd, 0),
77 };
78 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
79
80 return nand_exec_op(chip, &op);
81 }
82
83 chip->legacy.cmdfunc(chip, cmd, -1, -1);
84
85 return 0;
86 }
87
88 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
89 {
90 u16 column = ((u16)addr << 8) | addr;
91
92 if (nand_has_exec_op(chip)) {
93 struct nand_op_instr instrs[] = {
94 NAND_OP_ADDR(1, &addr, 0),
95 NAND_OP_8BIT_DATA_OUT(1, &val, 0),
96 };
97 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
98
99 return nand_exec_op(chip, &op);
100 }
101
102 chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
103 chip->legacy.write_byte(chip, val);
104
105 return 0;
106 }
107
108 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
109 {
110 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
111 const u8 *values;
112 int i, ret;
113
114 values = hynix->read_retry->values +
115 (retry_mode * hynix->read_retry->nregs);
116
117
118 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
119 if (ret)
120 return ret;
121
122
123
124
125
126
127
128
129
130
131 for (i = 0; i < hynix->read_retry->nregs; i++) {
132 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
133 values[i]);
134 if (ret)
135 return ret;
136 }
137
138
139 return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
140 }
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
160 {
161 int i, j, half = repeat / 2;
162
163
164
165
166
167
168
169
170
171 for (i = 0; i < half; i++) {
172 int cnt = 0;
173 u8 val = in[i];
174
175
176 for (j = i + 1; j < repeat; j++) {
177 if (in[j] == val)
178 cnt++;
179 }
180
181
182 if (cnt > half) {
183 *out = val;
184 return 0;
185 }
186 }
187
188 return -EIO;
189 }
190
191 static int hynix_read_rr_otp(struct nand_chip *chip,
192 const struct hynix_read_retry_otp *info,
193 void *buf)
194 {
195 int i, ret;
196
197 ret = nand_reset_op(chip);
198 if (ret)
199 return ret;
200
201 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
202 if (ret)
203 return ret;
204
205 for (i = 0; i < info->nregs; i++) {
206 ret = hynix_nand_reg_write_op(chip, info->regs[i],
207 info->values[i]);
208 if (ret)
209 return ret;
210 }
211
212 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
213 if (ret)
214 return ret;
215
216
217 ret = hynix_nand_cmd_op(chip, 0x17);
218 if (ret)
219 return ret;
220
221 ret = hynix_nand_cmd_op(chip, 0x4);
222 if (ret)
223 return ret;
224
225 ret = hynix_nand_cmd_op(chip, 0x19);
226 if (ret)
227 return ret;
228
229
230 ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
231 if (ret)
232 return ret;
233
234
235 ret = nand_reset_op(chip);
236 if (ret)
237 return ret;
238
239 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
240 if (ret)
241 return ret;
242
243 ret = hynix_nand_reg_write_op(chip, 0x38, 0);
244 if (ret)
245 return ret;
246
247 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
248 if (ret)
249 return ret;
250
251 return nand_read_page_op(chip, 0, 0, NULL, 0);
252 }
253
254 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
255 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
256 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
257 (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
258
259 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
260 int mode, int reg, bool inv, u8 *val)
261 {
262 u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
263 int val_offs = (mode * nregs) + reg;
264 int set_size = nmodes * nregs;
265 int i, ret;
266
267 for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
268 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
269
270 tmp[i] = buf[val_offs + set_offs];
271 }
272
273 ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
274 if (ret)
275 return ret;
276
277 if (inv)
278 *val = ~*val;
279
280 return 0;
281 }
282
283 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
284 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
285 };
286
287 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
288 const struct hynix_read_retry_otp *info)
289 {
290 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
