root/drivers/mtd/nand/raw/cafe_nand.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cafe_device_ready
  2. cafe_write_buf
  3. cafe_read_buf
  4. cafe_read_byte
  5. cafe_nand_cmdfunc
  6. cafe_select_chip
  7. cafe_nand_interrupt
  8. cafe_nand_write_oob
  9. cafe_nand_read_oob
  10. cafe_nand_read_page
  11. cafe_ooblayout_ecc
  12. cafe_ooblayout_free
  13. cafe_nand_write_page_lowlevel
  14. cafe_nand_block_bad
  15. gf64_mul
  16. gf4096_mul
  17. cafe_mul
  18. cafe_nand_attach_chip
  19. cafe_nand_detach_chip
  20. cafe_nand_probe
  21. cafe_nand_remove
  22. cafe_nand_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   4  *
   5  * The data sheet for this device can be found at:
   6  *    http://wiki.laptop.org/go/Datasheets 
   7  *
   8  * Copyright © 2006 Red Hat, Inc.
   9  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  10  */
  11 
  12 #define DEBUG
  13 
  14 #include <linux/device.h>
  15 #undef DEBUG
  16 #include <linux/mtd/mtd.h>
  17 #include <linux/mtd/rawnand.h>
  18 #include <linux/mtd/partitions.h>
  19 #include <linux/rslib.h>
  20 #include <linux/pci.h>
  21 #include <linux/delay.h>
  22 #include <linux/interrupt.h>
  23 #include <linux/dma-mapping.h>
  24 #include <linux/slab.h>
  25 #include <linux/module.h>
  26 #include <asm/io.h>
  27 
  28 #define CAFE_NAND_CTRL1         0x00
  29 #define CAFE_NAND_CTRL2         0x04
  30 #define CAFE_NAND_CTRL3         0x08
  31 #define CAFE_NAND_STATUS        0x0c
  32 #define CAFE_NAND_IRQ           0x10
  33 #define CAFE_NAND_IRQ_MASK      0x14
  34 #define CAFE_NAND_DATA_LEN      0x18
  35 #define CAFE_NAND_ADDR1         0x1c
  36 #define CAFE_NAND_ADDR2         0x20
  37 #define CAFE_NAND_TIMING1       0x24
  38 #define CAFE_NAND_TIMING2       0x28
  39 #define CAFE_NAND_TIMING3       0x2c
  40 #define CAFE_NAND_NONMEM        0x30
  41 #define CAFE_NAND_ECC_RESULT    0x3C
  42 #define CAFE_NAND_DMA_CTRL      0x40
  43 #define CAFE_NAND_DMA_ADDR0     0x44
  44 #define CAFE_NAND_DMA_ADDR1     0x48
  45 #define CAFE_NAND_ECC_SYN01     0x50
  46 #define CAFE_NAND_ECC_SYN23     0x54
  47 #define CAFE_NAND_ECC_SYN45     0x58
  48 #define CAFE_NAND_ECC_SYN67     0x5c
  49 #define CAFE_NAND_READ_DATA     0x1000
  50 #define CAFE_NAND_WRITE_DATA    0x2000
  51 
  52 #define CAFE_GLOBAL_CTRL        0x3004
  53 #define CAFE_GLOBAL_IRQ         0x3008
  54 #define CAFE_GLOBAL_IRQ_MASK    0x300c
  55 #define CAFE_NAND_RESET         0x3034
  56 
  57 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  58 #define CTRL1_CHIPSELECT        (1<<19)
  59 
  60 struct cafe_priv {
  61         struct nand_chip nand;
  62         struct pci_dev *pdev;
  63         void __iomem *mmio;
  64         struct rs_control *rs;
  65         uint32_t ctl1;
  66         uint32_t ctl2;
  67         int datalen;
  68         int nr_data;
  69         int data_pos;
  70         int page_addr;
  71         bool usedma;
  72         dma_addr_t dmaaddr;
  73         unsigned char *dmabuf;
  74 };
  75 
  76 static int usedma = 1;
  77 module_param(usedma, int, 0644);
  78 
  79 static int skipbbt = 0;
  80 module_param(skipbbt, int, 0644);
  81 
  82 static int debug = 0;
  83 module_param(debug, int, 0644);
  84 
  85 static int regdebug = 0;
  86 module_param(regdebug, int, 0644);
  87 
  88 static int checkecc = 1;
  89 module_param(checkecc, int, 0644);
  90 
  91 static unsigned int numtimings;
  92 static int timing[3];
  93 module_param_array(timing, int, &numtimings, 0644);
  94 
  95 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  96 
  97 /* Hrm. Why isn't this already conditional on something in the struct device? */
  98 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  99 
 100 /* Make it easier to switch to PIO if we need to */
 101 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 102 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 103 
 104 static int cafe_device_ready(struct nand_chip *chip)
 105 {
 106         struct cafe_priv *cafe = nand_get_controller_data(chip);
 107         int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
 108         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 109 
 110         cafe_writel(cafe, irqs, NAND_IRQ);
 111 
 112         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 113                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 114                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 115 
 116         return result;
 117 }
 118 
 119 
 120 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 121 {
 122         struct cafe_priv *cafe = nand_get_controller_data(chip);
 123 
 124         if (cafe->usedma)
 125                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 126         else
 127                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 128 
 129         cafe->datalen += len;
 130 
