root/drivers/mtd/nand/raw/nand_hynix.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hynix_nand_has_valid_jedecid
  2. hynix_nand_cmd_op
  3. hynix_nand_reg_write_op
  4. hynix_nand_setup_read_retry
  5. hynix_get_majority
  6. hynix_read_rr_otp
  7. hynix_mlc_1xnm_rr_value
  8. hynix_mlc_1xnm_rr_init
  9. hynix_nand_rr_init
  10. hynix_nand_extract_oobsize
  11. hynix_nand_extract_ecc_requirements
  12. hynix_nand_extract_scrambling_requirements
  13. hynix_nand_decode_id
  14. hynix_nand_cleanup
  15. hynix_nand_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (C) 2017 Free Electrons
   4  * Copyright (C) 2017 NextThing Co
   5  *
   6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
   7  */
   8 
   9 #include <linux/sizes.h>
  10 #include <linux/slab.h>
  11 
  12 #include "internals.h"
  13 
  14 #define NAND_HYNIX_CMD_SET_PARAMS       0x36
  15 #define NAND_HYNIX_CMD_APPLY_PARAMS     0x16
  16 
  17 #define NAND_HYNIX_1XNM_RR_REPEAT       8
  18 
  19 /**
  20  * struct hynix_read_retry - read-retry data
  21  * @nregs: number of register to set when applying a new read-retry mode
  22  * @regs: register offsets (NAND chip dependent)
  23  * @values: array of values to set in registers. The array size is equal to
  24  *          (nregs * nmodes)
  25  */
  26 struct hynix_read_retry {
  27         int nregs;
  28         const u8 *regs;
  29         u8 values[0];
  30 };
  31 
  32 /**
  33  * struct hynix_nand - private Hynix NAND struct
  34  * @nand_technology: manufacturing process expressed in picometer
  35  * @read_retry: read-retry information
  36  */
  37 struct hynix_nand {
  38         const struct hynix_read_retry *read_retry;
  39 };
  40 
  41 /**
  42  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
  43  *                               area
  44  * @nregs: number of hynix private registers to set before reading the reading
  45  *         the OTP area
  46  * @regs: registers that should be configured
  47  * @values: values that should be set in regs
  48  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
  49  *        chip
  50  * @size: size of the read-retry OTP section
  51  */
  52 struct hynix_read_retry_otp {
  53         int nregs;
  54         const u8 *regs;
  55         const u8 *values;
  56         int page;
  57         int size;
  58 };
  59 
  60 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
  61 {
  62         u8 jedecid[5] = { };
  63         int ret;
  64 
  65         ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
  66         if (ret)
  67                 return false;
  68 
  69         return !strncmp("JEDEC", jedecid, sizeof(jedecid));
  70 }
  71 
  72 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
  73 {
  74         if (nand_has_exec_op(chip)) {
  75                 struct nand_op_instr instrs[] = {
  76                         NAND_OP_CMD(cmd, 0),
  77                 };
  78                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
  79 
  80                 return nand_exec_op(chip, &op);
  81         }
  82 
  83         chip->legacy.cmdfunc(chip, cmd, -1, -1);
  84 
  85         return 0;
  86 }
  87 
  88 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
  89 {
  90         u16 column = ((u16)addr << 8) | addr;
  91 
  92         if (nand_has_exec_op(chip)) {
  93                 struct nand_op_instr instrs[] = {
  94                         NAND_OP_ADDR(1, &addr, 0),
  95                         NAND_OP_8BIT_DATA_OUT(1, &val, 0),
  96                 };
  97                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
  98 
  99                 return nand_exec_op(chip, &op);
 100         }
 101 
 102         chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
 103         chip->legacy.write_byte(chip, val);
 104 
 105         return 0;
 106 }
 107 
 108 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
 109 {
 110         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 111         const u8 *values;
 112         int i, ret;
 113 
 114         values = hynix->read_retry->values +
 115                  (retry_mode * hynix->read_retry->nregs);
 116 
 117         /* Enter 'Set Hynix Parameters' mode */
 118         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 119         if (ret)
 120                 return ret;
 121 
 122         /*
 123          * Configure the NAND in the requested read-retry mode.
 124          * This is done by setting pre-defined values in internal NAND
 125          * registers.
 126          *
 127          * The set of registers is NAND specific, and the values are either
 128          * predefined or extracted from an OTP area on the NAND (values are
 129          * probably tweaked at production in this case).
