root/drivers/mtd/nand/raw/fsl_ifc_nand.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fsl_ifc_ooblayout_ecc
  2. fsl_ifc_ooblayout_free
  3. set_addr
  4. check_read_ecc
  5. fsl_ifc_run_command
  6. fsl_ifc_do_read
  7. fsl_ifc_cmdfunc
  8. fsl_ifc_select_chip
  9. fsl_ifc_write_buf
  10. fsl_ifc_read_byte
  11. fsl_ifc_read_byte16
  12. fsl_ifc_read_buf
  13. fsl_ifc_wait
  14. check_erased_page
  15. fsl_ifc_read_page
  16. fsl_ifc_write_page
  17. fsl_ifc_attach_chip
  18. fsl_ifc_sram_init
  19. fsl_ifc_chip_init
  20. fsl_ifc_chip_remove
  21. match_bank
  22. fsl_ifc_nand_probe
  23. fsl_ifc_nand_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Freescale Integrated Flash Controller NAND driver
   4  *
   5  * Copyright 2011-2012 Freescale Semiconductor, Inc
   6  *
   7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
   8  */
   9 
  10 #include <linux/module.h>
  11 #include <linux/types.h>
  12 #include <linux/kernel.h>
  13 #include <linux/of_address.h>
  14 #include <linux/slab.h>
  15 #include <linux/mtd/mtd.h>
  16 #include <linux/mtd/rawnand.h>
  17 #include <linux/mtd/partitions.h>
  18 #include <linux/mtd/nand_ecc.h>
  19 #include <linux/fsl_ifc.h>
  20 #include <linux/iopoll.h>
  21 
  22 #define ERR_BYTE                0xFF /* Value returned for read
  23                                         bytes when read failed  */
  24 #define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
  25                                         for IFC NAND Machine    */
  26 
  27 struct fsl_ifc_ctrl;
  28 
  29 /* mtd information per set */
  30 struct fsl_ifc_mtd {
  31         struct nand_chip chip;
  32         struct fsl_ifc_ctrl *ctrl;
  33 
  34         struct device *dev;
  35         int bank;               /* Chip select bank number              */
  36         unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
  37         u8 __iomem *vbase;      /* Chip select base virtual address     */
  38 };
  39 
  40 /* overview of the fsl ifc controller */
  41 struct fsl_ifc_nand_ctrl {
  42         struct nand_controller controller;
  43         struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
  44 
  45         void __iomem *addr;     /* Address of assigned IFC buffer       */
  46         unsigned int page;      /* Last page written to / read from     */
  47         unsigned int read_bytes;/* Number of bytes read during command  */
  48         unsigned int column;    /* Saved column from SEQIN              */
  49         unsigned int index;     /* Pointer to next byte to 'read'       */
  50         unsigned int oob;       /* Non zero if operating on OOB data    */
  51         unsigned int eccread;   /* Non zero for a full-page ECC read    */
  52         unsigned int counter;   /* counter for the initializations      */
  53         unsigned int max_bitflips;  /* Saved during READ0 cmd           */
  54 };
  55 
  56 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
  57 
  58 /*
  59  * Generic flash bbt descriptors
  60  */
  61 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  62 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  63 
  64 static struct nand_bbt_descr bbt_main_descr = {
  65         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  66                    NAND_BBT_2BIT | NAND_BBT_VERSION,
  67         .offs = 2, /* 0 on 8-bit small page */
  68         .len = 4,
  69         .veroffs = 6,
  70         .maxblocks = 4,
  71         .pattern = bbt_pattern,
  72 };
  73 
  74 static struct nand_bbt_descr bbt_mirror_descr = {
  75         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  76                    NAND_BBT_2BIT | NAND_BBT_VERSION,
  77         .offs = 2, /* 0 on 8-bit small page */
  78         .len = 4,
  79         .veroffs = 6,
  80         .maxblocks = 4,
  81         .pattern = mirror_pattern,
  82 };
  83 
  84 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
  85                                  struct mtd_oob_region *oobregion)
  86 {
  87         struct nand_chip *chip = mtd_to_nand(mtd);
  88 
  89         if (section)
  90                 return -ERANGE;
  91 
  92         oobregion->offset = 8;
  93         oobregion->length = chip->ecc.total;
  94 
  95         return 0;
  96 }
  97 
  98 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
  99                                   struct mtd_oob_region *oobregion)
 100 {
 101         struct nand_chip *chip = mtd_to_nand(mtd);
 102 
 103         if (section > 1)
 104                 return -ERANGE;
 105 
 106         if (mtd->writesize == 512 &&
 107             !(chip->options & NAND_BUSWIDTH_16)) {
 108                 if (!section) {
 109                         oobregion->offset = 0;
 110                         oobregion->length = 5;
 111                 } else {
 112                         oobregion->offset = 6;
 113                         oobregion->length = 2;
 114                 }
 115 
 116                 return 0;
