root/drivers/mtd/nand/raw/qcom_nandc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. free_bam_transaction
  2. alloc_bam_transaction
  3. clear_bam_transaction
  4. qpic_bam_dma_done
  5. to_qcom_nand_host
  6. get_qcom_nand_controller
  7. nandc_read
  8. nandc_write
  9. nandc_read_buffer_sync
  10. offset_to_nandc_reg
  11. nandc_set_reg
  12. set_address
  13. update_rw_regs
  14. prepare_bam_async_desc
  15. prep_bam_dma_desc_cmd
  16. prep_bam_dma_desc_data
  17. prep_adm_dma_desc
  18. read_reg_dma
  19. write_reg_dma
  20. read_data_dma
  21. write_data_dma
  22. config_nand_page_read
  23. config_nand_cw_read
  24. config_nand_single_cw_page_read
  25. config_nand_page_write
  26. config_nand_cw_write
  27. nandc_param
  28. erase_block
  29. read_id
  30. reset
  31. submit_descs
  32. free_descs
  33. clear_read_regs
  34. pre_command
  35. parse_erase_write_errors
  36. post_command
  37. qcom_nandc_command
  38. erased_chunk_check_and_fixup
  39. check_flash_errors
  40. qcom_nandc_read_cw_raw
  41. check_for_erased_page
  42. parse_read_errors
  43. read_page_ecc
  44. copy_last_cw
  45. qcom_nandc_read_page
  46. qcom_nandc_read_page_raw
  47. qcom_nandc_read_oob
  48. qcom_nandc_write_page
  49. qcom_nandc_write_page_raw
  50. qcom_nandc_write_oob
  51. qcom_nandc_block_bad
  52. qcom_nandc_block_markbad
  53. qcom_nandc_read_byte
  54. qcom_nandc_read_buf
  55. qcom_nandc_write_buf
  56. qcom_nandc_select_chip
  57. qcom_nand_ooblayout_ecc
  58. qcom_nand_ooblayout_free
  59. qcom_nandc_calc_ecc_bytes
  60. qcom_nand_attach_chip
  61. qcom_nandc_alloc
  62. qcom_nandc_unalloc
  63. qcom_nandc_setup
  64. qcom_nand_host_init_and_register
  65. qcom_probe_nand_devices
  66. qcom_nandc_parse_dt
  67. qcom_nandc_probe
  68. qcom_nandc_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   4  */
   5 
   6 #include <linux/clk.h>
   7 #include <linux/slab.h>
   8 #include <linux/bitops.h>
   9 #include <linux/dma-mapping.h>
  10 #include <linux/dmaengine.h>
  11 #include <linux/module.h>
  12 #include <linux/mtd/rawnand.h>
  13 #include <linux/mtd/partitions.h>
  14 #include <linux/of.h>
  15 #include <linux/of_device.h>
  16 #include <linux/delay.h>
  17 #include <linux/dma/qcom_bam_dma.h>
  18 
  19 /* NANDc reg offsets */
  20 #define NAND_FLASH_CMD                  0x00
  21 #define NAND_ADDR0                      0x04
  22 #define NAND_ADDR1                      0x08
  23 #define NAND_FLASH_CHIP_SELECT          0x0c
  24 #define NAND_EXEC_CMD                   0x10
  25 #define NAND_FLASH_STATUS               0x14
  26 #define NAND_BUFFER_STATUS              0x18
  27 #define NAND_DEV0_CFG0                  0x20
  28 #define NAND_DEV0_CFG1                  0x24
  29 #define NAND_DEV0_ECC_CFG               0x28
  30 #define NAND_DEV1_ECC_CFG               0x2c
  31 #define NAND_DEV1_CFG0                  0x30
  32 #define NAND_DEV1_CFG1                  0x34
  33 #define NAND_READ_ID                    0x40
  34 #define NAND_READ_STATUS                0x44
  35 #define NAND_DEV_CMD0                   0xa0
  36 #define NAND_DEV_CMD1                   0xa4
  37 #define NAND_DEV_CMD2                   0xa8
  38 #define NAND_DEV_CMD_VLD                0xac
  39 #define SFLASHC_BURST_CFG               0xe0
  40 #define NAND_ERASED_CW_DETECT_CFG       0xe8
  41 #define NAND_ERASED_CW_DETECT_STATUS    0xec
  42 #define NAND_EBI2_ECC_BUF_CFG           0xf0
  43 #define FLASH_BUF_ACC                   0x100
  44 
  45 #define NAND_CTRL                       0xf00
  46 #define NAND_VERSION                    0xf08
  47 #define NAND_READ_LOCATION_0            0xf20
  48 #define NAND_READ_LOCATION_1            0xf24
  49 #define NAND_READ_LOCATION_2            0xf28
  50 #define NAND_READ_LOCATION_3            0xf2c
  51 
  52 /* dummy register offsets, used by write_reg_dma */
  53 #define NAND_DEV_CMD1_RESTORE           0xdead
  54 #define NAND_DEV_CMD_VLD_RESTORE        0xbeef
  55 
  56 /* NAND_FLASH_CMD bits */
  57 #define PAGE_ACC                        BIT(4)
  58 #define LAST_PAGE                       BIT(5)
  59 
  60 /* NAND_FLASH_CHIP_SELECT bits */
  61 #define NAND_DEV_SEL                    0
  62 #define DM_EN                           BIT(2)
  63 
  64 /* NAND_FLASH_STATUS bits */
  65 #define FS_OP_ERR                       BIT(4)
  66 #define FS_READY_BSY_N                  BIT(5)
  67 #define FS_MPU_ERR                      BIT(8)
  68 #define FS_DEVICE_STS_ERR               BIT(16)
  69 #define FS_DEVICE_WP                    BIT(23)
  70 
  71 /* NAND_BUFFER_STATUS bits */
  72 #define BS_UNCORRECTABLE_BIT            BIT(8)
  73 #define BS_CORRECTABLE_ERR_MSK          0x1f
  74 
  75 /* NAND_DEVn_CFG0 bits */
  76 #define DISABLE_STATUS_AFTER_WRITE      4
  77 #define CW_PER_PAGE                     6
  78 #define UD_SIZE_BYTES                   9
  79 #define ECC_PARITY_SIZE_BYTES_RS        19
  80 #define SPARE_SIZE_BYTES                23
  81 #define NUM_ADDR_CYCLES                 27
  82 #define STATUS_BFR_READ                 30
  83 #define SET_RD_MODE_AFTER_STATUS        31
  84 
  85 /* NAND_DEVn_CFG0 bits */
  86 #define DEV0_CFG1_ECC_DISABLE           0
  87 #define WIDE_FLASH                      1
  88 #define NAND_RECOVERY_CYCLES            2
  89 #define CS_ACTIVE_BSY                   5
  90 #define BAD_BLOCK_BYTE_NUM              6
  91 #define BAD_BLOCK_IN_SPARE_AREA         16
  92 #define WR_RD_BSY_GAP                   17
  93 #define ENABLE_BCH_ECC                  27
  94 
  95 /* NAND_DEV0_ECC_CFG bits */
  96 #define ECC_CFG_ECC_DISABLE             0
  97 #define ECC_SW_RESET                    1
  98 #define ECC_MODE                        4
  99 #define ECC_PARITY_SIZE_BYTES_BCH       8
 100 #define ECC_NUM_DATA_BYTES              16
 101 #define ECC_FORCE_CLK_OPEN              30
 102 
 103 /* NAND_DEV_CMD1 bits */
 104 #define READ_ADDR                       0
 105 
 106 /* NAND_DEV_CMD_VLD bits */
 107 #define READ_START_VLD                  BIT(0)
 108 #define READ_STOP_VLD                   BIT(1)
 109 #define WRITE_START_VLD                 BIT(2)
 110 #define ERASE_START_VLD                 BIT(3)
 111 #define SEQ_READ_START_VLD              BIT(4)
 112 
 113 /* NAND_EBI2_ECC_BUF_CFG bits */
 114 #define NUM_STEPS                       0
 115 
 116 /* NAND_ERASED_CW_DETECT_CFG bits */
 117 #define ERASED_CW_ECC_MASK              1
 118 #define AUTO_DETECT_RES                 0
 119 #define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
 120 #define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
 121 #define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
 122 #define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
 123 #define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
 124 
 125 /* NAND_ERASED_CW_DETECT_STATUS bits */
 126 #define PAGE_ALL_ERASED                 BIT(7)
 127 #define CODEWORD_ALL_ERASED             BIT(6)
 128 #define PAGE_ERASED                     BIT(5)
 129 #define CODEWORD_ERASED                 BIT(4)
 130 #define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
 131 #define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
 132 
 133 /* NAND_READ_LOCATION_n bits */
 134 #define READ_LOCATION_OFFSET            0
 135 #define READ_LOCATION_SIZE              16
 136 #define READ_LOCATION_LAST              31
 137 
 138 /* Version Mask */
 139 #define NAND_VERSION_MAJOR_MASK         0xf0000000
 140 #define NAND_VERSION_MAJOR_SHIFT        28
 141 #define NAND_VERSION_MINOR_MASK         0x0fff0000
 142 #define NAND_VERSION_MINOR_SHIFT        16
 143 
 144 /* NAND OP_CMDs */
 145 #define OP_PAGE_READ                    0x2
 146 #define OP_PAGE_READ_WITH_ECC           0x3
 147 #define OP_PAGE_READ_WITH_ECC_SPARE     0x4
 148 #define OP_PROGRAM_PAGE                 0x6
 149 #define OP_PAGE_PROGRAM_WITH_ECC        0x7
 150 #define OP_PROGRAM_PAGE_SPARE           0x9
 151 #define OP_BLOCK_ERASE                  0xa
 152 #define OP_FETCH_ID                     0xb
 153 #define OP_RESET_DEVICE                 0xd
 154 
 155 /* Default Value for NAND_DEV_CMD_VLD */
 156 #define NAND_DEV_CMD_VLD_VAL            (READ_START_VLD | WRITE_START_VLD | \
 157                                          ERASE_START_VLD | SEQ_READ_START_VLD)
 158 
 159 /* NAND_CTRL bits */
 160 #define BAM_MODE_EN                     BIT(0)
 161 
 162 /*
 163  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
 164  * the driver calls the chunks 'step' or 'codeword' interchangeably
 165  */
 166 #define NANDC_STEP_SIZE                 512
 167 
 168 /*
 169  * the largest page size we support is 8K, this will have 16 steps/codewords
 170  * of 512 bytes each
 171  */
 172 #define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
 173 
 174 /* we read at most 3 registers per codeword scan */
 175 #define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
 176 
 177 /* ECC modes supported by the controller */
 178 #define ECC_NONE        BIT(0)
 179 #define ECC_RS_4BIT     BIT(1)
 180 #define ECC_BCH_4BIT    BIT(2)
 181 #define ECC_BCH_8BIT    BIT(3)
 182 
 183 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)   \
 184 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,                  \
 185               ((offset) << READ_LOCATION_OFFSET) |              \
 186               ((size) << READ_LOCATION_SIZE) |                  \
 187               ((is_last) << READ_LOCATION_LAST))
 188 
 189 /*
 190  * Returns the actual register address for all NAND_DEV_ registers
 191  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
 192  */
 193 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
 194 
 195 /* Returns the NAND register physical address */
 196 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
 197 
 198 /* Returns the dma address for reg read buffer */
 199 #define reg_buf_dma_addr(chip, vaddr) \
 200         ((chip)->reg_read_dma + \
 201         ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
 202 
 203 #define QPIC_PER_CW_CMD_ELEMENTS        32
 204 #define QPIC_PER_CW_CMD_SGL             32
 205 #define QPIC_PER_CW_DATA_SGL            8
 206 
 207 #define QPIC_NAND_COMPLETION_TIMEOUT    msecs_to_jiffies(2000)
 208 
 209 /*
 210  * Flags used in DMA descriptor preparation helper functions
 211  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
 212  */
 213 /* Don't set the EOT in current tx BAM sgl */
 214 #define NAND_BAM_NO_EOT                 BIT(0)
 215 /* Set the NWD flag in current BAM sgl */
 216 #define NAND_BAM_NWD                    BIT(1)
 217 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
 218 #define NAND_BAM_NEXT_SGL               BIT(2)
 219 /*
 220  * Erased codeword status is being used two times in single transfer so this
 221  * flag will determine the current value of erased codeword status register
 222  */
 223 #define NAND_ERASED_CW_SET              BIT(4)
 224 
 225 /*
 226  * This data type corresponds to the BAM transaction which will be used for all
 227  * NAND transfers.