291 struct hynix_read_retry *rr = NULL;
292 int ret, i, j;
293 u8 nregs, nmodes;
294 u8 *buf;
295
296 buf = kmalloc(info->size, GFP_KERNEL);
297 if (!buf)
298 return -ENOMEM;
299
300 ret = hynix_read_rr_otp(chip, info, buf);
301 if (ret)
302 goto out;
303
304 ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
305 &nmodes);
306 if (ret)
307 goto out;
308
309 ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
310 NAND_HYNIX_1XNM_RR_REPEAT,
311 &nregs);
312 if (ret)
313 goto out;
314
315 rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
316 if (!rr) {
317 ret = -ENOMEM;
318 goto out;
319 }
320
321 for (i = 0; i < nmodes; i++) {
322 for (j = 0; j < nregs; j++) {
323 u8 *val = rr->values + (i * nregs);
324
325 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
326 false, val);
327 if (!ret)
328 continue;
329
330 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
331 true, val);
332 if (ret)
333 goto out;
334 }
335 }
336
337 rr->nregs = nregs;
338 rr->regs = hynix_1xnm_mlc_read_retry_regs;
339 hynix->read_retry = rr;
340 chip->setup_read_retry = hynix_nand_setup_read_retry;
341 chip->read_retries = nmodes;
342
343 out:
344 kfree(buf);
345
346 if (ret)
347 kfree(rr);
348
349 return ret;
350 }
351
352 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
353 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
354
355 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
356 {
357 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
358 .regs = hynix_mlc_1xnm_rr_otp_regs,
359 .values = hynix_mlc_1xnm_rr_otp_values,
360 .page = 0x21f,
361 .size = 784
362 },
363 {
364 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
365 .regs = hynix_mlc_1xnm_rr_otp_regs,
366 .values = hynix_mlc_1xnm_rr_otp_values,
367 .page = 0x200,
368 .size = 528,
369 },
370 };
371
372 static int hynix_nand_rr_init(struct nand_chip *chip)
373 {
374 int i, ret = 0;
375 bool valid_jedecid;
376
377 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
378
379
380
381
382
383 if (valid_jedecid) {
384 u8 nand_tech = chip->id.data[5] >> 4;
385
386
387 if (nand_tech == 4) {
388 for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
389 i++) {
390
391
392
393
394 ret = hynix_mlc_1xnm_rr_init(chip,
395 hynix_mlc_1xnm_rr_otps);
396 if (!ret)
397 break;
398 }
399 }
400 }
401
402 if (ret)
403 pr_warn("failed to initialize read-retry infrastructure");
404
405 return 0;
406 }
407
408 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
409 bool valid_jedecid)
410 {
411 struct mtd_info *mtd = nand_to_mtd(chip);
412 struct nand_memory_organization *memorg;
413 u8 oobsize;
414
415 memorg = nanddev_get_memorg(&chip->base);
416
417 oobsize = ((chip->id.data[3] >> 2) & 0x3) |
418 ((chip->id.data[3] >> 4) & 0x4);
419
420 if (valid_jedecid) {
421 switch (oobsize) {
422 case 0:
423 memorg->oobsize = 2048;
424 break;
425 case 1:
426 memorg->oobsize = 1664;
427 break;
428 case 2:
429 memorg->oobsize = 1024;
430 break;
431 case 3:
432 memorg->oobsize = 640;
433 break;
434 default:
435
436
437
438
439
440
441 WARN(1, "Invalid OOB size");
442 break;
443 }
444 } else {
445 switch (oobsize) {
446 case 0:
447 memorg->oobsize = 128;
448 break;
449 case 1:
450 memorg->oobsize = 224;
451 break;
452 case 2:
453 memorg->oobsize = 448;
454 break;
455 case 3:
456 memorg->oobsize = 64;
457 break;
458 case 4:
459 memorg->oobsize = 32;
460 break;
461 case 5:
462 memorg->oobsize = 16;
463 break;
464 case 6:
465 memorg->oobsize = 640;
466 break;
467 default:
468
469
470
471
472
473
474 WARN(1, "Invalid OOB size");
475 break;
476 }
477
478
479
480
481
482
483
484
485
486
487
488 if (chip->id.data[1] == 0xde)
489 memorg->oobsize *= memorg->pagesize / SZ_8K;
490 }
491
492 mtd->oobsize = memorg->oobsize;
493 }
494
495 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
496 bool valid_jedecid)
497 {
498 u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
499
500 if (valid_jedecid) {
501
502 chip->base.eccreq.step_size = 1024;
503
504 switch (ecc_level) {
505 case 0:
506 chip->base.eccreq.step_size = 0;