 117         }
 118 
 119         if (!section) {
 120                 oobregion->offset = 2;
 121                 oobregion->length = 6;
 122         } else {
 123                 oobregion->offset = chip->ecc.total + 8;
 124                 oobregion->length = mtd->oobsize - oobregion->offset;
 125         }
 126 
 127         return 0;
 128 }
 129 
 130 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
 131         .ecc = fsl_ifc_ooblayout_ecc,
 132         .free = fsl_ifc_ooblayout_free,
 133 };
 134 
 135 /*
 136  * Set up the IFC hardware block and page address fields, and the ifc nand
 137  * structure addr field to point to the correct IFC buffer in memory
 138  */
 139 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 140 {
 141         struct nand_chip *chip = mtd_to_nand(mtd);
 142         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 143         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 144         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 145         int buf_num;
 146 
 147         ifc_nand_ctrl->page = page_addr;
 148         /* Program ROW0/COL0 */
 149         ifc_out32(page_addr, &ifc->ifc_nand.row0);
 150         ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
 151 
 152         buf_num = page_addr & priv->bufnum_mask;
 153 
 154         ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
 155         ifc_nand_ctrl->index = column;
 156 
 157         /* for OOB data point to the second half of the buffer */
 158         if (oob)
 159                 ifc_nand_ctrl->index += mtd->writesize;
 160 }
 161 
 162 /* returns nonzero if entire page is blank */
 163 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
 164                           u32 eccstat, unsigned int bufnum)
 165 {
 166         return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
 167 }
 168 
 169 /*
 170  * execute IFC NAND command and wait for it to complete
 171  */
 172 static void fsl_ifc_run_command(struct mtd_info *mtd)
 173 {
 174         struct nand_chip *chip = mtd_to_nand(mtd);
 175         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 176         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 177         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 178         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 179         u32 eccstat;
 180         int i;
 181 
 182         /* set the chip select for NAND Transaction */
 183         ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
 184                   &ifc->ifc_nand.nand_csel);
 185 
 186         dev_vdbg(priv->dev,
 187                         "%s: fir0=%08x fcr0=%08x\n",
 188                         __func__,
 189                         ifc_in32(&ifc->ifc_nand.nand_fir0),
 190                         ifc_in32(&ifc->ifc_nand.nand_fcr0));
 191 
 192         ctrl->nand_stat = 0;
 193 
 194         /* start read/write seq */
 195         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
 196 
 197         /* wait for command complete flag or timeout */
 198         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 199                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 200 
 201         /* ctrl->nand_stat will be updated from IRQ context */
 202         if (!ctrl->nand_stat)
 203                 dev_err(priv->dev, "Controller is not responding\n");
 204         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
 205                 dev_err(priv->dev, "NAND Flash Timeout Error\n");
 206         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
 207                 dev_err(priv->dev, "NAND Flash Write Protect Error\n");
 208 
 209         nctrl->max_bitflips = 0;
 210 
 211         if (nctrl->eccread) {
 212                 int errors;
 213                 int bufnum = nctrl->page & priv->bufnum_mask;
 214                 int sector_start = bufnum * chip->ecc.steps;
 215                 int sector_end = sector_start + chip->ecc.steps - 1;
 216                 __be32 __iomem *eccstat_regs;
 217 
 218                 eccstat_regs = ifc->ifc_nand.nand_eccstat;
 219                 eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
 220 
 221                 for (i = sector_start; i <= sector_end; i++) {
 222                         if (i != sector_start && !(i % 4))
 223                                 eccstat = ifc_in32(&eccstat_regs[i / 4]);
 224 
 225                         errors = check_read_ecc(mtd, ctrl, eccstat, i);
 226 
 227                         if (errors == 15) {
 228                                 /*
 229                                  * Uncorrectable error.
 230                                  * We'll check for blank pages later.
 231                                  *
 232                                  * We disable ECCER reporting due to...
 233                                  * erratum IFC-A002770 -- so report it now if we
 234                                  * see an uncorrectable error in ECCSTAT.