 228  * @bam_ce - the array of BAM command elements
 229  * @cmd_sgl - sgl for NAND BAM command pipe
 230  * @data_sgl - sgl for NAND BAM consumer/producer pipe
 231  * @bam_ce_pos - the index in bam_ce which is available for next sgl
 232  * @bam_ce_start - the index in bam_ce which marks the start position ce
 233  *                 for current sgl. It will be used for size calculation
 234  *                 for current sgl
 235  * @cmd_sgl_pos - current index in command sgl.
 236  * @cmd_sgl_start - start index in command sgl.
 237  * @tx_sgl_pos - current index in data sgl for tx.
 238  * @tx_sgl_start - start index in data sgl for tx.
 239  * @rx_sgl_pos - current index in data sgl for rx.
 240  * @rx_sgl_start - start index in data sgl for rx.
 241  * @wait_second_completion - wait for second DMA desc completion before making
 242  *                           the NAND transfer completion.
 243  * @txn_done - completion for NAND transfer.
 244  * @last_data_desc - last DMA desc in data channel (tx/rx).
 245  * @last_cmd_desc - last DMA desc in command channel.
 246  */
 247 struct bam_transaction {
 248         struct bam_cmd_element *bam_ce;
 249         struct scatterlist *cmd_sgl;
 250         struct scatterlist *data_sgl;
 251         u32 bam_ce_pos;
 252         u32 bam_ce_start;
 253         u32 cmd_sgl_pos;
 254         u32 cmd_sgl_start;
 255         u32 tx_sgl_pos;
 256         u32 tx_sgl_start;
 257         u32 rx_sgl_pos;
 258         u32 rx_sgl_start;
 259         bool wait_second_completion;
 260         struct completion txn_done;
 261         struct dma_async_tx_descriptor *last_data_desc;
 262         struct dma_async_tx_descriptor *last_cmd_desc;
 263 };
 264 
 265 /*
 266  * This data type corresponds to the nand dma descriptor
 267  * @list - list for desc_info
 268  * @dir - DMA transfer direction
 269  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
 270  *            ADM
 271  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
 272  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
 273  * @dma_desc - low level DMA engine descriptor
 274  */
 275 struct desc_info {
 276         struct list_head node;
 277 
 278         enum dma_data_direction dir;
 279         union {
 280                 struct scatterlist adm_sgl;
 281                 struct {
 282                         struct scatterlist *bam_sgl;
 283                         int sgl_cnt;
 284                 };
 285         };
 286         struct dma_async_tx_descriptor *dma_desc;
 287 };
 288 
 289 /*
 290  * holds the current register values that we want to write. acts as a contiguous
 291  * chunk of memory which we use to write the controller registers through DMA.
 292  */
 293 struct nandc_regs {
 294         __le32 cmd;
 295         __le32 addr0;
 296         __le32 addr1;
 297         __le32 chip_sel;
 298         __le32 exec;
 299 
 300         __le32 cfg0;
 301         __le32 cfg1;
 302         __le32 ecc_bch_cfg;
 303 
 304         __le32 clrflashstatus;
 305         __le32 clrreadstatus;
 306 
 307         __le32 cmd1;
 308         __le32 vld;
 309 
 310         __le32 orig_cmd1;
 311         __le32 orig_vld;
 312 
 313         __le32 ecc_buf_cfg;
 314         __le32 read_location0;
 315         __le32 read_location1;
 316         __le32 read_location2;
 317         __le32 read_location3;
 318 
 319         __le32 erased_cw_detect_cfg_clr;
 320         __le32 erased_cw_detect_cfg_set;
 321 };
 322 
 323 /*
 324  * NAND controller data struct
 325  *
 326  * @controller:                 base controller structure
 327  * @host_list:                  list containing all the chips attached to the
 328  *                              controller
 329  * @dev:                        parent device
 330  * @base:                       MMIO base
 331  * @base_phys:                  physical base address of controller registers
 332  * @base_dma:                   dma base address of controller registers
 333  * @core_clk:                   controller clock
 334  * @aon_clk:                    another controller clock
 335  *
 336  * @chan:                       dma channel
 337  * @cmd_crci:                   ADM DMA CRCI for command flow control
 338  * @data_crci:                  ADM DMA CRCI for data flow control
 339  * @desc_list:                  DMA descriptor list (list of desc_infos)
 340  *
 341  * @data_buffer:                our local DMA buffer for page read/writes,
 342  *                              used when we can't use the buffer provided
 343  *                              by upper layers directly
 344  * @buf_size/count/start:       markers for chip->legacy.read_buf/write_buf
 345  *                              functions
 346  * @reg_read_buf:               local buffer for reading back registers via DMA
 347  * @reg_read_dma:               contains dma address for register read buffer
 348  * @reg_read_pos:               marker for data read in reg_read_buf
 349  *
 350  * @regs:                       a contiguous chunk of memory for DMA register
 351  *                              writes. contains the register values to be
 352  *                              written to controller
 353  * @cmd1/vld:                   some fixed controller register values
 354  * @props:                      properties of current NAND controller,
 355  *                              initialized via DT match data
 356  * @max_cwperpage:              maximum QPIC codewords required. calculated
 357  *                              from all connected NAND devices pagesize
 358  */
 359 struct qcom_nand_controller {
 360         struct nand_controller controller;
 361         struct list_head host_list;
 362 
 363         struct device *dev;
 364 
 365         void __iomem *base;
 366         phys_addr_t base_phys;
 367         dma_addr_t base_dma;
 368 
 369         struct clk *core_clk;
 370         struct clk *aon_clk;
 371 
 372         union {
 373                 /* will be used only by QPIC for BAM DMA */
 374                 struct {
 375                         struct dma_chan *tx_chan;
 376                         struct dma_chan *rx_chan;
 377                         struct dma_chan *cmd_chan;
 378                 };
 379 
 380                 /* will be used only by EBI2 for ADM DMA */
 381                 struct {
 382                         struct dma_chan *chan;
 383                         unsigned int cmd_crci;
 384                         unsigned int data_crci;
 385                 };
 386         };
 387 
 388         struct list_head desc_list;
 389         struct bam_transaction *bam_txn;
 390 
 391         u8              *data_buffer;
 392         int             buf_size;
 393         int             buf_count;
 394         int             buf_start;
 395         unsigned int    max_cwperpage;
 396 
 397         __le32 *reg_read_buf;
 398         dma_addr_t reg_read_dma;
 399         int reg_read_pos;
 400 
 401         struct nandc_regs *regs;
 402 
 403         u32 cmd1, vld;
 404         const struct qcom_nandc_props *props;
 405 };
 406 
 407 /*
 408  * NAND chip structure
 409  *
 410  * @chip:                       base NAND chip structure
 411  * @node:                       list node to add itself to host_list in
 412  *                              qcom_nand_controller
 413  *
 414  * @cs:                         chip select value for this chip
 415  * @cw_size:                    the number of bytes in a single step/codeword
 416  *                              of a page, consisting of all data, ecc, spare
 417  *                              and reserved bytes
 418  * @cw_data:                    the number of bytes within a codeword protected
 419  *                              by ECC
 420  * @use_ecc:                    request the controller to use ECC for the
 421  *                              upcoming read/write
 422  * @bch_enabled:                flag to tell whether BCH ECC mode is used
 423  * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
 424  *                              chip
 425  * @status:                     value to be returned if NAND_CMD_STATUS command
 426  *                              is executed
 427  * @last_command:               keeps track of last command on this chip. used
 428  *                              for reading correct status
 429  *
 430  * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
 431  *                              ecc/non-ecc mode for the current nand flash
 432  *                              device
 433  */
 434 struct qcom_nand_host {
 435         struct nand_chip chip;
 436         struct list_head node;
 437 
 438         int cs;
 439         int cw_size;
 440         int cw_data;
 441         bool use_ecc;
 442         bool bch_enabled;
 443         int ecc_bytes_hw;
 444         int spare_bytes;
 445         int bbm_size;
 446         u8 status;
 447         int last_command;
 448 
 449         u32 cfg0, cfg1;
 450         u32 cfg0_raw, cfg1_raw;
 451         u32 ecc_buf_cfg;
 452         u32 ecc_bch_cfg;
 453         u32 clrflashstatus;
 454         u32 clrreadstatus;
 455 };
 456 
 457 /*
 458  * This data type corresponds to the NAND controller properties which varies
 459  * among different NAND controllers.
 460  * @ecc_modes - ecc mode for NAND
 461  * @is_bam - whether NAND controller is using BAM
 462  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
 463  */
 464 struct qcom_nandc_props {
 465         u32 ecc_modes;
 466         bool is_bam;
 467         u32 dev_cmd_reg_start;
 468 };
 469 
 470 /* Frees the BAM transaction memory */
 471 static void free_bam_transaction(struct qcom_nand_controller *nandc)
 472 {
 473         struct bam_transaction *bam_txn = nandc->bam_txn;
 474 
 475         devm_kfree(nandc->dev, bam_txn);
 476 }
 477 
 478 /* Allocates and Initializes the BAM transaction */
 479 static struct bam_transaction *
 480 alloc_bam_transaction(struct qcom_nand_controller *nandc)
 481 {
 482         struct bam_transaction *bam_txn;
 483         size_t bam_txn_size;
 484         unsigned int num_cw = nandc->max_cwperpage;
 485         void *bam_txn_buf;
 486 
 487         bam_txn_size =
 488                 sizeof(*bam_txn) + num_cw *
 489                 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
 490                 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
 491                 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
 492 
 493         bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
 494         if (!bam_txn_buf)
 495                 return NULL;
 496 
 497         bam_txn = bam_txn_buf;
 498         bam_txn_buf += sizeof(*bam_txn);
 499 
 500         bam_txn->bam_ce = bam_txn_buf;
 501         bam_txn_buf +=
 502                 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
 503 
 504         bam_txn->cmd_sgl = bam_txn_buf;
 505         bam_txn_buf +=
 506                 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
 507 
 508         bam_txn->data_sgl = bam_txn_buf;
 509 
 510         init_completion(&bam_txn->txn_done);
 511 
 512         return bam_txn;
 513 }
 514 
 515 /* Clears the BAM transaction indexes */
 516 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
 517 {
 518         struct bam_transaction *bam_txn = nandc->bam_txn;
 519 
 520         if (!nandc->props->is_bam)
 521                 return;
 522 
 523         bam_txn->bam_ce_pos = 0;
 524         bam_txn->bam_ce_start = 0;
 525         bam_txn->cmd_sgl_pos = 0;
 526         bam_txn->cmd_sgl_start = 0;
 527         bam_txn->tx_sgl_pos = 0;
 528         bam_txn->tx_sgl_start = 0;
 529         bam_txn->rx_sgl_pos = 0;
 530         bam_txn->rx_sgl_start = 0;
 531         bam_txn->last_data_desc = NULL;
 532         bam_txn->wait_second_completion = false;
 533 
 534         sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
 535                       QPIC_PER_CW_CMD_SGL);
 536         sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
 537                       QPIC_PER_CW_DATA_SGL);
 538 
 539         reinit_completion(&bam_txn->txn_done);
 540 }
 541 
 542 /* Callback for DMA descriptor completion */
 543 static void qpic_bam_dma_done(void *data)
 544 {
 545         struct bam_transaction *bam_txn = data;
 546 
 547         /*
 548          * In case of data transfer with NAND, 2 callbacks will be generated.
 549          * One for command channel and another one for data channel.
 550          * If current transaction has data descriptors
 551          * (i.e. wait_second_completion is true), then set this to false
 552          * and wait for second DMA descriptor completion.