507 chip->base.eccreq.strength = 0;
508 break;
509 case 1:
510 chip->base.eccreq.strength = 4;
511 break;
512 case 2:
513 chip->base.eccreq.strength = 24;
514 break;
515 case 3:
516 chip->base.eccreq.strength = 32;
517 break;
518 case 4:
519 chip->base.eccreq.strength = 40;
520 break;
521 case 5:
522 chip->base.eccreq.strength = 50;
523 break;
524 case 6:
525 chip->base.eccreq.strength = 60;
526 break;
527 default:
528
529
530
531
532
533
534 WARN(1, "Invalid ECC requirements");
535 }
536 } else {
537
538
539
540
541 u8 nand_tech = chip->id.data[5] & 0x7;
542
543 if (nand_tech < 3) {
544
545 if (ecc_level < 5) {
546 chip->base.eccreq.step_size = 512;
547 chip->base.eccreq.strength = 1 << ecc_level;
548 } else if (ecc_level < 7) {
549 if (ecc_level == 5)
550 chip->base.eccreq.step_size = 2048;
551 else
552 chip->base.eccreq.step_size = 1024;
553 chip->base.eccreq.strength = 24;
554 } else {
555
556
557
558
559
560
561 WARN(1, "Invalid ECC requirements");
562 }
563 } else {
564
565 if (!ecc_level) {
566 chip->base.eccreq.step_size = 0;
567 chip->base.eccreq.strength = 0;
568 } else if (ecc_level < 5) {
569 chip->base.eccreq.step_size = 512;
570 chip->base.eccreq.strength = 1 << (ecc_level - 1);
571 } else {
572 chip->base.eccreq.step_size = 1024;
573 chip->base.eccreq.strength = 24 +
574 (8 * (ecc_level - 5));
575 }
576 }
577 }
578 }
579
580 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
581 bool valid_jedecid)
582 {
583 u8 nand_tech;
584
585
586 if (nanddev_bits_per_cell(&chip->base) > 2)
587 chip->options |= NAND_NEED_SCRAMBLING;
588
589
590 if (valid_jedecid) {
591 nand_tech = chip->id.data[5] >> 4;
592
593
594 if (nand_tech > 0)
595 chip->options |= NAND_NEED_SCRAMBLING;
596 } else {
597 nand_tech = chip->id.data[5] & 0x7;
598
599
600 if (nand_tech > 2)
601 chip->options |= NAND_NEED_SCRAMBLING;
602 }
603 }
604
605 static void hynix_nand_decode_id(struct nand_chip *chip)
606 {
607 struct mtd_info *mtd = nand_to_mtd(chip);
608 struct nand_memory_organization *memorg;
609 bool valid_jedecid;
610 u8 tmp;
611
612 memorg = nanddev_get_memorg(&chip->base);
613
614
615
616
617
618
619
620
621 if (chip->id.len < 6 || nand_is_slc(chip)) {
622 nand_decode_ext_id(chip);
623 return;
624 }
625
626
627 memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
628 mtd->writesize = memorg->pagesize;
629
630 tmp = (chip->id.data[3] >> 4) & 0x3;
631
632
633
634
635
636
637
638 if (chip->id.data[3] & 0x80) {
639 memorg->pages_per_eraseblock = (SZ_1M << tmp) /
640 memorg->pagesize;
641 mtd->erasesize = SZ_1M << tmp;
642 } else if (tmp == 3) {
643 memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
644 memorg->pagesize;
645 mtd->erasesize = SZ_512K + SZ_256K;
646 } else {
647 memorg->pages_per_eraseblock = (SZ_128K << tmp) /
648 memorg->pagesize;
649 mtd->erasesize = SZ_128K << tmp;
650 }
651
652
653
654
655
656
657 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
658
659 hynix_nand_extract_oobsize(chip, valid_jedecid);
660 hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
661 hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
662 }
663
664 static void hynix_nand_cleanup(struct nand_chip *chip)
665 {
666 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
667
668 if (!hynix)
669 return;
670
671 kfree(hynix->read_retry);
672 kfree(hynix);
673 nand_set_manufacturer_data(chip, NULL);
674 }
675
676 static int hynix_nand_init(struct nand_chip *chip)
677 {
678 struct hynix_nand *hynix;
679 int ret;
680
681 if (!nand_is_slc(chip))
682 chip->options |= NAND_BBM_LASTPAGE;
683 else
684 chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
685
686 hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
687 if (!hynix)
688 return -ENOMEM;
689
690 nand_set_manufacturer_data(chip, hynix);
691
692 ret = hynix_nand_rr_init(chip);
693 if (ret)
694 hynix_nand_cleanup(chip);
695
696 return ret;
697 }
698
699 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
700 .detect = hynix_nand_decode_id,
701 .init = hynix_nand_init,
702 .cleanup = hynix_nand_cleanup,
703 };