 235                                  */
 236                                 ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
 237                                 continue;
 238                         }
 239 
 240                         mtd->ecc_stats.corrected += errors;
 241                         nctrl->max_bitflips = max_t(unsigned int,
 242                                                     nctrl->max_bitflips,
 243                                                     errors);
 244                 }
 245 
 246                 nctrl->eccread = 0;
 247         }
 248 }
 249 
 250 static void fsl_ifc_do_read(struct nand_chip *chip,
 251                             int oob,
 252                             struct mtd_info *mtd)
 253 {
 254         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 255         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 256         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 257 
 258         /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
 259         if (mtd->writesize > 512) {
 260                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 261                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 262                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 263                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 264                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
 265                           &ifc->ifc_nand.nand_fir0);
 266                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 267 
 268                 ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 269                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
 270                           &ifc->ifc_nand.nand_fcr0);
 271         } else {
 272                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 273                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 274                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 275                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
 276                           &ifc->ifc_nand.nand_fir0);
 277                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 278 
 279                 if (oob)
 280                         ifc_out32(NAND_CMD_READOOB <<
 281                                   IFC_NAND_FCR0_CMD0_SHIFT,
 282                                   &ifc->ifc_nand.nand_fcr0);
 283                 else
 284                         ifc_out32(NAND_CMD_READ0 <<
 285                                   IFC_NAND_FCR0_CMD0_SHIFT,
 286                                   &ifc->ifc_nand.nand_fcr0);
 287         }
 288 }
 289 
 290 /* cmdfunc send commands to the IFC NAND Machine */
 291 static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
 292                             int column, int page_addr) {
 293         struct mtd_info *mtd = nand_to_mtd(chip);
 294         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 295         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 296         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 297 
 298         /* clear the read buffer */
 299         ifc_nand_ctrl->read_bytes = 0;
 300         if (command != NAND_CMD_PAGEPROG)
 301                 ifc_nand_ctrl->index = 0;
 302 
 303         switch (command) {
 304         /* READ0 read the entire buffer to use hardware ECC. */
 305         case NAND_CMD_READ0:
 306                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 307                 set_addr(mtd, 0, page_addr, 0);
 308 
 309                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 310                 ifc_nand_ctrl->index += column;
 311 
 312                 if (chip->ecc.mode == NAND_ECC_HW)
 313                         ifc_nand_ctrl->eccread = 1;
 314 
 315                 fsl_ifc_do_read(chip, 0, mtd);
 316                 fsl_ifc_run_command(mtd);
 317                 return;
 318 
 319         /* READOOB reads only the OOB because no ECC is performed. */
 320         case NAND_CMD_READOOB:
 321                 ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
 322                 set_addr(mtd, column, page_addr, 1);
 323 
 324                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 325 
 326                 fsl_ifc_do_read(chip, 1, mtd);
 327                 fsl_ifc_run_command(mtd);
 328 
 329                 return;
 330 
 331         case NAND_CMD_READID:
 332         case NAND_CMD_PARAM: {
 333                 /*
 334                  * For READID, read 8 bytes that are currently used.
 335                  * For PARAM, read all 3 copies of 256-bytes pages.
 336                  */
 337                 int len = 8;
 338                 int timing = IFC_FIR_OP_RB;
 339                 if (command == NAND_CMD_PARAM) {
 340                         timing = IFC_FIR_OP_RBCD;
 341                         len = 256 * 3;
 342                 }
 343 
 344                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 345                           (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 346                           (timing << IFC_NAND_FIR0_OP2_SHIFT),
 347                           &ifc->ifc_nand.nand_fir0);
 348                 ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
 349                           &ifc->ifc_nand.nand_fcr0);
 350                 ifc_out32(column, &ifc->ifc_nand.row3);
 351 
 352                 ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
 353                 ifc_nand_ctrl->read_bytes = len;
 354 
 355                 set_addr(mtd, 0, 0, 0);
 356                 fsl_ifc_run_command(mtd);
 357                 return;
 358         }
 359 
 360         /* ERASE1 stores the block and page address */
 361         case NAND_CMD_ERASE1:
 362                 set_addr(mtd, 0, page_addr, 0);
 363                 return;
 364 
 365         /* ERASE2 uses the block and page address from ERASE1 */
 366         case NAND_CMD_ERASE2:
 367                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 368                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 369                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
 370                           &ifc->ifc_nand.nand_fir0);
 371 
 372                 ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
 373                           (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
 374                           &ifc->ifc_nand.nand_fcr0);
 375 
 376                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 377                 ifc_nand_ctrl->read_bytes = 0;
 378                 fsl_ifc_run_command(mtd);
 379                 return;
 380 
 381         /* SEQIN sets up the addr buffer and all registers except the length */
 382         case NAND_CMD_SEQIN: {
 383                 u32 nand_fcr0;
 384                 ifc_nand_ctrl->column = column;
 385                 ifc_nand_ctrl->oob = 0;
 386 
 387                 if (mtd->writesize > 512) {
 388                         nand_fcr0 =
 389                                 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