 553          */
 554         if (bam_txn->wait_second_completion)
 555                 bam_txn->wait_second_completion = false;
 556         else
 557                 complete(&bam_txn->txn_done);
 558 }
 559 
 560 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
 561 {
 562         return container_of(chip, struct qcom_nand_host, chip);
 563 }
 564 
 565 static inline struct qcom_nand_controller *
 566 get_qcom_nand_controller(struct nand_chip *chip)
 567 {
 568         return container_of(chip->controller, struct qcom_nand_controller,
 569                             controller);
 570 }
 571 
 572 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
 573 {
 574         return ioread32(nandc->base + offset);
 575 }
 576 
 577 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
 578                                u32 val)
 579 {
 580         iowrite32(val, nandc->base + offset);
 581 }
 582 
 583 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
 584                                           bool is_cpu)
 585 {
 586         if (!nandc->props->is_bam)
 587                 return;
 588 
 589         if (is_cpu)
 590                 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
 591                                         MAX_REG_RD *
 592                                         sizeof(*nandc->reg_read_buf),
 593                                         DMA_FROM_DEVICE);
 594         else
 595                 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
 596                                            MAX_REG_RD *
 597                                            sizeof(*nandc->reg_read_buf),
 598                                            DMA_FROM_DEVICE);
 599 }
 600 
 601 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
 602 {
 603         switch (offset) {
 604         case NAND_FLASH_CMD:
 605                 return &regs->cmd;
 606         case NAND_ADDR0:
 607                 return &regs->addr0;
 608         case NAND_ADDR1:
 609                 return &regs->addr1;
 610         case NAND_FLASH_CHIP_SELECT:
 611                 return &regs->chip_sel;
 612         case NAND_EXEC_CMD:
 613                 return &regs->exec;
 614         case NAND_FLASH_STATUS:
 615                 return &regs->clrflashstatus;
 616         case NAND_DEV0_CFG0:
 617                 return &regs->cfg0;
 618         case NAND_DEV0_CFG1:
 619                 return &regs->cfg1;
 620         case NAND_DEV0_ECC_CFG:
 621                 return &regs->ecc_bch_cfg;
 622         case NAND_READ_STATUS:
 623                 return &regs->clrreadstatus;
 624         case NAND_DEV_CMD1:
 625                 return &regs->cmd1;
 626         case NAND_DEV_CMD1_RESTORE:
 627                 return &regs->orig_cmd1;
 628         case NAND_DEV_CMD_VLD:
 629                 return &regs->vld;
 630         case NAND_DEV_CMD_VLD_RESTORE:
 631                 return &regs->orig_vld;
 632         case NAND_EBI2_ECC_BUF_CFG:
 633                 return &regs->ecc_buf_cfg;
 634         case NAND_READ_LOCATION_0:
 635                 return &regs->read_location0;
 636         case NAND_READ_LOCATION_1:
 637                 return &regs->read_location1;
 638         case NAND_READ_LOCATION_2:
 639                 return &regs->read_location2;
 640         case NAND_READ_LOCATION_3:
 641                 return &regs->read_location3;
 642         default:
 643                 return NULL;
 644         }
 645 }
 646 
 647 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
 648                           u32 val)
 649 {
 650         struct nandc_regs *regs = nandc->regs;
 651         __le32 *reg;
 652 
 653         reg = offset_to_nandc_reg(regs, offset);
 654 
 655         if (reg)
 656                 *reg = cpu_to_le32(val);
 657 }
 658 
 659 /* helper to configure address register values */
 660 static void set_address(struct qcom_nand_host *host, u16 column, int page)
 661 {
 662         struct nand_chip *chip = &host->chip;
 663         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 664 
 665         if (chip->options & NAND_BUSWIDTH_16)
 666                 column >>= 1;
 667 
 668         nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
 669         nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
 670 }
 671 
 672 /*
 673  * update_rw_regs:      set up read/write register values, these will be
 674  *                      written to the NAND controller registers via DMA
 675  *
 676  * @num_cw:             number of steps for the read/write operation
 677  * @read:               read or write operation
 678  */
 679 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
 680 {
 681         struct nand_chip *chip = &host->chip;
 682         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 683         u32 cmd, cfg0, cfg1, ecc_bch_cfg;
 684 
 685         if (read) {
 686                 if (host->use_ecc)
 687                         cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
 688                 else
 689                         cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
 690         } else {
 691                 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
 692         }
 693 
 694         if (host->use_ecc) {
 695                 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
 696                                 (num_cw - 1) << CW_PER_PAGE;
 697 
 698                 cfg1 = host->cfg1;
 699                 ecc_bch_cfg = host->ecc_bch_cfg;
 700         } else {
 701                 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
 702                                 (num_cw - 1) << CW_PER_PAGE;
 703 
 704                 cfg1 = host->cfg1_raw;
 705                 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
 706         }
 707 
 708         nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
 709         nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
 710         nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
 711         nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
 712         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
 713         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
 714         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
 715         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
 716 
 717         if (read)
 718                 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
 719                                    host->cw_data : host->cw_size, 1);
 720 }
 721 
 722 /*
 723  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
 724  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
 725  * which will be submitted to DMA engine.
 726  */
 727 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
 728                                   struct dma_chan *chan,
 729                                   unsigned long flags)
 730 {
 731         struct desc_info *desc;
 732         struct scatterlist *sgl;
 733         unsigned int sgl_cnt;
 734         int ret;
 735         struct bam_transaction *bam_txn = nandc->bam_txn;
 736         enum dma_transfer_direction dir_eng;
 737         struct dma_async_tx_descriptor *dma_desc;
 738 
 739         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 740         if (!desc)
 741                 return -ENOMEM;
 742 
 743         if (chan == nandc->cmd_chan) {
 744                 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
 745                 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
 746                 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
 747                 dir_eng = DMA_MEM_TO_DEV;
 748                 desc->dir = DMA_TO_DEVICE;
 749         } else if (chan == nandc->tx_chan) {
 750                 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
 751                 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
 752                 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
 753                 dir_eng = DMA_MEM_TO_DEV;
 754                 desc->dir = DMA_TO_DEVICE;
 755         } else {
 756                 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
 757                 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
 758                 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
 759                 dir_eng = DMA_DEV_TO_MEM;
 760                 desc->dir = DMA_FROM_DEVICE;
 761         }
 762 
 763         sg_mark_end(sgl + sgl_cnt - 1);
 764         ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
 765         if (ret == 0) {
 766                 dev_err(nandc->dev, "failure in mapping desc\n");
 767                 kfree(desc);
 768                 return -ENOMEM;
 769         }
 770 
 771         desc->sgl_cnt = sgl_cnt;
 772         desc->bam_sgl = sgl;
 773 
 774         dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
 775                                            flags);
 776 
 777         if (!dma_desc) {
 778                 dev_err(nandc->dev, "failure in prep desc\n");
 779                 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
 780                 kfree(desc);
 781                 return -EINVAL;
 782         }
 783 
 784         desc->dma_desc = dma_desc;
 785 
 786         /* update last data/command descriptor */
 787         if (chan == nandc->cmd_chan)
 788                 bam_txn->last_cmd_desc = dma_desc;
 789         else
 790                 bam_txn->last_data_desc = dma_desc;
 791 
 792         list_add_tail(&desc->node, &nandc->desc_list);
 793 
 794         return 0;
 795 }
 796 
 797 /*
 798  * Prepares the command descriptor for BAM DMA which will be used for NAND
 799  * register reads and writes. The command descriptor requires the command
 800  * to be formed in command element type so this function uses the command
 801  * element from bam transaction ce array and fills the same with required
 802  * data. A single SGL can contain multiple command elements so
 803  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
 804  * after the current command element.
 805  */
 806 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
 807                                  int reg_off, const void *vaddr,
 808                                  int size, unsigned int flags)
 809 {
 810         int bam_ce_size;
 811         int i, ret;
 812         struct bam_cmd_element *bam_ce_buffer;
 813         struct bam_transaction *bam_txn = nandc->bam_txn;
 814 
 815         bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
 816 
 817         /* fill the command desc */
 818         for (i = 0; i < size; i++) {
 819                 if (read)
 820                         bam_prep_ce(&bam_ce_buffer[i],
 821                                     nandc_reg_phys(nandc, reg_off + 4 * i),
 822                                     BAM_READ_COMMAND,
 823                                     reg_buf_dma_addr(nandc,
 824                                                      (__le32 *)vaddr + i));
 825                 else
 826                         bam_prep_ce_le32(&bam_ce_buffer[i],
 827                                          nandc_reg_phys(nandc, reg_off + 4 * i),
 828                                          BAM_WRITE_COMMAND,
 829                                          *((__le32 *)vaddr + i));
 830         }
 831 
 832         bam_txn->bam_ce_pos += size;
 833 
 834         /* use the separate sgl after this command */
 835         if (flags & NAND_BAM_NEXT_SGL) {
 836                 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
 837                 bam_ce_size = (bam_txn->bam_ce_pos -
 838                                 bam_txn->bam_ce_start) *
 839                                 sizeof(struct bam_cmd_element);
 840                 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
 841                            bam_ce_buffer, bam_ce_size);
 842                 bam_txn->cmd_sgl_pos++;
 843                 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
 844 
 845                 if (flags & NAND_BAM_NWD) {
 846                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
 847                                                      DMA_PREP_FENCE |
 848                                                      DMA_PREP_CMD);
 849                         if (ret)
 850                                 return ret;
 851                 }
 852         }
 853 
 854         return 0;
 855 }
 856 
 857 /*
 858  * Prepares the data descriptor for BAM DMA which will be used for NAND
 859  * data reads and writes.
 860  */
 861 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
 862                                   const void *vaddr,
 863                                   int size, unsigned int flags)
 864 {
 865         int ret;
 866         struct bam_transaction *bam_txn = nandc->bam_txn;
 867 
 868         if (read) {
 869                 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
 870                            vaddr, size);
 871                 bam_txn->rx_sgl_pos++;
 872         } else {
 873                 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
 874                            vaddr, size);
 875                 bam_txn->tx_sgl_pos++;
 876 
 877                 /*
 878                  * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
 879                  * is not set, form the DMA descriptor
 880                  */
 881                 if (!(flags & NAND_BAM_NO_EOT)) {
 882                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
 883                                                      DMA_PREP_INTERRUPT);
 884                         if (ret)
 885                                 return ret;
 886                 }
 887         }
 888 
 889         return 0;
 890 }
 891 
 892 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
 893                              int reg_off, const void *vaddr, int size,
 894                              bool flow_control)
 895 {
 896         struct desc_info *desc;
 897         struct dma_async_tx_descriptor *dma_desc;
 898         struct scatterlist *sgl;
 899         struct dma_slave_config slave_conf;
 900         enum dma_transfer_direction dir_eng;
 901         int ret;
 902 
 903         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 904         if (!desc)
 905                 return -ENOMEM;
 906 
 907         sgl = &desc->adm_sgl;
 908 
 909         sg_init_one(sgl, vaddr, size);
 910 
 911         if (read) {
 912                 dir_eng = DMA_DEV_TO_MEM;
 913                 desc->dir = DMA_FROM_DEVICE;
 914         } else {
 915                 dir_eng = DMA_MEM_TO_DEV;
 916                 desc->dir = DMA_TO_DEVICE;
 917         }
 918 
 919         ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
 920         if (ret == 0) {
 921                 ret = -ENOMEM;
 922                 goto err;
 923         }
 924 
 925         memset(&slave_conf, 0x00, sizeof(slave_conf));
 926 
 927         slave_conf.device_fc = flow_control;
 928         if (read) {
 929                 slave_conf.src_maxburst = 16;
 930                 slave_conf.src_addr = nandc->base_dma + reg_off;
 931                 slave_conf.slave_id = nandc->data_crci;
 932         } else {
 933                 slave_conf.dst_maxburst = 16;
 934                 slave_conf.dst_addr = nandc->base_dma + reg_off;
 935                 slave_conf.slave_id = nandc->cmd_crci;
 936         }
 937 
 938         ret = dmaengine_slave_config(nandc->chan, &slave_conf);
 939         if (ret) {
 940                 dev_err(nandc->dev, "failed to configure dma channel\n");
 941                 goto err;
 942         }
 943 
 944         dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
 945         if (!dma_desc) {
 946                 dev_err(nandc->dev, "failed to prepare desc\n");
 947                 ret = -EINVAL;
 948                 goto err;
 949         }
 950 
 951         desc->dma_desc = dma_desc;
 952 
 953         list_add_tail(&desc->node, &nandc->desc_list);
 954 
 955         return 0;
 956 err:
 957         kfree(desc);
 958 
 959         return ret;
 960 }
 961 
 962 /*
 963  * read_reg_dma:        prepares a descriptor to read a given number of
 964  *                      contiguous registers to the reg_read_buf pointer
 965  *
 966  * @first:              offset of the first register in the contiguous block
 967  * @num_regs:           number of registers to read
 968  * @flags:              flags to control DMA descriptor preparation
 969  */
 970 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
 971                         int num_regs, unsigned int flags)
 972 {
 973         bool flow_control = false;
 974         void *vaddr;
 975 
 976         vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
 977         nandc->reg_read_pos += num_regs;
 978 
 979         if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
 980                 first = dev_cmd_reg_addr(nandc, first);
 981 
 982         if (nandc->props->is_bam)
 983                 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
 984                                              num_regs, flags);
 985 
 986         if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
 987                 flow_control = true;
 988 
 989         return prep_adm_dma_desc(nandc, true, first, vaddr,
 990                                  num_regs * sizeof(u32), flow_control);
 991 }
 992 
 993 /*
 994  * write_reg_dma:       prepares a descriptor to write a given number of
 995  *                      contiguous registers
 996  *
 997  * @first:              offset of the first register in the contiguous block
 998  * @num_regs:           number of registers to write
 999  * @flags:              flags to control DMA descriptor preparation
1000  */
1001 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1002                          int num_regs, unsigned int flags)
1003 {
1004         bool flow_control = false;
1005         struct nandc_regs *regs = nandc->regs;
1006         void *vaddr;
1007 
1008         vaddr = offset_to_nandc_reg(regs, first);
1009 
1010         if (first == NAND_ERASED_CW_DETECT_CFG) {
1011                 if (flags & NAND_ERASED_CW_SET)
1012                         vaddr = &regs->erased_cw_detect_cfg_set;
1013                 else
1014                         vaddr = &regs->erased_cw_detect_cfg_clr;
1015         }
1016 
1017         if (first == NAND_EXEC_CMD)
1018                 flags |= NAND_BAM_NWD;
1019 
1020         if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1021                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1022 
1023         if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1024                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1025 
1026         if (nandc->props->is_bam)
1027                 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1028                                              num_regs, flags);
1029 
1030         if (first == NAND_FLASH_CMD)
1031                 flow_control = true;
1032 
1033         return prep_adm_dma_desc(nandc, false, first, vaddr,
1034                                  num_regs * sizeof(u32), flow_control);
1035 }
1036 
1037 /*
1038  * read_data_dma:       prepares a DMA descriptor to transfer data from the
1039  *                      controller's internal buffer to the buffer 'vaddr'
1040  *
1041  * @reg_off:            offset within the controller's data buffer
1042  * @vaddr:              virtual address of the buffer we want to write to
1043  * @size:               DMA transaction size in bytes
1044  * @flags:              flags to control DMA descriptor preparation
1045  */
1046 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1047                          const u8 *vaddr, int size, unsigned int flags)
1048 {
1049         if (nandc->props->is_bam)
1050                 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1051 
1052         return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1053 }
1054 
1055 /*
1056  * write_data_dma:      prepares a DMA descriptor to transfer data from
1057  *                      'vaddr' to the controller's internal buffer
1058  *
1059  * @reg_off:            offset within the controller's data buffer
1060  * @vaddr:              virtual address of the buffer we want to read from
1061  * @size:               DMA transaction size in bytes
1062  * @flags:              flags to control DMA descriptor preparation
1063  */
1064 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1065                           const u8 *vaddr, int size, unsigned int flags)
1066 {
1067         if (nandc->props->is_bam)
1068                 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1069 
1070         return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1071 }
1072 
1073 /*
1074  * Helper to prepare DMA descriptors for configuring registers
1075  * before reading a NAND page.