 130          */
 131         for (i = 0; i < hynix->read_retry->nregs; i++) {
 132                 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
 133                                               values[i]);
 134                 if (ret)
 135                         return ret;
 136         }
 137 
 138         /* Apply the new settings. */
 139         return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 140 }
 141 
 142 /**
 143  * hynix_get_majority - get the value that is occurring the most in a given
 144  *                      set of values
 145  * @in: the array of values to test
 146  * @repeat: the size of the in array
 147  * @out: pointer used to store the output value
 148  *
 149  * This function implements the 'majority check' logic that is supposed to
 150  * overcome the unreliability of MLC NANDs when reading the OTP area storing
 151  * the read-retry parameters.
 152  *
 153  * It's based on a pretty simple assumption: if we repeat the same value
 154  * several times and then take the one that is occurring the most, we should
 155  * find the correct value.
 156  * Let's hope this dummy algorithm prevents us from losing the read-retry
 157  * parameters.
 158  */
 159 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
 160 {
 161         int i, j, half = repeat / 2;
 162 
 163         /*
 164          * We only test the first half of the in array because we must ensure
 165          * that the value is at least occurring repeat / 2 times.
 166          *
 167          * This loop is suboptimal since we may count the occurrences of the
 168          * same value several time, but we are doing that on small sets, which
 169          * makes it acceptable.
 170          */
 171         for (i = 0; i < half; i++) {
 172                 int cnt = 0;
 173                 u8 val = in[i];
 174 
 175                 /* Count all values that are matching the one at index i. */
 176                 for (j = i + 1; j < repeat; j++) {
 177                         if (in[j] == val)
 178                                 cnt++;
 179                 }
 180 
 181                 /* We found a value occurring more than repeat / 2. */
 182                 if (cnt > half) {
 183                         *out = val;
 184                         return 0;
 185                 }
 186         }
 187 
 188         return -EIO;
 189 }
 190 
 191 static int hynix_read_rr_otp(struct nand_chip *chip,
 192                              const struct hynix_read_retry_otp *info,
 193                              void *buf)
 194 {
 195         int i, ret;
 196 
 197         ret = nand_reset_op(chip);
 198         if (ret)
 199                 return ret;
 200 
 201         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 202         if (ret)
 203                 return ret;
 204 
 205         for (i = 0; i < info->nregs; i++) {
 206                 ret = hynix_nand_reg_write_op(chip, info->regs[i],
 207                                               info->values[i]);
 208                 if (ret)
 209                         return ret;
 210         }
 211 
 212         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 213         if (ret)
 214                 return ret;
 215 
 216         /* Sequence to enter OTP mode? */
 217         ret = hynix_nand_cmd_op(chip, 0x17);
 218         if (ret)
 219                 return ret;
 220 
 221         ret = hynix_nand_cmd_op(chip, 0x4);
 222         if (ret)
 223                 return ret;
 224 
 225         ret = hynix_nand_cmd_op(chip, 0x19);
 226         if (ret)
 227                 return ret;
 228 
 229         /* Now read the page */
 230         ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
 231         if (ret)
 232                 return ret;
 233 
 234         /* Put everything back to normal */
 235         ret = nand_reset_op(chip);
 236         if (ret)
 237                 return ret;
 238 
 239         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 240         if (ret)
 241                 return ret;
 242 
 243         ret = hynix_nand_reg_write_op(chip, 0x38, 0);
 244         if (ret)
 245                 return ret;
 246 
 247         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 248         if (ret)
 249                 return ret;
 250 
 251         return nand_read_page_op(chip, 0, 0, NULL, 0);
 252 }
 253 
 254 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS                           0
 255 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS                       8
 256 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)            \
 257         (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
 258 
 259 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
 260                                    int mode, int reg, bool inv, u8 *val)
 261 {
 262         u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
 263         int val_offs = (mode * nregs) + reg;
 264         int set_size = nmodes * nregs;
 265         int i, ret;
 266 
 267         for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
 268                 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
 269 
 270                 tmp[i] = buf[val_offs + set_offs];
 271         }
 272 
 273         ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
 274         if (ret)
 275                 return ret;
 276 
 277         if (inv)
 278                 *val = ~*val;
 279 
 280         return 0;
 281 }
 282 
 283 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
 284         0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
 285 };
 286 
 287 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