 131         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 132                 len, cafe->datalen);
 133 }
 134 
 135 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 136 {
 137         struct cafe_priv *cafe = nand_get_controller_data(chip);
 138 
 139         if (cafe->usedma)
 140                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 141         else
 142                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 143 
 144         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 145                   len, cafe->datalen);
 146         cafe->datalen += len;
 147 }
 148 
 149 static uint8_t cafe_read_byte(struct nand_chip *chip)
 150 {
 151         struct cafe_priv *cafe = nand_get_controller_data(chip);
 152         uint8_t d;
 153 
 154         cafe_read_buf(chip, &d, 1);
 155         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 156 
 157         return d;
 158 }
 159 
 160 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
 161                               int column, int page_addr)
 162 {
 163         struct mtd_info *mtd = nand_to_mtd(chip);
 164         struct cafe_priv *cafe = nand_get_controller_data(chip);
 165         int adrbytes = 0;
 166         uint32_t ctl1;
 167         uint32_t doneint = 0x80000000;
 168 
 169         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 170                 command, column, page_addr);
 171 
 172         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 173                 /* Second half of a command we already calculated */
 174                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 175                 ctl1 = cafe->ctl1;
 176                 cafe->ctl2 &= ~(1<<30);
 177                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 178                           cafe->ctl1, cafe->nr_data);
 179                 goto do_command;
 180         }
 181         /* Reset ECC engine */
 182         cafe_writel(cafe, 0, NAND_CTRL2);
 183 
 184         /* Emulate NAND_CMD_READOOB on large-page chips */
 185         if (mtd->writesize > 512 &&
 186             command == NAND_CMD_READOOB) {
 187                 column += mtd->writesize;
 188                 command = NAND_CMD_READ0;
 189         }
 190 
 191         /* FIXME: Do we need to send read command before sending data
 192            for small-page chips, to position the buffer correctly? */
 193 
 194         if (column != -1) {
 195                 cafe_writel(cafe, column, NAND_ADDR1);
 196                 adrbytes = 2;
 197                 if (page_addr != -1)
 198                         goto write_adr2;
 199         } else if (page_addr != -1) {
 200                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 201                 page_addr >>= 16;
 202         write_adr2:
 203                 cafe_writel(cafe, page_addr, NAND_ADDR2);
 204                 adrbytes += 2;
 205                 if (mtd->size > mtd->writesize << 16)
 206                         adrbytes++;
 207         }
 208 
 209         cafe->data_pos = cafe->datalen = 0;
 210 
 211         /* Set command valid bit, mask in the chip select bit  */
 212         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 213 
 214         /* Set RD or WR bits as appropriate */
 215         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 216                 ctl1 |= (1<<26); /* rd */
 217                 /* Always 5 bytes, for now */
 218                 cafe->datalen = 4;
 219                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 220                 adrbytes = 1;
 221         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 222                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 223                 ctl1 |= 1<<26; /* rd */
 224                 /* For now, assume just read to end of page */
 225                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
 226         } else if (command == NAND_CMD_SEQIN)
 227                 ctl1 |= 1<<25; /* wr */
 228 
 229         /* Set number of address bytes */
 230         if (adrbytes)
 231                 ctl1 |= ((adrbytes-1)|8) << 27;
 232 
 233         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 234                 /* Ignore the first command of a pair; the hardware
 235                    deals with them both at once, later */
 236                 cafe->ctl1 = ctl1;
 237                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 238                           cafe->ctl1, cafe->datalen);
 239                 return;
 240         }
 241         /* RNDOUT and READ0 commands need a following byte */
 242         if (command == NAND_CMD_RNDOUT)
 243                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 244         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 245                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 246 
 247  do_command:
 248         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 249                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 250 
 251         /* NB: The datasheet lies -- we really should be subtracting 1 here */
 252         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 253         cafe_writel(cafe, 0x90000000, NAND_IRQ);
 254         if (cafe->usedma && (ctl1 & (3<<25))) {
 255                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
 256                 /* If WR or RD bits set, set up DMA */
 257                 if (ctl1 & (1<<26)) {
 258                         /* It's a read */
 259                         dmactl |= (1<<29);
 260                         /* ... so it's done when the DMA is done, not just
 261                            the command. */
 262                         doneint = 0x10000000;
 263                 }
 264                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 265         }
 266         cafe->datalen = 0;
 267 
 268         if (unlikely(regdebug)) {
 269                 int i;
 270                 printk("About to write command %08x to register 0\n", ctl1);
 271                 for (i=4; i< 0x5c; i+=4)
 272                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 273         }
 274 
 275         cafe_writel(cafe, ctl1, NAND_CTRL1);
 276         /* Apply this short delay always to ensure that we do wait tWB in
 277          * any case on any machine. */
 278         ndelay(100);
 279 
 280         if (1) {
 281                 int c;
 282                 uint32_t irqs;
 283 
 284                 for (c = 500000; c != 0; c--) {
 285                         irqs = cafe_readl(cafe, NAND_IRQ);
 286                         if (irqs & doneint)
 287                                 break;
 288                         udelay(1);
 289                         if (!(c % 100000))
 290                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 291                         cpu_relax();
 292                 }
 293                 cafe_writel(cafe, doneint, NAND_IRQ);
 294                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 295                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 296         }
 297 
 298         WARN_ON(cafe->ctl2 & (1<<30));
 299 
 300         switch (command) {
 301 
 302         case NAND_CMD_CACHEDPROG:
 303         case NAND_CMD_PAGEPROG:
 304         case NAND_CMD_ERASE1:
 305         case NAND_CMD_ERASE2:
 306         case NAND_CMD_SEQIN:
 307         case NAND_CMD_RNDIN:
 308         case NAND_CMD_STATUS:
 309         case NAND_CMD_RNDOUT:
 310                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 311                 return;
 312         }
 313         nand_wait_ready(chip);
 314         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 315 }
 316 
 317 static void cafe_select_chip(struct nand_chip *chip, int chipnr)
 318 {
 319         struct cafe_priv *cafe = nand_get_controller_data(chip);
 320 
 321         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 322 
 323         /* Mask the appropriate bit into the stored value of ctl1
 324            which will be used by cafe_nand_cmdfunc() */
 325         if (chipnr)
 326                 cafe->ctl1 |= CTRL1_CHIPSELECT;
 327         else
 328                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 329 }
 330 
 331 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 332 {
 333         struct mtd_info *mtd = id;
 334         struct nand_chip *chip = mtd_to_nand(mtd);
 335         struct cafe_priv *cafe = nand_get_controller_data(chip);
 336         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 337         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 338         if (!irqs)
 339                 return IRQ_NONE;
 340 
 341         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 342         return IRQ_HANDLED;
 343 }
 344 
 345 static int cafe_nand_write_oob(struct nand_chip *chip, int page)
 346 {
 347         struct mtd_info *mtd = nand_to_mtd(chip);
 348 
 349         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 350                                  mtd->oobsize);
 351 }
 352 
 353 /* Don't use -- use nand_read_oob_std for now */
 354 static int cafe_nand_read_oob(struct nand_chip *chip, int page)
 355 {
 356         struct mtd_info *mtd = nand_to_mtd(chip);
 357 
 358         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 359 }
 360 /**
 361  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
 362  * @mtd:        mtd info structure
 363  * @chip:       nand chip info structure
 364  * @buf:        buffer to store read data
 365  * @oob_required:       caller expects OOB data read to chip->oob_poi
 366  *
 367  * The hw generator calculates the error syndrome automatically. Therefore
 368  * we need a special oob layout and handling.