1076  */
1077 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1078 {
1079         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1080         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1081         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1082         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1083         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1084                       NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1085 }
1086 
1087 /*
1088  * Helper to prepare DMA descriptors for configuring registers
1089  * before reading each codeword in NAND page.
1090  */
1091 static void
1092 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1093 {
1094         if (nandc->props->is_bam)
1095                 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1096                               NAND_BAM_NEXT_SGL);
1097 
1098         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1099         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1100 
1101         if (use_ecc) {
1102                 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1103                 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1104                              NAND_BAM_NEXT_SGL);
1105         } else {
1106                 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1107         }
1108 }
1109 
1110 /*
1111  * Helper to prepare dma descriptors to configure registers needed for reading a
1112  * single codeword in page
1113  */
1114 static void
1115 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1116                                 bool use_ecc)
1117 {
1118         config_nand_page_read(nandc);
1119         config_nand_cw_read(nandc, use_ecc);
1120 }
1121 
1122 /*
1123  * Helper to prepare DMA descriptors used to configure registers needed for
1124  * before writing a NAND page.
1125  */
1126 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1127 {
1128         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1129         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1130         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1131                       NAND_BAM_NEXT_SGL);
1132 }
1133 
1134 /*
1135  * Helper to prepare DMA descriptors for configuring registers
1136  * before writing each codeword in NAND page.
1137  */
1138 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1139 {
1140         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1141         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1142 
1143         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1144 
1145         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1146         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1147 }
1148 
1149 /*
1150  * the following functions are used within chip->legacy.cmdfunc() to
1151  * perform different NAND_CMD_* commands
1152  */
1153 
1154 /* sets up descriptors for NAND_CMD_PARAM */
1155 static int nandc_param(struct qcom_nand_host *host)
1156 {
1157         struct nand_chip *chip = &host->chip;
1158         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1159 
1160         /*
1161          * NAND_CMD_PARAM is called before we know much about the FLASH chip
1162          * in use. we configure the controller to perform a raw read of 512
1163          * bytes to read onfi params
1164          */
1165         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1166         nandc_set_reg(nandc, NAND_ADDR0, 0);
1167         nandc_set_reg(nandc, NAND_ADDR1, 0);
1168         nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1169                                         | 512 << UD_SIZE_BYTES
1170                                         | 5 << NUM_ADDR_CYCLES
1171                                         | 0 << SPARE_SIZE_BYTES);
1172         nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1173                                         | 0 << CS_ACTIVE_BSY
1174                                         | 17 << BAD_BLOCK_BYTE_NUM
1175                                         | 1 << BAD_BLOCK_IN_SPARE_AREA
1176                                         | 2 << WR_RD_BSY_GAP
1177                                         | 0 << WIDE_FLASH
1178                                         | 1 << DEV0_CFG1_ECC_DISABLE);
1179         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1180 
1181         /* configure CMD1 and VLD for ONFI param probing */
1182         nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1183                       (nandc->vld & ~READ_START_VLD));
1184         nandc_set_reg(nandc, NAND_DEV_CMD1,
1185                       (nandc->cmd1 & ~(0xFF << READ_ADDR))
1186                       | NAND_CMD_PARAM << READ_ADDR);
1187 
1188         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1189 
1190         nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1191         nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1192         nandc_set_read_loc(nandc, 0, 0, 512, 1);
1193 
1194         write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1195         write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1196 
1197         nandc->buf_count = 512;
1198         memset(nandc->data_buffer, 0xff, nandc->buf_count);
1199 
1200         config_nand_single_cw_page_read(nandc, false);
1201 
1202         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1203                       nandc->buf_count, 0);
1204 
1205         /* restore CMD1 and VLD regs */
1206         write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1207         write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1208 
1209         return 0;
1210 }
1211 
1212 /* sets up descriptors for NAND_CMD_ERASE1 */
1213 static int erase_block(struct qcom_nand_host *host, int page_addr)
1214 {
1215         struct nand_chip *chip = &host->chip;
1216         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1217 
1218         nandc_set_reg(nandc, NAND_FLASH_CMD,
1219                       OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1220         nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1221         nandc_set_reg(nandc, NAND_ADDR1, 0);
1222         nandc_set_reg(nandc, NAND_DEV0_CFG0,
1223                       host->cfg0_raw & ~(7 << CW_PER_PAGE));
1224         nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1225         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1226         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1227         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1228 
1229         write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1230         write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1231         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1232 
1233         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1234 
1235         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1236         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1237 
1238         return 0;
1239 }
1240 
1241 /* sets up descriptors for NAND_CMD_READID */
1242 static int read_id(struct qcom_nand_host *host, int column)
1243 {
1244         struct nand_chip *chip = &host->chip;
1245         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1246 
1247         if (column == -1)
1248                 return 0;
1249 
1250         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1251         nandc_set_reg(nandc, NAND_ADDR0, column);
1252         nandc_set_reg(nandc, NAND_ADDR1, 0);
1253         nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1254                       nandc->props->is_bam ? 0 : DM_EN);
1255         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1256 
1257         write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1258         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1259 
1260         read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1261 
1262         return 0;
1263 }
1264 
1265 /* sets up descriptors for NAND_CMD_RESET */
1266 static int reset(struct qcom_nand_host *host)
1267 {
1268         struct nand_chip *chip = &host->chip;
1269         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1270 
1271         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1272         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1273 
1274         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1275         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1276 
1277         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1278 
1279         return 0;
1280 }
1281 
1282 /* helpers to submit/free our list of dma descriptors */
1283 static int submit_descs(struct qcom_nand_controller *nandc)
1284 {
1285         struct desc_info *desc;
1286         dma_cookie_t cookie = 0;
1287         struct bam_transaction *bam_txn = nandc->bam_txn;
1288         int r;
1289 
1290         if (nandc->props->is_bam) {
1291                 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1292                         r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1293                         if (r)
1294                                 return r;
1295                 }
1296 
1297                 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1298                         r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1299                                                    DMA_PREP_INTERRUPT);
1300                         if (r)
1301                                 return r;
1302                 }
1303 
1304                 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1305                         r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1306                                                    DMA_PREP_CMD);
1307                         if (r)
1308                                 return r;
1309                 }
1310         }
1311 
1312         list_for_each_entry(desc, &nandc->desc_list, node)
1313                 cookie = dmaengine_submit(desc->dma_desc);
1314 
1315         if (nandc->props->is_bam) {
1316                 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1317                 bam_txn->last_cmd_desc->callback_param = bam_txn;
1318                 if (bam_txn->last_data_desc) {
1319                         bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1320                         bam_txn->last_data_desc->callback_param = bam_txn;
1321                         bam_txn->wait_second_completion = true;
1322                 }
1323 
1324                 dma_async_issue_pending(nandc->tx_chan);
1325                 dma_async_issue_pending(nandc->rx_chan);
1326                 dma_async_issue_pending(nandc->cmd_chan);
1327 
1328                 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1329                                                  QPIC_NAND_COMPLETION_TIMEOUT))
1330                         return -ETIMEDOUT;
1331         } else {
1332                 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1333                         return -ETIMEDOUT;
1334         }
1335 
1336         return 0;
1337 }
1338 
1339 static void free_descs(struct qcom_nand_controller *nandc)
1340 {
1341         struct desc_info *desc, *n;
1342 
1343         list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1344                 list_del(&desc->node);
1345 
1346                 if (nandc->props->is_bam)
1347                         dma_unmap_sg(nandc->dev, desc->bam_sgl,
1348                                      desc->sgl_cnt, desc->dir);
1349                 else
1350                         dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1351                                      desc->dir);
1352 
1353                 kfree(desc);
1354         }
1355 }
1356 
1357 /* reset the register read buffer for next NAND operation */
1358 static void clear_read_regs(struct qcom_nand_controller *nandc)
1359 {
1360         nandc->reg_read_pos = 0;
1361         nandc_read_buffer_sync(nandc, false);
1362 }
1363 
1364 static void pre_command(struct qcom_nand_host *host, int command)
1365 {
1366         struct nand_chip *chip = &host->chip;
1367         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1368 
1369         nandc->buf_count = 0;
1370         nandc->buf_start = 0;
1371         host->use_ecc = false;
1372         host->last_command = command;
1373 
1374         clear_read_regs(nandc);
1375 
1376         if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1377             command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1378                 clear_bam_transaction(nandc);
1379 }
1380 
1381 /*
1382  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1383  * privately maintained status byte, this status byte can be read after
1384  * NAND_CMD_STATUS is called
1385  */
1386 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1387 {
1388         struct nand_chip *chip = &host->chip;
1389         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1390         struct nand_ecc_ctrl *ecc = &chip->ecc;
1391         int num_cw;
1392         int i;
1393 
1394         num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1395         nandc_read_buffer_sync(nandc, true);
1396 
1397         for (i = 0; i < num_cw; i++) {
1398                 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1399 
1400                 if (flash_status & FS_MPU_ERR)
1401                         host->status &= ~NAND_STATUS_WP;
1402 
1403                 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1404                                                  (flash_status &
1405                                                   FS_DEVICE_STS_ERR)))
1406                         host->status |= NAND_STATUS_FAIL;
1407         }
1408 }
1409 
1410 static void post_command(struct qcom_nand_host *host, int command)
1411 {
1412         struct nand_chip *chip = &host->chip;
1413         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1414 
1415         switch (command) {
1416         case NAND_CMD_READID:
1417                 nandc_read_buffer_sync(nandc, true);
1418                 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1419                        nandc->buf_count);
1420                 break;
1421         case NAND_CMD_PAGEPROG:
1422         case NAND_CMD_ERASE1:
1423                 parse_erase_write_errors(host, command);
1424                 break;
1425         default:
1426                 break;
1427         }
1428 }
1429 
1430 /*
1431  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1432  * commands. The rest of the commands wouldn't be called by upper layers.
1433  * For example, NAND_CMD_READOOB would never be called because we have our own
1434  * versions of read_oob ops for nand_ecc_ctrl.