 288                                   const struct hynix_read_retry_otp *info)
 289 {
 290         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 291         struct hynix_read_retry *rr = NULL;
 292         int ret, i, j;
 293         u8 nregs, nmodes;
 294         u8 *buf;
 295 
 296         buf = kmalloc(info->size, GFP_KERNEL);
 297         if (!buf)
 298                 return -ENOMEM;
 299 
 300         ret = hynix_read_rr_otp(chip, info, buf);
 301         if (ret)
 302                 goto out;
 303 
 304         ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
 305                                  &nmodes);
 306         if (ret)
 307                 goto out;
 308 
 309         ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
 310                                  NAND_HYNIX_1XNM_RR_REPEAT,
 311                                  &nregs);
 312         if (ret)
 313                 goto out;
 314 
 315         rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
 316         if (!rr) {
 317                 ret = -ENOMEM;
 318                 goto out;
 319         }
 320 
 321         for (i = 0; i < nmodes; i++) {
 322                 for (j = 0; j < nregs; j++) {
 323                         u8 *val = rr->values + (i * nregs);
 324 
 325                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
 326                                                       false, val);
 327                         if (!ret)
 328                                 continue;
 329 
 330                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
 331                                                       true, val);
 332                         if (ret)
 333                                 goto out;
 334                 }
 335         }
 336 
 337         rr->nregs = nregs;
 338         rr->regs = hynix_1xnm_mlc_read_retry_regs;
 339         hynix->read_retry = rr;
 340         chip->setup_read_retry = hynix_nand_setup_read_retry;
 341         chip->read_retries = nmodes;
 342 
 343 out:
 344         kfree(buf);
 345 
 346         if (ret)
 347                 kfree(rr);
 348 
 349         return ret;
 350 }
 351 
 352 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
 353 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
 354 
 355 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
 356         {
 357                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
 358                 .regs = hynix_mlc_1xnm_rr_otp_regs,
 359                 .values = hynix_mlc_1xnm_rr_otp_values,
 360                 .page = 0x21f,
 361                 .size = 784
 362         },
 363         {
 364                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
 365                 .regs = hynix_mlc_1xnm_rr_otp_regs,
 366                 .values = hynix_mlc_1xnm_rr_otp_values,
 367                 .page = 0x200,
 368                 .size = 528,
 369         },
 370 };
 371 
 372 static int hynix_nand_rr_init(struct nand_chip *chip)
 373 {
 374         int i, ret = 0;
 375         bool valid_jedecid;
 376 
 377         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
 378 
 379         /*
 380          * We only support read-retry for 1xnm NANDs, and those NANDs all
 381          * expose a valid JEDEC ID.
 382          */
 383         if (valid_jedecid) {
 384                 u8 nand_tech = chip->id.data[5] >> 4;
 385 
 386                 /* 1xnm technology */
 387                 if (nand_tech == 4) {
 388                         for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
 389                              i++) {
 390                                 /*
 391                                  * FIXME: Hynix recommend to copy the
 392                                  * read-retry OTP area into a normal page.
 393                                  */
 394                                 ret = hynix_mlc_1xnm_rr_init(chip,
 395                                                 hynix_mlc_1xnm_rr_otps);
 396                                 if (!ret)
 397                                         break;
 398                         }
 399                 }
 400         }
 401 
 402         if (ret)
 403                 pr_warn("failed to initialize read-retry infrastructure");
 404 
 405         return 0;
 406 }
 407 
 408 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
 409                                        bool valid_jedecid)
 410 {
 411         struct mtd_info *mtd = nand_to_mtd(chip);
 412         struct nand_memory_organization *memorg;
 413         u8 oobsize;
 414 
 415         memorg = nanddev_get_memorg(&chip->base);
 416 
 417         oobsize = ((chip->id.data[3] >> 2) & 0x3) |
 418                   ((chip->id.data[3] >> 4) & 0x4);
 419 
 420         if (valid_jedecid) {
 421                 switch (oobsize) {
 422                 case 0:
 423                         memorg->oobsize = 2048;
 424                         break;
 425                 case 1:
 426                         memorg->oobsize = 1664;
 427                         break;
 428                 case 2:
 429                         memorg->oobsize = 1024;
 430                         break;
 431                 case 3:
 432                         memorg->oobsize = 640;
 433                         break;
 434                 default:
 435                         /*
 436                          * We should never reach this case, but if that
 437                          * happens, this probably means Hynix decided to use
 438                          * a different extended ID format, and we should find
 439                          * a way to support it.