 390                                 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
 391                                 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
 392 
 393                         ifc_out32(
 394                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 395                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 396                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 397                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
 398                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
 399                                 &ifc->ifc_nand.nand_fir0);
 400                         ifc_out32(
 401                                 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
 402                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
 403                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
 404                                 &ifc->ifc_nand.nand_fir1);
 405                 } else {
 406                         nand_fcr0 = ((NAND_CMD_PAGEPROG <<
 407                                         IFC_NAND_FCR0_CMD1_SHIFT) |
 408                                     (NAND_CMD_SEQIN <<
 409                                         IFC_NAND_FCR0_CMD2_SHIFT) |
 410                                     (NAND_CMD_STATUS <<
 411                                         IFC_NAND_FCR0_CMD3_SHIFT));
 412 
 413                         ifc_out32(
 414                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 415                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
 416                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 417                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
 418                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
 419                                 &ifc->ifc_nand.nand_fir0);
 420                         ifc_out32(
 421                                 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
 422                                 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
 423                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
 424                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
 425                                 &ifc->ifc_nand.nand_fir1);
 426 
 427                         if (column >= mtd->writesize)
 428                                 nand_fcr0 |=
 429                                 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
 430                         else
 431                                 nand_fcr0 |=
 432                                 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
 433                 }
 434 
 435                 if (column >= mtd->writesize) {
 436                         /* OOB area --> READOOB */
 437                         column -= mtd->writesize;
 438                         ifc_nand_ctrl->oob = 1;
 439                 }
 440                 ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
 441                 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
 442                 return;
 443         }
 444 
 445         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 446         case NAND_CMD_PAGEPROG: {
 447                 if (ifc_nand_ctrl->oob) {
 448                         ifc_out32(ifc_nand_ctrl->index -
 449                                   ifc_nand_ctrl->column,
 450                                   &ifc->ifc_nand.nand_fbcr);
 451                 } else {
 452                         ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 453                 }
 454 
 455                 fsl_ifc_run_command(mtd);
 456                 return;
 457         }
 458 
 459         case NAND_CMD_STATUS: {
 460                 void __iomem *addr;
 461 
 462                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 463                           (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
 464                           &ifc->ifc_nand.nand_fir0);
 465                 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 466                           &ifc->ifc_nand.nand_fcr0);
 467                 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 468                 set_addr(mtd, 0, 0, 0);
 469                 ifc_nand_ctrl->read_bytes = 1;
 470 
 471                 fsl_ifc_run_command(mtd);
 472 
 473                 /*
 474                  * The chip always seems to report that it is
 475                  * write-protected, even when it is not.
 476                  */
 477                 addr = ifc_nand_ctrl->addr;
 478                 if (chip->options & NAND_BUSWIDTH_16)
 479                         ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
 480                 else
 481                         ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
 482                 return;
 483         }
 484 
 485         case NAND_CMD_RESET:
 486                 ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
 487                           &ifc->ifc_nand.nand_fir0);
 488                 ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
 489                           &ifc->ifc_nand.nand_fcr0);
 490                 fsl_ifc_run_command(mtd);
 491                 return;
 492 
 493         default:
 494                 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
 495                                         __func__, command);
 496         }
 497 }
 498 
 499 static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
 500 {
 501         /* The hardware does not seem to support multiple
 502          * chips per bank.
 503          */
 504 }
 505 
 506 /*
 507  * Write buf to the IFC NAND Controller Data Buffer
 508  */
 509 static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 510 {
 511         struct mtd_info *mtd = nand_to_mtd(chip);
 512         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 513         unsigned int bufsize = mtd->writesize + mtd->oobsize;
 514 
 515         if (len <= 0) {
 516                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 517                 return;
 518         }
 519 
 520         if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
 521                 dev_err(priv->dev,
 522                         "%s: beyond end of buffer (%d requested, %u available)\n",
 523                         __func__, len, bufsize - ifc_nand_ctrl->index);
 524                 len = bufsize - ifc_nand_ctrl->index;
 525         }
 526 
 527         memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
 528         ifc_nand_ctrl->index += len;
 529 }
 530 
 531 /*
 532  * Read a byte from either the IFC hardware buffer
 533  * read function for 8-bit buswidth
 534  */
 535 static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
 536 {
 537         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 538         unsigned int offset;
 539 
 540         /*
 541          * If there are still bytes in the IFC buffer, then use the
 542          * next byte.