1435  */
1436 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1437                                int column, int page_addr)
1438 {
1439         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1440         struct nand_ecc_ctrl *ecc = &chip->ecc;
1441         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1442         bool wait = false;
1443         int ret = 0;
1444 
1445         pre_command(host, command);
1446 
1447         switch (command) {
1448         case NAND_CMD_RESET:
1449                 ret = reset(host);
1450                 wait = true;
1451                 break;
1452 
1453         case NAND_CMD_READID:
1454                 nandc->buf_count = 4;
1455                 ret = read_id(host, column);
1456                 wait = true;
1457                 break;
1458 
1459         case NAND_CMD_PARAM:
1460                 ret = nandc_param(host);
1461                 wait = true;
1462                 break;
1463 
1464         case NAND_CMD_ERASE1:
1465                 ret = erase_block(host, page_addr);
1466                 wait = true;
1467                 break;
1468 
1469         case NAND_CMD_READ0:
1470                 /* we read the entire page for now */
1471                 WARN_ON(column != 0);
1472 
1473                 host->use_ecc = true;
1474                 set_address(host, 0, page_addr);
1475                 update_rw_regs(host, ecc->steps, true);
1476                 break;
1477 
1478         case NAND_CMD_SEQIN:
1479                 WARN_ON(column != 0);
1480                 set_address(host, 0, page_addr);
1481                 break;
1482 
1483         case NAND_CMD_PAGEPROG:
1484         case NAND_CMD_STATUS:
1485         case NAND_CMD_NONE:
1486         default:
1487                 break;
1488         }
1489 
1490         if (ret) {
1491                 dev_err(nandc->dev, "failure executing command %d\n",
1492                         command);
1493                 free_descs(nandc);
1494                 return;
1495         }
1496 
1497         if (wait) {
1498                 ret = submit_descs(nandc);
1499                 if (ret)
1500                         dev_err(nandc->dev,
1501                                 "failure submitting descs for command %d\n",
1502                                 command);
1503         }
1504 
1505         free_descs(nandc);
1506 
1507         post_command(host, command);
1508 }
1509 
1510 /*
1511  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1512  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1513  *
1514  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1515  * but it notifies that it is an erased CW by placing special characters at
1516  * certain offsets in the buffer.
1517  *
1518  * verify if the page is erased or not, and fix up the page for RS ECC by
1519  * replacing the special characters with 0xff.
1520  */
1521 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1522 {
1523         u8 empty1, empty2;
1524 
1525         /*
1526          * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1527          * is erased by looking for 0x54s at offsets 3 and 175 from the
1528          * beginning of each codeword
1529          */
1530 
1531         empty1 = data_buf[3];
1532         empty2 = data_buf[175];
1533 
1534         /*
1535          * if the erased codework markers, if they exist override them with
1536          * 0xffs
1537          */
1538         if ((empty1 == 0x54 && empty2 == 0xff) ||
1539             (empty1 == 0xff && empty2 == 0x54)) {
1540                 data_buf[3] = 0xff;
1541                 data_buf[175] = 0xff;
1542         }
1543 
1544         /*
1545          * check if the entire chunk contains 0xffs or not. if it doesn't, then
1546          * restore the original values at the special offsets
1547          */
1548         if (memchr_inv(data_buf, 0xff, data_len)) {
1549                 data_buf[3] = empty1;
1550                 data_buf[175] = empty2;
1551 
1552                 return false;
1553         }
1554 
1555         return true;
1556 }
1557 
1558 struct read_stats {
1559         __le32 flash;
1560         __le32 buffer;
1561         __le32 erased_cw;
1562 };
1563 
1564 /* reads back FLASH_STATUS register set by the controller */
1565 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1566 {
1567         struct nand_chip *chip = &host->chip;
1568         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1569         int i;
1570 
1571         for (i = 0; i < cw_cnt; i++) {
1572                 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1573 
1574                 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1575                         return -EIO;
1576         }
1577 
1578         return 0;
1579 }
1580 
1581 /* performs raw read for one codeword */
1582 static int
1583 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1584                        u8 *data_buf, u8 *oob_buf, int page, int cw)
1585 {
1586         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1587         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1588         struct nand_ecc_ctrl *ecc = &chip->ecc;
1589         int data_size1, data_size2, oob_size1, oob_size2;
1590         int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1591 
1592         nand_read_page_op(chip, page, 0, NULL, 0);
1593         host->use_ecc = false;
1594 
1595         clear_bam_transaction(nandc);
1596         set_address(host, host->cw_size * cw, page);
1597         update_rw_regs(host, 1, true);
1598         config_nand_page_read(nandc);
1599 
1600         data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1601         oob_size1 = host->bbm_size;
1602 
1603         if (cw == (ecc->steps - 1)) {
1604                 data_size2 = ecc->size - data_size1 -
1605                              ((ecc->steps - 1) * 4);
1606                 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1607                             host->spare_bytes;
1608         } else {
1609                 data_size2 = host->cw_data - data_size1;
1610                 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1611         }
1612 
1613         if (nandc->props->is_bam) {
1614                 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1615                 read_loc += data_size1;
1616 
1617                 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1618                 read_loc += oob_size1;
1619 
1620                 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1621                 read_loc += data_size2;
1622 
1623                 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1624         }
1625 
1626         config_nand_cw_read(nandc, false);
1627 
1628         read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1629         reg_off += data_size1;
1630 
1631         read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1632         reg_off += oob_size1;
1633 
1634         read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1635         reg_off += data_size2;
1636 
1637         read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1638 
1639         ret = submit_descs(nandc);
1640         free_descs(nandc);
1641         if (ret) {
1642                 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1643                 return ret;
1644         }
1645 
1646         return check_flash_errors(host, 1);
1647 }
1648 
1649 /*
1650  * Bitflips can happen in erased codewords also so this function counts the
1651  * number of 0 in each CW for which ECC engine returns the uncorrectable
1652  * error. The page will be assumed as erased if this count is less than or
1653  * equal to the ecc->strength for each CW.
1654  *
1655  * 1. Both DATA and OOB need to be checked for number of 0. The
1656  *    top-level API can be called with only data buf or OOB buf so use
1657  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1658  *    is null for copying the raw bytes.
1659  * 2. Perform raw read for all the CW which has uncorrectable errors.
1660  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1661  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1662  *    the number of bitflips in this area.
1663  */
1664 static int
1665 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1666                       u8 *oob_buf, unsigned long uncorrectable_cws,
1667                       int page, unsigned int max_bitflips)
1668 {
1669         struct nand_chip *chip = &host->chip;
1670         struct mtd_info *mtd = nand_to_mtd(chip);
1671         struct nand_ecc_ctrl *ecc = &chip->ecc;
1672         u8 *cw_data_buf, *cw_oob_buf;
1673         int cw, data_size, oob_size, ret = 0;
1674 
1675         if (!data_buf)
1676                 data_buf = nand_get_data_buf(chip);
1677 
1678         if (!oob_buf) {
1679                 nand_get_data_buf(chip);
1680                 oob_buf = chip->oob_poi;
1681         }
1682 
1683         for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1684                 if (cw == (ecc->steps - 1)) {
1685                         data_size = ecc->size - ((ecc->steps - 1) * 4);
1686                         oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1687                 } else {
1688                         data_size = host->cw_data;
1689                         oob_size = host->ecc_bytes_hw;
1690                 }
1691 
1692                 /* determine starting buffer address for current CW */
1693                 cw_data_buf = data_buf + (cw * host->cw_data);
1694                 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1695 
1696                 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1697                                              cw_oob_buf, page, cw);
1698                 if (ret)
1699                         return ret;
1700 
1701                 /*
1702                  * make sure it isn't an erased page reported
1703                  * as not-erased by HW because of a few bitflips
1704                  */
1705                 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1706                                                   cw_oob_buf + host->bbm_size,
1707                                                   oob_size, NULL,
1708                                                   0, ecc->strength);
1709                 if (ret < 0) {
1710                         mtd->ecc_stats.failed++;
1711                 } else {
1712                         mtd->ecc_stats.corrected += ret;
1713                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1714                 }
1715         }
1716 
1717         return max_bitflips;
1718 }
1719 
1720 /*
1721  * reads back status registers set by the controller to notify page read
1722  * errors. this is equivalent to what 'ecc->correct()' would do.
1723  */
1724 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1725                              u8 *oob_buf, int page)
1726 {
1727         struct nand_chip *chip = &host->chip;
1728         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1729         struct mtd_info *mtd = nand_to_mtd(chip);
1730         struct nand_ecc_ctrl *ecc = &chip->ecc;
1731         unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1732         struct read_stats *buf;
1733         bool flash_op_err = false, erased;
1734         int i;
1735         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1736 
1737         buf = (struct read_stats *)nandc->reg_read_buf;
1738         nandc_read_buffer_sync(nandc, true);
1739 
1740         for (i = 0; i < ecc->steps; i++, buf++) {
1741                 u32 flash, buffer, erased_cw;
1742                 int data_len, oob_len;
1743 
1744                 if (i == (ecc->steps - 1)) {
1745                         data_len = ecc->size - ((ecc->steps - 1) << 2);
1746                         oob_len = ecc->steps << 2;
1747                 } else {
1748                         data_len = host->cw_data;
1749                         oob_len = 0;
1750                 }
1751 
1752                 flash = le32_to_cpu(buf->flash);
1753                 buffer = le32_to_cpu(buf->buffer);
1754                 erased_cw = le32_to_cpu(buf->erased_cw);
1755 
1756                 /*
1757                  * Check ECC failure for each codeword. ECC failure can
1758                  * happen in either of the following conditions
1759                  * 1. If number of bitflips are greater than ECC engine
1760                  *    capability.
1761                  * 2. If this codeword contains all 0xff for which erased
1762                  *    codeword detection check will be done.
1763                  */
1764                 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1765                         /*
1766                          * For BCH ECC, ignore erased codeword errors, if
1767                          * ERASED_CW bits are set.
1768                          */
1769                         if (host->bch_enabled) {
1770                                 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1771                                          true : false;
1772                         /*
1773                          * For RS ECC, HW reports the erased CW by placing
1774                          * special characters at certain offsets in the buffer.
1775                          * These special characters will be valid only if
1776                          * complete page is read i.e. data_buf is not NULL.
1777                          */
1778                         } else if (data_buf) {
1779                                 erased = erased_chunk_check_and_fixup(data_buf,
1780                                                                       data_len);
1781                         } else {
1782                                 erased = false;
1783                         }
1784 
1785                         if (!erased)
1786                                 uncorrectable_cws |= BIT(i);
1787                 /*
1788                  * Check if MPU or any other operational error (timeout,
1789                  * device failure, etc.) happened for this codeword and
1790                  * make flash_op_err true. If flash_op_err is set, then
1791                  * EIO will be returned for page read.
1792                  */
1793                 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1794                         flash_op_err = true;
1795                 /*
1796                  * No ECC or operational errors happened. Check the number of
1797                  * bits corrected and update the ecc_stats.corrected.