 369  */
 370 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
 371                                int oob_required, int page)
 372 {
 373         struct mtd_info *mtd = nand_to_mtd(chip);
 374         struct cafe_priv *cafe = nand_get_controller_data(chip);
 375         unsigned int max_bitflips = 0;
 376 
 377         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 378                      cafe_readl(cafe, NAND_ECC_RESULT),
 379                      cafe_readl(cafe, NAND_ECC_SYN01));
 380 
 381         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 382         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 383 
 384         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 385                 unsigned short syn[8], pat[4];
 386                 int pos[4];
 387                 u8 *oob = chip->oob_poi;
 388                 int i, n;
 389 
 390                 for (i=0; i<8; i+=2) {
 391                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 392 
 393                         syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
 394                         syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
 395                 }
 396 
 397                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 398                                 pat);
 399 
 400                 for (i = 0; i < n; i++) {
 401                         int p = pos[i];
 402 
 403                         /* The 12-bit symbols are mapped to bytes here */
 404 
 405                         if (p > 1374) {
 406                                 /* out of range */
 407                                 n = -1374;
 408                         } else if (p == 0) {
 409                                 /* high four bits do not correspond to data */
 410                                 if (pat[i] > 0xff)
 411                                         n = -2048;
 412                                 else
 413                                         buf[0] ^= pat[i];
 414                         } else if (p == 1365) {
 415                                 buf[2047] ^= pat[i] >> 4;
 416                                 oob[0] ^= pat[i] << 4;
 417                         } else if (p > 1365) {
 418                                 if ((p & 1) == 1) {
 419                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
 420                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
 421                                 } else {
 422                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
 423                                         oob[3*p/2 - 2048] ^= pat[i];
 424                                 }
 425                         } else if ((p & 1) == 1) {
 426                                 buf[3*p/2] ^= pat[i] >> 4;
 427                                 buf[3*p/2 + 1] ^= pat[i] << 4;
 428                         } else {
 429                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
 430                                 buf[3*p/2] ^= pat[i];
 431                         }
 432                 }
 433 
 434                 if (n < 0) {
 435                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 436                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
 437                         for (i = 0; i < 0x5c; i += 4)
 438                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 439                         mtd->ecc_stats.failed++;
 440                 } else {
 441                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 442                         mtd->ecc_stats.corrected += n;
 443                         max_bitflips = max_t(unsigned int, max_bitflips, n);
 444                 }
 445         }
 446 
 447         return max_bitflips;
 448 }
 449 
 450 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
 451                               struct mtd_oob_region *oobregion)
 452 {
 453         struct nand_chip *chip = mtd_to_nand(mtd);
 454 
 455         if (section)
 456                 return -ERANGE;
 457 
 458         oobregion->offset = 0;
 459         oobregion->length = chip->ecc.total;
 460 
 461         return 0;
 462 }
 463 
 464 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
 465                                struct mtd_oob_region *oobregion)
 466 {
 467         struct nand_chip *chip = mtd_to_nand(mtd);
 468 
 469         if (section)
 470                 return -ERANGE;
 471 
 472         oobregion->offset = chip->ecc.total;
 473         oobregion->length = mtd->oobsize - chip->ecc.total;
 474 
 475         return 0;
 476 }
 477 
 478 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
 479         .ecc = cafe_ooblayout_ecc,
 480         .free = cafe_ooblayout_free,
 481 };
 482 
 483 /* Ick. The BBT code really ought to be able to work this bit out
 484    for itself from the above, at least for the 2KiB case */
 485 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 486 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 487 
 488 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 489 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 490 