 543          */
 544         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 545                 offset = ifc_nand_ctrl->index++;
 546                 return ifc_in8(ifc_nand_ctrl->addr + offset);
 547         }
 548 
 549         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 550         return ERR_BYTE;
 551 }
 552 
 553 /*
 554  * Read two bytes from the IFC hardware buffer
 555  * read function for 16-bit buswith
 556  */
 557 static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
 558 {
 559         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 560         uint16_t data;
 561 
 562         /*
 563          * If there are still bytes in the IFC buffer, then use the
 564          * next byte.
 565          */
 566         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 567                 data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
 568                 ifc_nand_ctrl->index += 2;
 569                 return (uint8_t) data;
 570         }
 571 
 572         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 573         return ERR_BYTE;
 574 }
 575 
 576 /*
 577  * Read from the IFC Controller Data Buffer
 578  */
 579 static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 580 {
 581         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 582         int avail;
 583 
 584         if (len < 0) {
 585                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 586                 return;
 587         }
 588 
 589         avail = min((unsigned int)len,
 590                         ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
 591         memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
 592         ifc_nand_ctrl->index += avail;
 593 
 594         if (len > avail)
 595                 dev_err(priv->dev,
 596                         "%s: beyond end of buffer (%d requested, %d available)\n",
 597                         __func__, len, avail);
 598 }
 599 
 600 /*
 601  * This function is called after Program and Erase Operations to
 602  * check for success or failure.
 603  */
 604 static int fsl_ifc_wait(struct nand_chip *chip)
 605 {
 606         struct mtd_info *mtd = nand_to_mtd(chip);
 607         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 608         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 609         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 610         u32 nand_fsr;
 611         int status;
 612 
 613         /* Use READ_STATUS command, but wait for the device to be ready */
 614         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 615                   (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
 616                   &ifc->ifc_nand.nand_fir0);
 617         ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 618                   &ifc->ifc_nand.nand_fcr0);
 619         ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 620         set_addr(mtd, 0, 0, 0);
 621         ifc_nand_ctrl->read_bytes = 1;
 622 
 623         fsl_ifc_run_command(mtd);
 624 
 625         nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
 626         status = nand_fsr >> 24;
 627         /*
 628          * The chip always seems to report that it is
 629          * write-protected, even when it is not.
 630          */
 631         return status | NAND_STATUS_WP;
 632 }
 633 
 634 /*
 635  * The controller does not check for bitflips in erased pages,
 636  * therefore software must check instead.
 637  */
 638 static int check_erased_page(struct nand_chip *chip, u8 *buf)
 639 {
 640         struct mtd_info *mtd = nand_to_mtd(chip);
 641         u8 *ecc = chip->oob_poi;
 642         const int ecc_size = chip->ecc.bytes;
 643         const int pkt_size = chip->ecc.size;
 644         int i, res, bitflips = 0;
 645         struct mtd_oob_region oobregion = { };
 646 
 647         mtd_ooblayout_ecc(mtd, 0, &oobregion);
 648         ecc += oobregion.offset;
 649 
 650         for (i = 0; i < chip->ecc.steps; ++i) {
 651                 res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
 652                                                   NULL, 0,
 653                                                   chip->ecc.strength);
 654                 if (res < 0)
 655                         mtd->ecc_stats.failed++;
 656                 else
 657                         mtd->ecc_stats.corrected += res;
 658 
 659                 bitflips = max(res, bitflips);
 660                 buf += pkt_size;
 661                 ecc += ecc_size;
 662         }
 663 
 664         return bitflips;
 665 }
 666 
 667 static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
 668                              int oob_required, int page)
 669 {
 670         struct mtd_info *mtd = nand_to_mtd(chip);
 671         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 672         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 673         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 674 
 675         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 676         if (oob_required)
 677                 fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 678 
 679         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
 680                 if (!oob_required)
 681                         fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 682 
 683                 return check_erased_page(chip, buf);
 684         }
 685 
 686         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 687                 mtd->ecc_stats.failed++;
 688 
 689         return nctrl->max_bitflips;
 690 }
 691 
 692 /* ECC will be calculated automatically, and errors will be detected in
 693  * waitfunc.
 694  */
 695 static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
 696                               int oob_required, int page)
 697 {
 698         struct mtd_info *mtd = nand_to_mtd(chip);
 699 
 700         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 701         fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 702 
 703         return nand_prog_page_end_op(chip);
 704 }
 705 
 706 static int fsl_ifc_attach_chip(struct nand_chip *chip)
 707 {
 708         struct mtd_info *mtd = nand_to_mtd(chip);
 709         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 710 
 711         dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
 712                 nanddev_ntargets(&chip->base));
 713         dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
 714                 nanddev_target_size(&chip->base));
 715         dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
 716                                                         chip->pagemask);
 717         dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
 718                 chip->legacy.chip_delay);
 719         dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
 720                                                         chip->badblockpos);
 721         dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
 722                                                         chip->chip_shift);
 723         dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
 724                                                         chip->page_shift);
 725         dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
 726                                                         chip->phys_erase_shift);
 727         dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
 728                                                         chip->ecc.mode);
 729         dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
 730                                                         chip->ecc.steps);
 731         dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
 732                                                         chip->ecc.bytes);
 733         dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
 734                                                         chip->ecc.total);
 735         dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
 736                                                         mtd->ooblayout);
 737         dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
 738         dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
 739         dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
 740                                                         mtd->erasesize);
 741         dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
 742                                                         mtd->writesize);
 743         dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
 744                                                         mtd->oobsize);
 745 
 746         return 0;
 747 }
 748 
 749 static const struct nand_controller_ops fsl_ifc_controller_ops = {
 750         .attach_chip = fsl_ifc_attach_chip,
 751 };
 752 
 753 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 754 {
 755         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 756         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 757         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 758         uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
 759         uint32_t cs = priv->bank;
 760 
 761         if (ctrl->version < FSL_IFC_VERSION_1_1_0)
 762                 return 0;
 763 
 764         if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
 765                 u32 ncfgr, status;
 766                 int ret;
 767 
 768                 /* Trigger auto initialization */
 769                 ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
 770                 ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
 771 
 772                 /* Wait until done */
 773                 ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
 774                                          status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
 775                                          10, IFC_TIMEOUT_MSECS * 1000);
 776                 if (ret)
 777                         dev_err(priv->dev, "Failed to initialize SRAM!\n");
 778 
 779                 return ret;
 780         }
 781 
 782         /* Save CSOR and CSOR_ext */
 783         csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
 784         csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
 785 
 786         /* chage PageSize 8K and SpareSize 1K*/
 787         csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
 788         ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
 789         ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
 790 
 791         /* READID */
 792         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 793                     (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 794                     (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
 795                     &ifc_runtime->ifc_nand.nand_fir0);
 796         ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
 797                     &ifc_runtime->ifc_nand.nand_fcr0);
 798         ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
 799 
 800         ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
 801 
 802         /* Program ROW0/COL0 */
 803         ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
 804         ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
 805 
 806         /* set the chip select for NAND Transaction */
 807         ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
 808                 &ifc_runtime->ifc_nand.nand_csel);
 809 
 810         /* start read seq */
 811         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