1798                  */
1799                 } else {
1800                         unsigned int stat;
1801 
1802                         stat = buffer & BS_CORRECTABLE_ERR_MSK;
1803                         mtd->ecc_stats.corrected += stat;
1804                         max_bitflips = max(max_bitflips, stat);
1805                 }
1806 
1807                 if (data_buf)
1808                         data_buf += data_len;
1809                 if (oob_buf)
1810                         oob_buf += oob_len + ecc->bytes;
1811         }
1812 
1813         if (flash_op_err)
1814                 return -EIO;
1815 
1816         if (!uncorrectable_cws)
1817                 return max_bitflips;
1818 
1819         return check_for_erased_page(host, data_buf_start, oob_buf_start,
1820                                      uncorrectable_cws, page,
1821                                      max_bitflips);
1822 }
1823 
1824 /*
1825  * helper to perform the actual page read operation, used by ecc->read_page(),
1826  * ecc->read_oob()
1827  */
1828 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1829                          u8 *oob_buf, int page)
1830 {
1831         struct nand_chip *chip = &host->chip;
1832         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1833         struct nand_ecc_ctrl *ecc = &chip->ecc;
1834         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1835         int i, ret;
1836 
1837         config_nand_page_read(nandc);
1838 
1839         /* queue cmd descs for each codeword */
1840         for (i = 0; i < ecc->steps; i++) {
1841                 int data_size, oob_size;
1842 
1843                 if (i == (ecc->steps - 1)) {
1844                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1845                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1846                                    host->spare_bytes;
1847                 } else {
1848                         data_size = host->cw_data;
1849                         oob_size = host->ecc_bytes_hw + host->spare_bytes;
1850                 }
1851 
1852                 if (nandc->props->is_bam) {
1853                         if (data_buf && oob_buf) {
1854                                 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1855                                 nandc_set_read_loc(nandc, 1, data_size,
1856                                                    oob_size, 1);
1857                         } else if (data_buf) {
1858                                 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1859                         } else {
1860                                 nandc_set_read_loc(nandc, 0, data_size,
1861                                                    oob_size, 1);
1862                         }
1863                 }
1864 
1865                 config_nand_cw_read(nandc, true);
1866 
1867                 if (data_buf)
1868                         read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1869                                       data_size, 0);
1870 
1871                 /*
1872                  * when ecc is enabled, the controller doesn't read the real
1873                  * or dummy bad block markers in each chunk. To maintain a
1874                  * consistent layout across RAW and ECC reads, we just
1875                  * leave the real/dummy BBM offsets empty (i.e, filled with
1876                  * 0xffs)
1877                  */
1878                 if (oob_buf) {
1879                         int j;
1880 
1881                         for (j = 0; j < host->bbm_size; j++)
1882                                 *oob_buf++ = 0xff;
1883 
1884                         read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1885                                       oob_buf, oob_size, 0);
1886                 }
1887 
1888                 if (data_buf)
1889                         data_buf += data_size;
1890                 if (oob_buf)
1891                         oob_buf += oob_size;
1892         }
1893 
1894         ret = submit_descs(nandc);
1895         free_descs(nandc);
1896 
1897         if (ret) {
1898                 dev_err(nandc->dev, "failure to read page/oob\n");
1899                 return ret;
1900         }
1901 
1902         return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1903 }
1904 
1905 /*
1906  * a helper that copies the last step/codeword of a page (containing free oob)
1907  * into our local buffer
1908  */
1909 static int copy_last_cw(struct qcom_nand_host *host, int page)
1910 {
1911         struct nand_chip *chip = &host->chip;
1912         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1913         struct nand_ecc_ctrl *ecc = &chip->ecc;
1914         int size;
1915         int ret;
1916 
1917         clear_read_regs(nandc);
1918 
1919         size = host->use_ecc ? host->cw_data : host->cw_size;
1920 
1921         /* prepare a clean read buffer */
1922         memset(nandc->data_buffer, 0xff, size);
1923 
1924         set_address(host, host->cw_size * (ecc->steps - 1), page);
1925         update_rw_regs(host, 1, true);
1926 
1927         config_nand_single_cw_page_read(nandc, host->use_ecc);
1928 
1929         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1930 
1931         ret = submit_descs(nandc);
1932         if (ret)
1933                 dev_err(nandc->dev, "failed to copy last codeword\n");
1934 
1935         free_descs(nandc);
1936 
1937         return ret;
1938 }
1939 
1940 /* implements ecc->read_page() */
1941 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1942                                 int oob_required, int page)
1943 {
1944         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1945         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1946         u8 *data_buf, *oob_buf = NULL;
1947 
1948         nand_read_page_op(chip, page, 0, NULL, 0);
1949         data_buf = buf;
1950         oob_buf = oob_required ? chip->oob_poi : NULL;
1951 
1952         clear_bam_transaction(nandc);
1953 
1954         return read_page_ecc(host, data_buf, oob_buf, page);
1955 }
1956 
1957 /* implements ecc->read_page_raw() */
1958 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1959                                     int oob_required, int page)
1960 {
1961         struct mtd_info *mtd = nand_to_mtd(chip);
1962         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1963         struct nand_ecc_ctrl *ecc = &chip->ecc;
1964         int cw, ret;
1965         u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1966 
1967         for (cw = 0; cw < ecc->steps; cw++) {
1968                 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1969                                              page, cw);
1970                 if (ret)
1971                         return ret;
1972 
1973                 data_buf += host->cw_data;
1974                 oob_buf += ecc->bytes;
1975         }
1976 
1977         return 0;
1978 }
1979 
1980 /* implements ecc->read_oob() */
1981 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1982 {
1983         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1984         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1985         struct nand_ecc_ctrl *ecc = &chip->ecc;
1986 
1987         clear_read_regs(nandc);
1988         clear_bam_transaction(nandc);
1989 
1990         host->use_ecc = true;
1991         set_address(host, 0, page);
1992         update_rw_regs(host, ecc->steps, true);
1993 
1994         return read_page_ecc(host, NULL, chip->oob_poi, page);
1995 }
1996 
1997 /* implements ecc->write_page() */
1998 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
1999                                  int oob_required, int page)
2000 {
2001         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2002         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2003         struct nand_ecc_ctrl *ecc = &chip->ecc;
2004         u8 *data_buf, *oob_buf;
2005         int i, ret;
2006 
2007         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2008 
2009         clear_read_regs(nandc);
2010         clear_bam_transaction(nandc);
2011 
2012         data_buf = (u8 *)buf;
2013         oob_buf = chip->oob_poi;
2014 
2015         host->use_ecc = true;
2016         update_rw_regs(host, ecc->steps, false);
2017         config_nand_page_write(nandc);
2018 
2019         for (i = 0; i < ecc->steps; i++) {
2020                 int data_size, oob_size;
2021 
2022                 if (i == (ecc->steps - 1)) {
2023                         data_size = ecc->size - ((ecc->steps - 1) << 2);
2024                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2025                                    host->spare_bytes;
2026                 } else {
2027                         data_size = host->cw_data;
2028                         oob_size = ecc->bytes;
2029                 }
2030 
2031 
2032                 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2033                                i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2034 
2035                 /*
2036                  * when ECC is enabled, we don't really need to write anything
2037                  * to oob for the first n - 1 codewords since these oob regions
2038                  * just contain ECC bytes that's written by the controller
2039                  * itself. For the last codeword, we skip the bbm positions and
2040                  * write to the free oob area.
2041                  */
2042                 if (i == (ecc->steps - 1)) {
2043                         oob_buf += host->bbm_size;
2044 
2045                         write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2046                                        oob_buf, oob_size, 0);
2047                 }
2048 
2049                 config_nand_cw_write(nandc);
2050 
2051                 data_buf += data_size;
2052                 oob_buf += oob_size;
2053         }
2054 
2055         ret = submit_descs(nandc);
2056         if (ret)
2057                 dev_err(nandc->dev, "failure to write page\n");
2058 
2059         free_descs(nandc);
2060 
2061         if (!ret)
2062                 ret = nand_prog_page_end_op(chip);
2063 
2064         return ret;
2065 }
2066 
2067 /* implements ecc->write_page_raw() */
2068 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2069                                      const uint8_t *buf, int oob_required,
2070                                      int page)
2071 {
2072         struct mtd_info *mtd = nand_to_mtd(chip);
2073         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2074         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2075         struct nand_ecc_ctrl *ecc = &chip->ecc;
2076         u8 *data_buf, *oob_buf;
2077         int i, ret;
2078 
2079         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2080         clear_read_regs(nandc);
2081         clear_bam_transaction(nandc);
2082 
2083         data_buf = (u8 *)buf;
2084         oob_buf = chip->oob_poi;
2085 
2086         host->use_ecc = false;
2087         update_rw_regs(host, ecc->steps, false);
2088         config_nand_page_write(nandc);
2089 
2090         for (i = 0; i < ecc->steps; i++) {
2091                 int data_size1, data_size2, oob_size1, oob_size2;
2092                 int reg_off = FLASH_BUF_ACC;
2093 
2094                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2095                 oob_size1 = host->bbm_size;
2096 
2097                 if (i == (ecc->steps - 1)) {
2098                         data_size2 = ecc->size - data_size1 -
2099                                      ((ecc->steps - 1) << 2);
2100                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2101                                     host->spare_bytes;
2102                 } else {
2103                         data_size2 = host->cw_data - data_size1;
2104                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2105                 }
2106 
2107                 write_data_dma(nandc, reg_off, data_buf, data_size1,
2108                                NAND_BAM_NO_EOT);
2109                 reg_off += data_size1;
2110                 data_buf += data_size1;
2111 
2112                 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2113                                NAND_BAM_NO_EOT);
2114                 reg_off += oob_size1;
2115                 oob_buf += oob_size1;
2116 
2117                 write_data_dma(nandc, reg_off, data_buf, data_size2,
2118                                NAND_BAM_NO_EOT);
2119                 reg_off += data_size2;
2120                 data_buf += data_size2;
2121 
2122                 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2123                 oob_buf += oob_size2;
2124 
2125                 config_nand_cw_write(nandc);
2126         }
2127 
2128         ret = submit_descs(nandc);
2129         if (ret)
2130                 dev_err(nandc->dev, "failure to write raw page\n");
2131 
2132         free_descs(nandc);
2133 
2134         if (!ret)
2135                 ret = nand_prog_page_end_op(chip);
2136 
2137         return ret;
2138 }
2139 
2140 /*
2141  * implements ecc->write_oob()
2142  *
2143  * the NAND controller cannot write only data or only OOB within a codeword
2144  * since ECC is calculated for the combined codeword. So update the OOB from
2145  * chip->oob_poi, and pad the data area with OxFF before writing.
2146  */
2147 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2148 {
2149         struct mtd_info *mtd = nand_to_mtd(chip);
2150         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2151         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2152         struct nand_ecc_ctrl *ecc = &chip->ecc;
2153         u8 *oob = chip->oob_poi;
2154         int data_size, oob_size;
2155         int ret;
2156 
2157         host->use_ecc = true;
2158         clear_bam_transaction(nandc);
2159 
2160         /* calculate the data and oob size for the last codeword/step */
2161         data_size = ecc->size - ((ecc->steps - 1) << 2);
2162         oob_size = mtd->oobavail;
2163 
2164         memset(nandc->data_buffer, 0xff, host->cw_data);
2165         /* override new oob content to last codeword */
2166         mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2167                                     0, mtd->oobavail);
2168 
2169         set_address(host, host->cw_size * (ecc->steps - 1), page);
2170         update_rw_regs(host, 1, false);
2171 
2172         config_nand_page_write(nandc);
2173         write_data_dma(nandc, FLASH_BUF_ACC,
2174                        nandc->data_buffer, data_size + oob_size, 0);
2175         config_nand_cw_write(nandc);
2176 
2177         ret = submit_descs(nandc);
2178 
2179         free_descs(nandc);
2180 
2181         if (ret) {
2182                 dev_err(nandc->dev, "failure to write oob\n");
2183                 return -EIO;
2184         }
2185 
2186         return nand_prog_page_end_op(chip);
2187 }
2188 
2189 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2190 {
2191         struct mtd_info *mtd = nand_to_mtd(chip);
2192         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2193         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2194         struct nand_ecc_ctrl *ecc = &chip->ecc;
2195         int page, ret, bbpos, bad = 0;
2196 
2197         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2198 
2199         /*
2200          * configure registers for a raw sub page read, the address is set to
2201          * the beginning of the last codeword, we don't care about reading ecc
2202          * portion of oob. we just want the first few bytes from this codeword
2203          * that contains the BBM
2204          */
2205         host->use_ecc = false;
2206 
2207         clear_bam_transaction(nandc);
2208         ret = copy_last_cw(host, page);
2209         if (ret)
2210                 goto err;
2211 
2212         if (check_flash_errors(host, 1)) {
2213                 dev_warn(nandc->dev, "error when trying to read BBM\n");
2214                 goto err;
2215         }
2216 
2217         bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2218 
2219         bad = nandc->data_buffer[bbpos] != 0xff;
2220 
2221         if (chip->options & NAND_BUSWIDTH_16)
2222                 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2223 err:
2224         return bad;
2225 }
2226 
2227 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2228 {
2229         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2230         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2231         struct nand_ecc_ctrl *ecc = &chip->ecc;
2232         int page, ret;
2233 
2234         clear_read_regs(nandc);
2235         clear_bam_transaction(nandc);
2236 
2237         /*
2238          * to mark the BBM as bad, we flash the entire last codeword with 0s.