 440                          */
 441                         WARN(1, "Invalid OOB size");
 442                         break;
 443                 }
 444         } else {
 445                 switch (oobsize) {
 446                 case 0:
 447                         memorg->oobsize = 128;
 448                         break;
 449                 case 1:
 450                         memorg->oobsize = 224;
 451                         break;
 452                 case 2:
 453                         memorg->oobsize = 448;
 454                         break;
 455                 case 3:
 456                         memorg->oobsize = 64;
 457                         break;
 458                 case 4:
 459                         memorg->oobsize = 32;
 460                         break;
 461                 case 5:
 462                         memorg->oobsize = 16;
 463                         break;
 464                 case 6:
 465                         memorg->oobsize = 640;
 466                         break;
 467                 default:
 468                         /*
 469                          * We should never reach this case, but if that
 470                          * happens, this probably means Hynix decided to use
 471                          * a different extended ID format, and we should find
 472                          * a way to support it.
 473                          */
 474                         WARN(1, "Invalid OOB size");
 475                         break;
 476                 }
 477 
 478                 /*
 479                  * The datasheet of H27UCG8T2BTR mentions that the "Redundant
 480                  * Area Size" is encoded "per 8KB" (page size). This chip uses
 481                  * a page size of 16KiB. The datasheet mentions an OOB size of
 482                  * 1.280 bytes, but the OOB size encoded in the ID bytes (using
 483                  * the existing logic above) is 640 bytes.
 484                  * Update the OOB size for this chip by taking the value
 485                  * determined above and scaling it to the actual page size (so
 486                  * the actual OOB size for this chip is: 640 * 16k / 8k).
 487                  */
 488                 if (chip->id.data[1] == 0xde)
 489                         memorg->oobsize *= memorg->pagesize / SZ_8K;
 490         }
 491 
 492         mtd->oobsize = memorg->oobsize;
 493 }
 494 
 495 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
 496                                                 bool valid_jedecid)
 497 {
 498         u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
 499 
 500         if (valid_jedecid) {
 501                 /* Reference: H27UCG8T2E datasheet */
 502                 chip->base.eccreq.step_size = 1024;
 503 
 504                 switch (ecc_level) {
 505                 case 0:
 506                         chip->base.eccreq.step_size = 0;
 507                         chip->base.eccreq.strength = 0;
 508                         break;
 509                 case 1:
 510                         chip->base.eccreq.strength = 4;
 511                         break;
 512                 case 2:
 513                         chip->base.eccreq.strength = 24;
 514                         break;
 515                 case 3:
 516                         chip->base.eccreq.strength = 32;
 517                         break;
 518                 case 4:
 519                         chip->base.eccreq.strength = 40;
 520                         break;
 521                 case 5:
 522                         chip->base.eccreq.strength = 50;
 523                         break;
 524                 case 6:
 525                         chip->base.eccreq.strength = 60;
 526                         break;
 527                 default:
 528                         /*
 529                          * We should never reach this case, but if that
 530                          * happens, this probably means Hynix decided to use
 531                          * a different extended ID format, and we should find
 532                          * a way to support it.
 533                          */
 534                         WARN(1, "Invalid ECC requirements");
 535                 }
 536         } else {
 537                 /*
 538                  * The ECC requirements field meaning depends on the
 539                  * NAND technology.
 540                  */
 541                 u8 nand_tech = chip->id.data[5] & 0x7;
 542 
 543                 if (nand_tech < 3) {
 544                         /* > 26nm, reference: H27UBG8T2A datasheet */
 545                         if (ecc_level < 5) {
 546                                 chip->base.eccreq.step_size = 512;
 547                                 chip->base.eccreq.strength = 1 << ecc_level;
 548                         } else if (ecc_level < 7) {
 549                                 if (ecc_level == 5)
 550                                         chip->base.eccreq.step_size = 2048;
 551                                 else
 552                                         chip->base.eccreq.step_size = 1024;
 553                                 chip->base.eccreq.strength = 24;
 554                         } else {
 555                                 /*
 556                                  * We should never reach this case, but if that
 557                                  * happens, this probably means Hynix decided
 558                                  * to use a different extended ID format, and
 559                                  * we should find a way to support it.