 812                 &ifc_runtime->ifc_nand.nandseq_strt);
 813 
 814         /* wait for command complete flag or timeout */
 815         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 816                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 817 
 818         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
 819                 pr_err("fsl-ifc: Failed to Initialise SRAM\n");
 820                 return -ETIMEDOUT;
 821         }
 822 
 823         /* Restore CSOR and CSOR_ext */
 824         ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
 825         ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
 826 
 827         return 0;
 828 }
 829 
 830 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 831 {
 832         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 833         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 834         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 835         struct nand_chip *chip = &priv->chip;
 836         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 837         u32 csor;
 838         int ret;
 839 
 840         /* Fill in fsl_ifc_mtd structure */
 841         mtd->dev.parent = priv->dev;
 842         nand_set_flash_node(chip, priv->dev->of_node);
 843 
 844         /* fill in nand_chip structure */
 845         /* set up function call table */
 846         if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
 847                 & CSPR_PORT_SIZE_16)
 848                 chip->legacy.read_byte = fsl_ifc_read_byte16;
 849         else
 850                 chip->legacy.read_byte = fsl_ifc_read_byte;
 851 
 852         chip->legacy.write_buf = fsl_ifc_write_buf;
 853         chip->legacy.read_buf = fsl_ifc_read_buf;
 854         chip->legacy.select_chip = fsl_ifc_select_chip;
 855         chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
 856         chip->legacy.waitfunc = fsl_ifc_wait;
 857         chip->legacy.set_features = nand_get_set_features_notsupp;
 858         chip->legacy.get_features = nand_get_set_features_notsupp;
 859 
 860         chip->bbt_td = &bbt_main_descr;
 861         chip->bbt_md = &bbt_mirror_descr;
 862 
 863         ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
 864 
 865         /* set up nand options */
 866         chip->bbt_options = NAND_BBT_USE_FLASH;
 867         chip->options = NAND_NO_SUBPAGE_WRITE;
 868 
 869         if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
 870                 & CSPR_PORT_SIZE_16) {
 871                 chip->legacy.read_byte = fsl_ifc_read_byte16;
 872                 chip->options |= NAND_BUSWIDTH_16;
 873         } else {
 874                 chip->legacy.read_byte = fsl_ifc_read_byte;
 875         }
 876 
 877         chip->controller = &ifc_nand_ctrl->controller;
 878         nand_set_controller_data(chip, priv);
 879 
 880         chip->ecc.read_page = fsl_ifc_read_page;
 881         chip->ecc.write_page = fsl_ifc_write_page;
 882 
 883         csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
 884 
 885         switch (csor & CSOR_NAND_PGS_MASK) {
 886         case CSOR_NAND_PGS_512:
 887                 if (!(chip->options & NAND_BUSWIDTH_16)) {
 888                         /* Avoid conflict with bad block marker */
 889                         bbt_main_descr.offs = 0;
 890                         bbt_mirror_descr.offs = 0;
 891                 }
 892 
 893                 priv->bufnum_mask = 15;
 894                 break;
 895 
 896         case CSOR_NAND_PGS_2K:
 897                 priv->bufnum_mask = 3;
 898                 break;
 899 
 900         case CSOR_NAND_PGS_4K:
 901                 priv->bufnum_mask = 1;
 902                 break;
 903 
 904         case CSOR_NAND_PGS_8K:
 905                 priv->bufnum_mask = 0;
 906                 break;
 907 
 908         default:
 909                 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
 910                 return -ENODEV;
 911         }
 912 
 913         /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
 914         if (csor & CSOR_NAND_ECC_DEC_EN) {
 915                 chip->ecc.mode = NAND_ECC_HW;
 916                 mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
 917 
 918                 /* Hardware generates ECC per 512 Bytes */
 919                 chip->ecc.size = 512;
 920                 if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
 921                         chip->ecc.bytes = 8;
 922                         chip->ecc.strength = 4;
 923                 } else {
 924                         chip->ecc.bytes = 16;
 925                         chip->ecc.strength = 8;
 926                 }
 927         } else {
 928                 chip->ecc.mode = NAND_ECC_SOFT;
 929                 chip->ecc.algo = NAND_ECC_HAMMING;
 930         }
 931 
 932         ret = fsl_ifc_sram_init(priv);
 933         if (ret)
 934                 return ret;
 935 
 936         /*
 937          * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
 938          * versions which had 8KB. Hence bufnum mask needs to be updated.
 939          */
 940         if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
 941                 priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
 942 
 943         return 0;
 944 }
 945 
 946 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
 947 {
 948         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 949 
 950         kfree(mtd->name);
 951 
 952         if (priv->vbase)
 953                 iounmap(priv->vbase);
 954 
 955         ifc_nand_ctrl->chips[priv->bank] = NULL;
 956 
 957         return 0;
 958 }
 959 
 960 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
 961                       phys_addr_t addr)
 962 {
 963         u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
 964 
 965         if (!(cspr & CSPR_V))
 966                 return 0;
 967         if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