 491 
 492 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 493         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 494                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
 495         .offs = 14,
 496         .len = 4,
 497         .veroffs = 18,
 498         .maxblocks = 4,
 499         .pattern = cafe_bbt_pattern_2048
 500 };
 501 
 502 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 503         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 504                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
 505         .offs = 14,
 506         .len = 4,
 507         .veroffs = 18,
 508         .maxblocks = 4,
 509         .pattern = cafe_mirror_pattern_2048
 510 };
 511 
 512 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 513         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 514                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
 515         .offs = 14,
 516         .len = 1,
 517         .veroffs = 15,
 518         .maxblocks = 4,
 519         .pattern = cafe_bbt_pattern_512
 520 };
 521 
 522 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 523         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 524                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
 525         .offs = 14,
 526         .len = 1,
 527         .veroffs = 15,
 528         .maxblocks = 4,
 529         .pattern = cafe_mirror_pattern_512
 530 };
 531 
 532 
 533 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
 534                                          const uint8_t *buf, int oob_required,
 535                                          int page)
 536 {
 537         struct mtd_info *mtd = nand_to_mtd(chip);
 538         struct cafe_priv *cafe = nand_get_controller_data(chip);
 539 
 540         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 541         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 542 
 543         /* Set up ECC autogeneration */
 544         cafe->ctl2 |= (1<<30);
 545 
 546         return nand_prog_page_end_op(chip);
 547 }
 548 
 549 static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
 550 {
 551         return 0;
 552 }
 553 
 554 /* F_2[X]/(X**6+X+1)  */
 555 static unsigned short gf64_mul(u8 a, u8 b)
 556 {
 557         u8 c;
 558         unsigned int i;
 559 
 560         c = 0;
 561         for (i = 0; i < 6; i++) {
 562                 if (a & 1)
 563                         c ^= b;
 564                 a >>= 1;
 565                 b <<= 1;
 566                 if ((b & 0x40) != 0)
 567                         b ^= 0x43;
 568         }
 569 
 570         return c;
 571 }
 572 
 573 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 574 static u16 gf4096_mul(u16 a, u16 b)
 575 {
 576         u8 ah, al, bh, bl, ch, cl;
 577 
 578         ah = a >> 6;
 579         al = a & 0x3f;
 580         bh = b >> 6;
 581         bl = b & 0x3f;
 582 
 583         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 584         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 585 
 586         return (ch << 6) ^ cl;
 587 }
 588 
 589 static int cafe_mul(int x)
 590 {
 591         if (x == 0)
 592                 return 1;
 593         return gf4096_mul(x, 0xe01);
 594 }
 595 
 596 static int cafe_nand_attach_chip(struct nand_chip *chip)
 597 {
 598         struct mtd_info *mtd = nand_to_mtd(chip);
 599         struct cafe_priv *cafe = nand_get_controller_data(chip);
 600         int err = 0;
 601 
 602         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
 603                                           &cafe->dmaaddr, GFP_KERNEL);
 604         if (!cafe->dmabuf)
 605                 return -ENOMEM;
 606 
 607         /* Set up DMA address */
 608         cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
 609         cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
 610 
 611         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 612                      cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 613 
 614         /* Restore the DMA flag */
 615         cafe->usedma = usedma;
 616 
 617         cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
 618         if (mtd->writesize == 2048)
 619                 cafe->ctl2 |= BIT(29); /* 2KiB page size */
 620 
 621         /* Set up ECC according to the type of chip we found */
 622         mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
 623         if (mtd->writesize == 2048) {
 624                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 625                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 626         } else if (mtd->writesize == 512) {
 627                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 628                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 629         } else {
 630                 dev_warn(&cafe->pdev->dev,
 631                          "Unexpected NAND flash writesize %d. Aborting\n",
 632                          mtd->writesize);