 560                                  */
 561                                 WARN(1, "Invalid ECC requirements");
 562                         }
 563                 } else {
 564                         /* <= 26nm, reference: H27UBG8T2B datasheet */
 565                         if (!ecc_level) {
 566                                 chip->base.eccreq.step_size = 0;
 567                                 chip->base.eccreq.strength = 0;
 568                         } else if (ecc_level < 5) {
 569                                 chip->base.eccreq.step_size = 512;
 570                                 chip->base.eccreq.strength = 1 << (ecc_level - 1);
 571                         } else {
 572                                 chip->base.eccreq.step_size = 1024;
 573                                 chip->base.eccreq.strength = 24 +
 574                                                         (8 * (ecc_level - 5));
 575                         }
 576                 }
 577         }
 578 }
 579 
 580 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
 581                                                        bool valid_jedecid)
 582 {
 583         u8 nand_tech;
 584 
 585         /* We need scrambling on all TLC NANDs*/
 586         if (nanddev_bits_per_cell(&chip->base) > 2)
 587                 chip->options |= NAND_NEED_SCRAMBLING;
 588 
 589         /* And on MLC NANDs with sub-3xnm process */
 590         if (valid_jedecid) {
 591                 nand_tech = chip->id.data[5] >> 4;
 592 
 593                 /* < 3xnm */
 594                 if (nand_tech > 0)
 595                         chip->options |= NAND_NEED_SCRAMBLING;
 596         } else {
 597                 nand_tech = chip->id.data[5] & 0x7;
 598 
 599                 /* < 32nm */
 600                 if (nand_tech > 2)
 601                         chip->options |= NAND_NEED_SCRAMBLING;
 602         }
 603 }
 604 
 605 static void hynix_nand_decode_id(struct nand_chip *chip)
 606 {
 607         struct mtd_info *mtd = nand_to_mtd(chip);
 608         struct nand_memory_organization *memorg;
 609         bool valid_jedecid;
 610         u8 tmp;
 611 
 612         memorg = nanddev_get_memorg(&chip->base);
 613 
 614         /*
 615          * Exclude all SLC NANDs from this advanced detection scheme.
 616          * According to the ranges defined in several datasheets, it might
 617          * appear that even SLC NANDs could fall in this extended ID scheme.
 618          * If that the case rework the test to let SLC NANDs go through the
 619          * detection process.
 620          */
 621         if (chip->id.len < 6 || nand_is_slc(chip)) {
 622                 nand_decode_ext_id(chip);
 623                 return;
 624         }
 625 
 626         /* Extract pagesize */
 627         memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
 628         mtd->writesize = memorg->pagesize;
 629 
 630         tmp = (chip->id.data[3] >> 4) & 0x3;
 631         /*
 632          * When bit7 is set that means we start counting at 1MiB, otherwise
 633          * we start counting at 128KiB and shift this value the content of
 634          * ID[3][4:5].
 635          * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
 636          * this case the erasesize is set to 768KiB.
 637          */
 638         if (chip->id.data[3] & 0x80) {
 639                 memorg->pages_per_eraseblock = (SZ_1M << tmp) /
 640                                                memorg->pagesize;
 641                 mtd->erasesize = SZ_1M << tmp;
 642         } else if (tmp == 3) {
 643                 memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
 644                                                memorg->pagesize;
 645                 mtd->erasesize = SZ_512K + SZ_256K;
 646         } else {
 647                 memorg->pages_per_eraseblock = (SZ_128K << tmp) /
 648                                                memorg->pagesize;
 649                 mtd->erasesize = SZ_128K << tmp;
 650         }
 651 
 652         /*
 653          * Modern Toggle DDR NANDs have a valid JEDECID even though they are
 654          * not exposing a valid JEDEC parameter table.
 655          * These NANDs use a different NAND ID scheme.
 656          */
 657         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
 658 
 659         hynix_nand_extract_oobsize(chip, valid_jedecid);
 660         hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
 661         hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
 662 }
 663 
 664 static void hynix_nand_cleanup(struct nand_chip *chip)
 665 {
 666         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 667 
 668         if (!hynix)
 669                 return;
 670 
 671         kfree(hynix->read_retry);
 672         kfree(hynix);
 673         nand_set_manufacturer_data(chip, NULL);
 674 }
 675 
 676 static int hynix_nand_init(struct nand_chip *chip)
 677 {
 678         struct hynix_nand *hynix;
 679         int ret;
 680 
 681         if (!nand_is_slc(chip))
 682                 chip->options |= NAND_BBM_LASTPAGE;
 683         else
 684                 chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
 685 
 686         hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
 687         if (!hynix)
 688                 return -ENOMEM;
 689 
 690         nand_set_manufacturer_data(chip, hynix);
 691 
 692         ret = hynix_nand_rr_init(chip);
 693         if (ret)
 694                 hynix_nand_cleanup(chip);
 695 
 696         return ret;
 697 }
 698 
 699 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
 700         .detect = hynix_nand_decode_id,
 701         .init = hynix_nand_init,
 702         .cleanup = hynix_nand_cleanup,
 703 };

/* [<][>][^][v][top][bottom][index][help] */