 968                 return 0;
 969 
 970         return (cspr & CSPR_BA) == convert_ifc_address(addr);
 971 }
 972 
 973 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
 974 
 975 static int fsl_ifc_nand_probe(struct platform_device *dev)
 976 {
 977         struct fsl_ifc_runtime __iomem *ifc;
 978         struct fsl_ifc_mtd *priv;
 979         struct resource res;
 980         static const char *part_probe_types[]
 981                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
 982         int ret;
 983         int bank;
 984         struct device_node *node = dev->dev.of_node;
 985         struct mtd_info *mtd;
 986 
 987         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
 988                 return -ENODEV;
 989         ifc = fsl_ifc_ctrl_dev->rregs;
 990 
 991         /* get, allocate and map the memory resource */
 992         ret = of_address_to_resource(node, 0, &res);
 993         if (ret) {
 994                 dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
 995                 return ret;
 996         }
 997 
 998         /* find which chip select it is connected to */
 999         for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
1000                 if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
1001                         break;
1002         }
1003 
1004         if (bank >= fsl_ifc_ctrl_dev->banks) {
1005                 dev_err(&dev->dev, "%s: address did not match any chip selects\n",
1006                         __func__);
1007                 return -ENODEV;
1008         }
1009 
1010         priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
1011         if (!priv)
1012                 return -ENOMEM;
1013 
1014         mutex_lock(&fsl_ifc_nand_mutex);
1015         if (!fsl_ifc_ctrl_dev->nand) {
1016                 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1017                 if (!ifc_nand_ctrl) {
1018                         mutex_unlock(&fsl_ifc_nand_mutex);
1019                         return -ENOMEM;
1020                 }
1021 
1022                 ifc_nand_ctrl->read_bytes = 0;
1023                 ifc_nand_ctrl->index = 0;
1024                 ifc_nand_ctrl->addr = NULL;
1025                 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1026 
1027                 nand_controller_init(&ifc_nand_ctrl->controller);
1028         } else {
1029                 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1030         }
1031         mutex_unlock(&fsl_ifc_nand_mutex);
1032 
1033         ifc_nand_ctrl->chips[bank] = priv;
1034         priv->bank = bank;
1035         priv->ctrl = fsl_ifc_ctrl_dev;
1036         priv->dev = &dev->dev;
1037 
1038         priv->vbase = ioremap(res.start, resource_size(&res));
1039         if (!priv->vbase) {
1040                 dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1041                 ret = -ENOMEM;
1042                 goto err;
1043         }
1044 
1045         dev_set_drvdata(priv->dev, priv);
1046 
1047         ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1048                   IFC_NAND_EVTER_EN_FTOER_EN |
1049                   IFC_NAND_EVTER_EN_WPER_EN,
1050                   &ifc->ifc_nand.nand_evter_en);
1051 
1052         /* enable NAND Machine Interrupts */
1053         ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1054                   IFC_NAND_EVTER_INTR_FTOERIR_EN |
1055                   IFC_NAND_EVTER_INTR_WPERIR_EN,
1056                   &ifc->ifc_nand.nand_evter_intr_en);
1057 
1058         mtd = nand_to_mtd(&priv->chip);
1059         mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1060         if (!mtd->name) {
1061                 ret = -ENOMEM;
1062                 goto err;
1063         }
1064 
1065         ret = fsl_ifc_chip_init(priv);
1066         if (ret)
1067                 goto err;
1068 
1069         priv->chip.controller->ops = &fsl_ifc_controller_ops;
1070         ret = nand_scan(&priv->chip, 1);
1071         if (ret)
1072                 goto err;
1073 
1074         /* First look for RedBoot table or partitions on the command
1075          * line, these take precedence over device tree information */
1076         ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1077         if (ret)
1078                 goto cleanup_nand;
1079 
1080         dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1081                  (unsigned long long)res.start, priv->bank);
1082 
1083         return 0;
1084 
1085 cleanup_nand:
1086         nand_cleanup(&priv->chip);
1087 err:
1088         fsl_ifc_chip_remove(priv);
1089 
1090         return ret;
1091 }
1092 
1093 static int fsl_ifc_nand_remove(struct platform_device *dev)
1094 {
1095         struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1096 
1097         nand_release(&priv->chip);
1098         fsl_ifc_chip_remove(priv);
1099 
1100         mutex_lock(&fsl_ifc_nand_mutex);
1101         ifc_nand_ctrl->counter--;
1102         if (!ifc_nand_ctrl->counter) {
1103                 fsl_ifc_ctrl_dev->nand = NULL;
1104                 kfree(ifc_nand_ctrl);
1105         }
1106         mutex_unlock(&fsl_ifc_nand_mutex);
1107 
1108         return 0;
1109 }
1110 
1111 static const struct of_device_id fsl_ifc_nand_match[] = {
1112         {
1113                 .compatible = "fsl,ifc-nand",
1114         },
1115         {}
1116 };
1117 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1118 
1119 static struct platform_driver fsl_ifc_nand_driver = {
1120         .driver = {
1121                 .name   = "fsl,ifc-nand",
1122                 .of_match_table = fsl_ifc_nand_match,
1123         },
1124         .probe       = fsl_ifc_nand_probe,
1125         .remove      = fsl_ifc_nand_remove,
1126 };
1127 
1128 module_platform_driver(fsl_ifc_nand_driver);
1129 
1130 MODULE_LICENSE("GPL");
1131 MODULE_AUTHOR("Freescale");
1132 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");

/* [<][>][^][v][top][bottom][index][help] */