2239          * we don't care about the rest of the content in the codeword since
2240          * we aren't going to use this block again
2241          */
2242         memset(nandc->data_buffer, 0x00, host->cw_size);
2243 
2244         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2245 
2246         /* prepare write */
2247         host->use_ecc = false;
2248         set_address(host, host->cw_size * (ecc->steps - 1), page);
2249         update_rw_regs(host, 1, false);
2250 
2251         config_nand_page_write(nandc);
2252         write_data_dma(nandc, FLASH_BUF_ACC,
2253                        nandc->data_buffer, host->cw_size, 0);
2254         config_nand_cw_write(nandc);
2255 
2256         ret = submit_descs(nandc);
2257 
2258         free_descs(nandc);
2259 
2260         if (ret) {
2261                 dev_err(nandc->dev, "failure to update BBM\n");
2262                 return -EIO;
2263         }
2264 
2265         return nand_prog_page_end_op(chip);
2266 }
2267 
2268 /*
2269  * the three functions below implement chip->legacy.read_byte(),
2270  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2271  * aren't used for reading/writing page data, they are used for smaller data
2272  * like reading id, status etc
2273  */
2274 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2275 {
2276         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2277         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2278         u8 *buf = nandc->data_buffer;
2279         u8 ret = 0x0;
2280 
2281         if (host->last_command == NAND_CMD_STATUS) {
2282                 ret = host->status;
2283 
2284                 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2285 
2286                 return ret;
2287         }
2288 
2289         if (nandc->buf_start < nandc->buf_count)
2290                 ret = buf[nandc->buf_start++];
2291 
2292         return ret;
2293 }
2294 
2295 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2296 {
2297         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2298         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2299 
2300         memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2301         nandc->buf_start += real_len;
2302 }
2303 
2304 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2305                                  int len)
2306 {
2307         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2308         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2309 
2310         memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2311 
2312         nandc->buf_start += real_len;
2313 }
2314 
2315 /* we support only one external chip for now */
2316 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2317 {
2318         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2319 
2320         if (chipnr <= 0)
2321                 return;
2322 
2323         dev_warn(nandc->dev, "invalid chip select\n");
2324 }
2325 
2326 /*
2327  * NAND controller page layout info
2328  *
2329  * Layout with ECC enabled:
2330  *
2331  * |----------------------|  |---------------------------------|
2332  * |           xx.......yy|  |             *********xx.......yy|
2333  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2334  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2335  * |           xx.......yy|  |             *********xx.......yy|
2336  * |----------------------|  |---------------------------------|
2337  *     codeword 1,2..n-1                  codeword n
2338  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2339  *
2340  * n = Number of codewords in the page
2341  * . = ECC bytes
2342  * * = Spare/free bytes
2343  * x = Unused byte(s)
2344  * y = Reserved byte(s)
2345  *
2346  * 2K page: n = 4, spare = 16 bytes
2347  * 4K page: n = 8, spare = 32 bytes
2348  * 8K page: n = 16, spare = 64 bytes
2349  *
2350  * the qcom nand controller operates at a sub page/codeword level. each
2351  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2352  * the number of ECC bytes vary based on the ECC strength and the bus width.
2353  *
2354  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2355  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2356  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2357  *
2358  * When we access a page with ECC enabled, the reserved bytes(s) are not
2359  * accessible at all. When reading, we fill up these unreadable positions
2360  * with 0xffs. When writing, the controller skips writing the inaccessible
2361  * bytes.
2362  *
2363  * Layout with ECC disabled:
2364  *
2365  * |------------------------------|  |---------------------------------------|
2366  * |         yy          xx.......|  |         bb          *********xx.......|
2367  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2368  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2369  * |         yy          xx.......|  |         bb          *********xx.......|
2370  * |------------------------------|  |---------------------------------------|
2371  *         codeword 1,2..n-1                        codeword n
2372  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2373  *
2374  * n = Number of codewords in the page
2375  * . = ECC bytes
2376  * * = Spare/free bytes
2377  * x = Unused byte(s)
2378  * y = Dummy Bad Bock byte(s)
2379  * b = Real Bad Block byte(s)
2380  * size1/size2 = function of codeword size and 'n'
2381  *
2382  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2383  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2384  * Block Markers. In the last codeword, this position contains the real BBM
2385  *
2386  * In order to have a consistent layout between RAW and ECC modes, we assume
2387  * the following OOB layout arrangement:
2388  *
2389  * |-----------|  |--------------------|
2390  * |yyxx.......|  |bb*********xx.......|
2391  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2392  * |yyxx.......|  |bb*********xx.......|
2393  * |yyxx.......|  |bb*********xx.......|
2394  * |-----------|  |--------------------|
2395  *  first n - 1       nth OOB region
2396  *  OOB regions
2397  *
2398  * n = Number of codewords in the page
2399  * . = ECC bytes
2400  * * = FREE OOB bytes
2401  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2402  * x = Unused byte(s)
2403  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2404  *
2405  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2406  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2407  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2408  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2409  * the sum of the three).
2410  */
2411 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2412                                    struct mtd_oob_region *oobregion)
2413 {
2414         struct nand_chip *chip = mtd_to_nand(mtd);
2415         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2416         struct nand_ecc_ctrl *ecc = &chip->ecc;
2417 
2418         if (section > 1)
2419                 return -ERANGE;
2420 
2421         if (!section) {
2422                 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2423                                     host->bbm_size;
2424                 oobregion->offset = 0;
2425         } else {
2426                 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2427                 oobregion->offset = mtd->oobsize - oobregion->length;
2428         }
2429 
2430         return 0;
2431 }
2432 
2433 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2434                                      struct mtd_oob_region *oobregion)
2435 {
2436         struct nand_chip *chip = mtd_to_nand(mtd);
2437         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2438         struct nand_ecc_ctrl *ecc = &chip->ecc;
2439 
2440         if (section)
2441                 return -ERANGE;
2442 
2443         oobregion->length = ecc->steps * 4;
2444         oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2445 
2446         return 0;
2447 }
2448 
2449 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2450         .ecc = qcom_nand_ooblayout_ecc,
2451         .free = qcom_nand_ooblayout_free,
2452 };
2453 
2454 static int
2455 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2456 {
2457         return strength == 4 ? 12 : 16;
2458 }
2459 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2460                      NANDC_STEP_SIZE, 4, 8);
2461 
2462 static int qcom_nand_attach_chip(struct nand_chip *chip)
2463 {
2464         struct mtd_info *mtd = nand_to_mtd(chip);
2465         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2466         struct nand_ecc_ctrl *ecc = &chip->ecc;
2467         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2468         int cwperpage, bad_block_byte, ret;
2469         bool wide_bus;
2470         int ecc_mode = 1;
2471 
2472         /* controller only supports 512 bytes data steps */
2473         ecc->size = NANDC_STEP_SIZE;
2474         wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2475         cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2476 
2477         /*
2478          * Each CW has 4 available OOB bytes which will be protected with ECC
2479          * so remaining bytes can be used for ECC.
2480          */
2481         ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2482                                    mtd->oobsize - (cwperpage * 4));
2483         if (ret) {
2484                 dev_err(nandc->dev, "No valid ECC settings possible\n");
2485                 return ret;
2486         }
2487 
2488         if (ecc->strength >= 8) {
2489                 /* 8 bit ECC defaults to BCH ECC on all platforms */
2490                 host->bch_enabled = true;
2491                 ecc_mode = 1;
2492 
2493                 if (wide_bus) {
2494                         host->ecc_bytes_hw = 14;
2495                         host->spare_bytes = 0;
2496                         host->bbm_size = 2;
2497                 } else {
2498                         host->ecc_bytes_hw = 13;
2499                         host->spare_bytes = 2;
2500                         host->bbm_size = 1;
2501                 }
2502         } else {
2503                 /*
2504                  * if the controller supports BCH for 4 bit ECC, the controller
2505                  * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2506                  * always 10 bytes
2507                  */
2508                 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2509                         /* BCH */
2510                         host->bch_enabled = true;
2511                         ecc_mode = 0;
2512 
2513                         if (wide_bus) {
2514                                 host->ecc_bytes_hw = 8;
2515                                 host->spare_bytes = 2;
2516                                 host->bbm_size = 2;
2517                         } else {
2518                                 host->ecc_bytes_hw = 7;
2519                                 host->spare_bytes = 4;
2520                                 host->bbm_size = 1;
2521                         }
2522                 } else {
2523                         /* RS */
2524                         host->ecc_bytes_hw = 10;
2525 
2526                         if (wide_bus) {
2527                                 host->spare_bytes = 0;
2528                                 host->bbm_size = 2;
2529                         } else {
2530                                 host->spare_bytes = 1;
2531                                 host->bbm_size = 1;
2532                         }
2533                 }
2534         }
2535 
2536         /*
2537          * we consider ecc->bytes as the sum of all the non-data content in a
2538          * step. It gives us a clean representation of the oob area (even if
2539          * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2540          * ECC and 12 bytes for 4 bit ECC
2541          */
2542         ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2543 
2544         ecc->read_page          = qcom_nandc_read_page;
2545         ecc->read_page_raw      = qcom_nandc_read_page_raw;
2546         ecc->read_oob           = qcom_nandc_read_oob;
2547         ecc->write_page         = qcom_nandc_write_page;
2548         ecc->write_page_raw     = qcom_nandc_write_page_raw;
2549         ecc->write_oob          = qcom_nandc_write_oob;
2550 
2551         ecc->mode = NAND_ECC_HW;
2552 
2553         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2554 
2555         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2556                                      cwperpage);
2557 
2558         /*
2559          * DATA_UD_BYTES varies based on whether the read/write command protects
2560          * spare data with ECC too. We protect spare data by default, so we set
2561          * it to main + spare data, which are 512 and 4 bytes respectively.
2562          */
2563         host->cw_data = 516;
2564 
2565         /*
2566          * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2567          * for 8 bit ECC
2568          */
2569         host->cw_size = host->cw_data + ecc->bytes;
2570         bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2571 
2572         host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2573                                 | host->cw_data << UD_SIZE_BYTES
2574                                 | 0 << DISABLE_STATUS_AFTER_WRITE
2575                                 | 5 << NUM_ADDR_CYCLES
2576                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2577                                 | 0 << STATUS_BFR_READ
2578                                 | 1 << SET_RD_MODE_AFTER_STATUS
2579                                 | host->spare_bytes << SPARE_SIZE_BYTES;
2580 
2581         host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2582                                 | 0 <<  CS_ACTIVE_BSY
2583                                 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2584                                 | 0 << BAD_BLOCK_IN_SPARE_AREA
2585                                 | 2 << WR_RD_BSY_GAP
2586                                 | wide_bus << WIDE_FLASH
2587                                 | host->bch_enabled << ENABLE_BCH_ECC;
2588 
2589         host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2590                                 | host->cw_size << UD_SIZE_BYTES
2591                                 | 5 << NUM_ADDR_CYCLES
2592                                 | 0 << SPARE_SIZE_BYTES;
2593 
2594         host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2595                                 | 0 << CS_ACTIVE_BSY
2596                                 | 17 << BAD_BLOCK_BYTE_NUM
2597                                 | 1 << BAD_BLOCK_IN_SPARE_AREA
2598                                 | 2 << WR_RD_BSY_GAP
2599                                 | wide_bus << WIDE_FLASH
2600                                 | 1 << DEV0_CFG1_ECC_DISABLE;
2601 
2602         host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2603                                 | 0 << ECC_SW_RESET
2604                                 | host->cw_data << ECC_NUM_DATA_BYTES
2605                                 | 1 << ECC_FORCE_CLK_OPEN
2606                                 | ecc_mode << ECC_MODE
2607                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2608 
2609         host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2610 
2611         host->clrflashstatus = FS_READY_BSY_N;
2612         host->clrreadstatus = 0xc0;
2613         nandc->regs->erased_cw_detect_cfg_clr =
2614                 cpu_to_le32(CLR_ERASED_PAGE_DET);
2615         nandc->regs->erased_cw_detect_cfg_set =
2616                 cpu_to_le32(SET_ERASED_PAGE_DET);
2617 
2618         dev_dbg(nandc->dev,
2619                 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2620                 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2621                 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2622                 cwperpage);
2623 
2624         return 0;
2625 }
2626 
2627 static const struct nand_controller_ops qcom_nandc_ops = {
2628         .attach_chip = qcom_nand_attach_chip,
2629 };
2630 
2631 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2632 {
2633         int ret;
2634 
2635         ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2636         if (ret) {
2637                 dev_err(nandc->dev, "failed to set DMA mask\n");
2638                 return ret;
2639         }
2640 
2641         /*
2642          * we use the internal buffer for reading ONFI params, reading small
2643          * data like ID and status, and preforming read-copy-write operations
2644          * when writing to a codeword partially. 532 is the maximum possible
2645          * size of a codeword for our nand controller
2646          */
2647         nandc->buf_size = 532;
2648 
2649         nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2650                                         GFP_KERNEL);
2651         if (!nandc->data_buffer)
2652                 return -ENOMEM;
2653 
2654         nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2655                                         GFP_KERNEL);
2656         if (!nandc->regs)
2657                 return -ENOMEM;
2658 
2659         nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2660                                 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2661                                 GFP_KERNEL);
2662         if (!nandc->reg_read_buf)
2663                 return -ENOMEM;
2664 
2665         if (nandc->props->is_bam) {
2666                 nandc->reg_read_dma =
2667                         dma_map_single(nandc->dev, nandc->reg_read_buf,
2668                                        MAX_REG_RD *
2669                                        sizeof(*nandc->reg_read_buf),
2670                                        DMA_FROM_DEVICE);
2671                 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2672                         dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2673                         return -EIO;
2674                 }
2675 
2676                 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2677                 if (!nandc->tx_chan) {
2678                         dev_err(nandc->dev, "failed to request tx channel\n");
2679                         return -ENODEV;
2680                 }
2681 
2682                 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2683                 if (!nandc->rx_chan) {
2684                         dev_err(nandc->dev, "failed to request rx channel\n");
2685                         return -ENODEV;
2686                 }
2687 
2688                 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2689                 if (!nandc->cmd_chan) {
2690                         dev_err(nandc->dev, "failed to request cmd channel\n");
2691                         return -ENODEV;
2692                 }
2693 
2694                 /*
2695                  * Initially allocate BAM transaction to read ONFI param page.