 633                 err = -ENOTSUPP;
 634                 goto out_free_dma;
 635         }
 636 
 637         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 638         cafe->nand.ecc.size = mtd->writesize;
 639         cafe->nand.ecc.bytes = 14;
 640         cafe->nand.ecc.strength = 4;
 641         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 642         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 643         cafe->nand.ecc.read_page = cafe_nand_read_page;
 644         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 645 
 646         return 0;
 647 
 648  out_free_dma:
 649         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 650 
 651         return err;
 652 }
 653 
 654 static void cafe_nand_detach_chip(struct nand_chip *chip)
 655 {
 656         struct cafe_priv *cafe = nand_get_controller_data(chip);
 657 
 658         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 659 }
 660 
 661 static const struct nand_controller_ops cafe_nand_controller_ops = {
 662         .attach_chip = cafe_nand_attach_chip,
 663         .detach_chip = cafe_nand_detach_chip,
 664 };
 665 
 666 static int cafe_nand_probe(struct pci_dev *pdev,
 667                                      const struct pci_device_id *ent)
 668 {
 669         struct mtd_info *mtd;
 670         struct cafe_priv *cafe;
 671         uint32_t ctrl;
 672         int err = 0;
 673 
 674         /* Very old versions shared the same PCI ident for all three
 675            functions on the chip. Verify the class too... */
 676         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 677                 return -ENODEV;
 678 
 679         err = pci_enable_device(pdev);
 680         if (err)
 681                 return err;
 682 
 683         pci_set_master(pdev);
 684 
 685         cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
 686         if (!cafe)
 687                 return  -ENOMEM;
 688 
 689         mtd = nand_to_mtd(&cafe->nand);
 690         mtd->dev.parent = &pdev->dev;
 691         nand_set_controller_data(&cafe->nand, cafe);
 692 
 693         cafe->pdev = pdev;
 694         cafe->mmio = pci_iomap(pdev, 0, 0);
 695         if (!cafe->mmio) {
 696                 dev_warn(&pdev->dev, "failed to iomap\n");
 697                 err = -ENOMEM;
 698                 goto out_free_mtd;
 699         }
 700 
 701         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 702         if (!cafe->rs) {
 703                 err = -ENOMEM;
 704                 goto out_ior;
 705         }
 706 
 707         cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
 708         cafe->nand.legacy.dev_ready = cafe_device_ready;
 709         cafe->nand.legacy.read_byte = cafe_read_byte;
 710         cafe->nand.legacy.read_buf = cafe_read_buf;
 711         cafe->nand.legacy.write_buf = cafe_write_buf;
 712         cafe->nand.legacy.select_chip = cafe_select_chip;
 713         cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
 714         cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
 715 
 716         cafe->nand.legacy.chip_delay = 0;
 717 
 718         /* Enable the following for a flash based bad block table */
 719         cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
 720 
 721         if (skipbbt) {
 722                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
 723                 cafe->nand.legacy.block_bad = cafe_nand_block_bad;
 724         }
 725 
 726         if (numtimings && numtimings != 3) {
 727                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 728         }
 729 
 730         if (numtimings == 3) {
 731                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 732                              timing[0], timing[1], timing[2]);
 733         } else {
 734                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
 735                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
 736                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
 737 
 738                 if (timing[0] | timing[1] | timing[2]) {
 739                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 740                                      timing[0], timing[1], timing[2]);
 741                 } else {
 742                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 743                         timing[0] = timing[1] = timing[2] = 0xffffffff;
 744                 }
 745         }
 746 
 747         /* Start off by resetting the NAND controller completely */
 748         cafe_writel(cafe, 1, NAND_RESET);
 749         cafe_writel(cafe, 0, NAND_RESET);
 750 
 751         cafe_writel(cafe, timing[0], NAND_TIMING1);
 752         cafe_writel(cafe, timing[1], NAND_TIMING2);
 753         cafe_writel(cafe, timing[2], NAND_TIMING3);
 754 
 755         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 756         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 757                           "CAFE NAND", mtd);
 758         if (err) {
 759                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 760                 goto out_ior;
 761         }
 762 
 763         /* Disable master reset, enable NAND clock */
 764         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 765         ctrl &= 0xffffeff0;
 766         ctrl |= 0x00007000;
 767         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 768         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 769         cafe_writel(cafe, 0, NAND_DMA_CTRL);
 770 
 771         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 772         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 773 
 774         /* Enable NAND IRQ in global IRQ mask register */
 775         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 776         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 777                 cafe_readl(cafe, GLOBAL_CTRL),
 778                 cafe_readl(cafe, GLOBAL_IRQ_MASK));
 779 
 780         /* Do not use the DMA during the NAND identification */
 781         cafe->usedma = 0;
 782 
 783         /* Scan to find existence of the device */
 784         cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
 785         err = nand_scan(&cafe->nand, 2);
 786         if (err)
 787                 goto out_irq;
 788 
 789         pci_set_drvdata(pdev, mtd);
 790 
 791         mtd->name = "cafe_nand";
 792         err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
 793         if (err)
 794                 goto out_cleanup_nand;
 795 
 796         goto out;
 797 
 798  out_cleanup_nand:
 799         nand_cleanup(&cafe->nand);
 800  out_irq:
 801         /* Disable NAND IRQ in global IRQ mask register */
 802         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 803         free_irq(pdev->irq, mtd);
 804  out_ior:
 805         pci_iounmap(pdev, cafe->mmio);
 806  out_free_mtd:
 807         kfree(cafe);
 808  out:
 809         return err;
 810 }
 811 
 812 static void cafe_nand_remove(struct pci_dev *pdev)
 813 {
 814         struct mtd_info *mtd = pci_get_drvdata(pdev);
 815         struct nand_chip *chip = mtd_to_nand(mtd);
 816         struct cafe_priv *cafe = nand_get_controller_data(chip);
 817 
 818         /* Disable NAND IRQ in global IRQ mask register */
 819         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 820         free_irq(pdev->irq, mtd);
 821         nand_release(chip);
 822         free_rs(cafe->rs);
 823         pci_iounmap(pdev, cafe->mmio);
 824         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 825         kfree(cafe);
 826 }
 827 
 828 static const struct pci_device_id cafe_nand_tbl[] = {
 829         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 830           PCI_ANY_ID, PCI_ANY_ID },
 831         { }
 832 };
 833 
 834 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 835 
 836 static int cafe_nand_resume(struct pci_dev *pdev)
 837 {
 838         uint32_t ctrl;
 839         struct mtd_info *mtd = pci_get_drvdata(pdev);
 840         struct nand_chip *chip = mtd_to_nand(mtd);
 841         struct cafe_priv *cafe = nand_get_controller_data(chip);
 842 
 843        /* Start off by resetting the NAND controller completely */
 844         cafe_writel(cafe, 1, NAND_RESET);
 845         cafe_writel(cafe, 0, NAND_RESET);
 846         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 847 
 848         /* Restore timing configuration */
 849         cafe_writel(cafe, timing[0], NAND_TIMING1);
 850         cafe_writel(cafe, timing[1], NAND_TIMING2);
 851         cafe_writel(cafe, timing[2], NAND_TIMING3);
 852 
 853         /* Disable master reset, enable NAND clock */
 854         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 855         ctrl &= 0xffffeff0;
 856         ctrl |= 0x00007000;
 857         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 858         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 859         cafe_writel(cafe, 0, NAND_DMA_CTRL);
 860         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 861         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 862 
 863         /* Set up DMA address */
 864         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 865         if (sizeof(cafe->dmaaddr) > 4)
 866         /* Shift in two parts to shut the compiler up */
 867                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 868         else
 869                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 870 
 871         /* Enable NAND IRQ in global IRQ mask register */
 872         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 873         return 0;
 874 }
 875 
 876 static struct pci_driver cafe_nand_pci_driver = {
 877         .name = "CAFÉ NAND",
 878         .id_table = cafe_nand_tbl,
 879         .probe = cafe_nand_probe,
 880         .remove = cafe_nand_remove,
 881         .resume = cafe_nand_resume,
 882 };
 883 
 884 module_pci_driver(cafe_nand_pci_driver);
 885 
 886 MODULE_LICENSE("GPL");
 887 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 888 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");

/* [<][>][^][v][top][bottom][index][help] */