2696                  * After detecting all the devices, this BAM transaction will
2697                  * be freed and the next BAM tranasction will be allocated with
2698                  * maximum codeword size
2699                  */
2700                 nandc->max_cwperpage = 1;
2701                 nandc->bam_txn = alloc_bam_transaction(nandc);
2702                 if (!nandc->bam_txn) {
2703                         dev_err(nandc->dev,
2704                                 "failed to allocate bam transaction\n");
2705                         return -ENOMEM;
2706                 }
2707         } else {
2708                 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2709                 if (!nandc->chan) {
2710                         dev_err(nandc->dev,
2711                                 "failed to request slave channel\n");
2712                         return -ENODEV;
2713                 }
2714         }
2715 
2716         INIT_LIST_HEAD(&nandc->desc_list);
2717         INIT_LIST_HEAD(&nandc->host_list);
2718 
2719         nand_controller_init(&nandc->controller);
2720         nandc->controller.ops = &qcom_nandc_ops;
2721 
2722         return 0;
2723 }
2724 
2725 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2726 {
2727         if (nandc->props->is_bam) {
2728                 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2729                         dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2730                                          MAX_REG_RD *
2731                                          sizeof(*nandc->reg_read_buf),
2732                                          DMA_FROM_DEVICE);
2733 
2734                 if (nandc->tx_chan)
2735                         dma_release_channel(nandc->tx_chan);
2736 
2737                 if (nandc->rx_chan)
2738                         dma_release_channel(nandc->rx_chan);
2739 
2740                 if (nandc->cmd_chan)
2741                         dma_release_channel(nandc->cmd_chan);
2742         } else {
2743                 if (nandc->chan)
2744                         dma_release_channel(nandc->chan);
2745         }
2746 }
2747 
2748 /* one time setup of a few nand controller registers */
2749 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2750 {
2751         u32 nand_ctrl;
2752 
2753         /* kill onenand */
2754         nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2755         nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2756                     NAND_DEV_CMD_VLD_VAL);
2757 
2758         /* enable ADM or BAM DMA */
2759         if (nandc->props->is_bam) {
2760                 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2761                 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2762         } else {
2763                 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2764         }
2765 
2766         /* save the original values of these registers */
2767         nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2768         nandc->vld = NAND_DEV_CMD_VLD_VAL;
2769 
2770         return 0;
2771 }
2772 
2773 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2774                                             struct qcom_nand_host *host,
2775                                             struct device_node *dn)
2776 {
2777         struct nand_chip *chip = &host->chip;
2778         struct mtd_info *mtd = nand_to_mtd(chip);
2779         struct device *dev = nandc->dev;
2780         int ret;
2781 
2782         ret = of_property_read_u32(dn, "reg", &host->cs);
2783         if (ret) {
2784                 dev_err(dev, "can't get chip-select\n");
2785                 return -ENXIO;
2786         }
2787 
2788         nand_set_flash_node(chip, dn);
2789         mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2790         if (!mtd->name)
2791                 return -ENOMEM;
2792 
2793         mtd->owner = THIS_MODULE;
2794         mtd->dev.parent = dev;
2795 
2796         chip->legacy.cmdfunc    = qcom_nandc_command;
2797         chip->legacy.select_chip        = qcom_nandc_select_chip;
2798         chip->legacy.read_byte  = qcom_nandc_read_byte;
2799         chip->legacy.read_buf   = qcom_nandc_read_buf;
2800         chip->legacy.write_buf  = qcom_nandc_write_buf;
2801         chip->legacy.set_features       = nand_get_set_features_notsupp;
2802         chip->legacy.get_features       = nand_get_set_features_notsupp;
2803 
2804         /*
2805          * the bad block marker is readable only when we read the last codeword
2806          * of a page with ECC disabled. currently, the nand_base and nand_bbt
2807          * helpers don't allow us to read BB from a nand chip with ECC
2808          * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2809          * and block_markbad helpers until we permanently switch to using
2810          * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2811          */
2812         chip->legacy.block_bad          = qcom_nandc_block_bad;
2813         chip->legacy.block_markbad      = qcom_nandc_block_markbad;
2814 
2815         chip->controller = &nandc->controller;
2816         chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2817                          NAND_SKIP_BBTSCAN;
2818 
2819         /* set up initial status value */
2820         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2821 
2822         ret = nand_scan(chip, 1);
2823         if (ret)
2824                 return ret;
2825 
2826         if (nandc->props->is_bam) {
2827                 free_bam_transaction(nandc);
2828                 nandc->bam_txn = alloc_bam_transaction(nandc);
2829                 if (!nandc->bam_txn) {
2830                         dev_err(nandc->dev,
2831                                 "failed to allocate bam transaction\n");
2832                         return -ENOMEM;
2833                 }
2834         }
2835 
2836         ret = mtd_device_register(mtd, NULL, 0);
2837         if (ret)
2838                 nand_cleanup(chip);
2839 
2840         return ret;
2841 }
2842 
2843 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2844 {
2845         struct device *dev = nandc->dev;
2846         struct device_node *dn = dev->of_node, *child;
2847         struct qcom_nand_host *host;
2848         int ret;
2849 
2850         for_each_available_child_of_node(dn, child) {
2851                 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2852                 if (!host) {
2853                         of_node_put(child);
2854                         return -ENOMEM;
2855                 }
2856 
2857                 ret = qcom_nand_host_init_and_register(nandc, host, child);
2858                 if (ret) {
2859                         devm_kfree(dev, host);
2860                         continue;
2861                 }
2862 
2863                 list_add_tail(&host->node, &nandc->host_list);
2864         }
2865 
2866         if (list_empty(&nandc->host_list))
2867                 return -ENODEV;
2868 
2869         return 0;
2870 }
2871 
2872 /* parse custom DT properties here */
2873 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2874 {
2875         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2876         struct device_node *np = nandc->dev->of_node;
2877         int ret;
2878 
2879         if (!nandc->props->is_bam) {
2880                 ret = of_property_read_u32(np, "qcom,cmd-crci",
2881                                            &nandc->cmd_crci);
2882                 if (ret) {
2883                         dev_err(nandc->dev, "command CRCI unspecified\n");
2884                         return ret;
2885                 }
2886 
2887                 ret = of_property_read_u32(np, "qcom,data-crci",
2888                                            &nandc->data_crci);
2889                 if (ret) {
2890                         dev_err(nandc->dev, "data CRCI unspecified\n");
2891                         return ret;
2892                 }
2893         }
2894 
2895         return 0;
2896 }
2897 
2898 static int qcom_nandc_probe(struct platform_device *pdev)
2899 {
2900         struct qcom_nand_controller *nandc;
2901         const void *dev_data;
2902         struct device *dev = &pdev->dev;
2903         struct resource *res;
2904         int ret;
2905 
2906         nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2907         if (!nandc)
2908                 return -ENOMEM;
2909 
2910         platform_set_drvdata(pdev, nandc);
2911         nandc->dev = dev;
2912 
2913         dev_data = of_device_get_match_data(dev);
2914         if (!dev_data) {
2915                 dev_err(&pdev->dev, "failed to get device data\n");
2916                 return -ENODEV;
2917         }
2918 
2919         nandc->props = dev_data;
2920 
2921         nandc->core_clk = devm_clk_get(dev, "core");
2922         if (IS_ERR(nandc->core_clk))
2923                 return PTR_ERR(nandc->core_clk);
2924 
2925         nandc->aon_clk = devm_clk_get(dev, "aon");
2926         if (IS_ERR(nandc->aon_clk))
2927                 return PTR_ERR(nandc->aon_clk);
2928 
2929         ret = qcom_nandc_parse_dt(pdev);
2930         if (ret)
2931                 return ret;
2932 
2933         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2934         nandc->base = devm_ioremap_resource(dev, res);
2935         if (IS_ERR(nandc->base))
2936                 return PTR_ERR(nandc->base);
2937 
2938         nandc->base_phys = res->start;
2939         nandc->base_dma = dma_map_resource(dev, res->start,
2940                                            resource_size(res),
2941                                            DMA_BIDIRECTIONAL, 0);
2942         if (!nandc->base_dma)
2943                 return -ENXIO;
2944 
2945         ret = qcom_nandc_alloc(nandc);
2946         if (ret)
2947                 goto err_nandc_alloc;
2948 
2949         ret = clk_prepare_enable(nandc->core_clk);
2950         if (ret)
2951                 goto err_core_clk;
2952 
2953         ret = clk_prepare_enable(nandc->aon_clk);
2954         if (ret)
2955                 goto err_aon_clk;
2956 
2957         ret = qcom_nandc_setup(nandc);
2958         if (ret)
2959                 goto err_setup;
2960 
2961         ret = qcom_probe_nand_devices(nandc);
2962         if (ret)
2963                 goto err_setup;
2964 
2965         return 0;
2966 
2967 err_setup:
2968         clk_disable_unprepare(nandc->aon_clk);
2969 err_aon_clk:
2970         clk_disable_unprepare(nandc->core_clk);
2971 err_core_clk:
2972         qcom_nandc_unalloc(nandc);
2973 err_nandc_alloc:
2974         dma_unmap_resource(dev, res->start, resource_size(res),
2975                            DMA_BIDIRECTIONAL, 0);
2976 
2977         return ret;
2978 }
2979 
2980 static int qcom_nandc_remove(struct platform_device *pdev)
2981 {
2982         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2983         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2984         struct qcom_nand_host *host;
2985 
2986         list_for_each_entry(host, &nandc->host_list, node)
2987                 nand_release(&host->chip);
2988 
2989 
2990         qcom_nandc_unalloc(nandc);
2991 
2992         clk_disable_unprepare(nandc->aon_clk);
2993         clk_disable_unprepare(nandc->core_clk);
2994 
2995         dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
2996                            DMA_BIDIRECTIONAL, 0);
2997 
2998         return 0;
2999 }
3000 
3001 static const struct qcom_nandc_props ipq806x_nandc_props = {
3002         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3003         .is_bam = false,
3004         .dev_cmd_reg_start = 0x0,
3005 };
3006 
3007 static const struct qcom_nandc_props ipq4019_nandc_props = {
3008         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3009         .is_bam = true,
3010         .dev_cmd_reg_start = 0x0,
3011 };
3012 
3013 static const struct qcom_nandc_props ipq8074_nandc_props = {
3014         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3015         .is_bam = true,
3016         .dev_cmd_reg_start = 0x7000,
3017 };
3018 
3019 /*
3020  * data will hold a struct pointer containing more differences once we support
3021  * more controller variants
3022  */
3023 static const struct of_device_id qcom_nandc_of_match[] = {
3024         {
3025                 .compatible = "qcom,ipq806x-nand",
3026                 .data = &ipq806x_nandc_props,
3027         },
3028         {
3029                 .compatible = "qcom,ipq4019-nand",
3030                 .data = &ipq4019_nandc_props,
3031         },
3032         {
3033                 .compatible = "qcom,ipq8074-nand",
3034                 .data = &ipq8074_nandc_props,
3035         },
3036         {}
3037 };
3038 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3039 
3040 static struct platform_driver qcom_nandc_driver = {
3041         .driver = {
3042                 .name = "qcom-nandc",
3043                 .of_match_table = qcom_nandc_of_match,
3044         },
3045         .probe   = qcom_nandc_probe,
3046         .remove  = qcom_nandc_remove,
3047 };
3048 module_platform_driver(qcom_nandc_driver);
3049 
3050 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3051 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3052 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */