root/drivers/mtd/ubi/eba.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ubi_next_sqnum
  2. ubi_get_compat
  3. ubi_eba_get_ldesc
  4. ubi_eba_create_table
  5. ubi_eba_destroy_table
  6. ubi_eba_copy_table
  7. ubi_eba_replace_table
  8. ltree_lookup
  9. ltree_add_entry
  10. leb_read_lock
  11. leb_read_unlock
  12. leb_write_lock
  13. leb_write_trylock
  14. leb_write_unlock
  15. ubi_eba_is_mapped
  16. ubi_eba_unmap_leb
  17. check_mapping
  18. check_mapping
  19. ubi_eba_read_leb
  20. ubi_eba_read_leb_sg
  21. try_recover_peb
  22. recover_peb
  23. try_write_vid_and_data
  24. ubi_eba_write_leb
  25. ubi_eba_write_leb_st
  26. ubi_eba_atomic_leb_change
  27. is_error_sane
  28. ubi_eba_copy_leb
  29. print_rsvd_warning
  30. self_check_eba
  31. ubi_eba_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright (c) International Business Machines Corp., 2006
   4  *
   5  * Author: Artem Bityutskiy (Битюцкий Артём)
   6  */
   7 
   8 /*
   9  * The UBI Eraseblock Association (EBA) sub-system.
  10  *
  11  * This sub-system is responsible for I/O to/from logical eraseblock.
  12  *
  13  * Although in this implementation the EBA table is fully kept and managed in
  14  * RAM, which assumes poor scalability, it might be (partially) maintained on
  15  * flash in future implementations.
  16  *
  17  * The EBA sub-system implements per-logical eraseblock locking. Before
  18  * accessing a logical eraseblock it is locked for reading or writing. The
  19  * per-logical eraseblock locking is implemented by means of the lock tree. The
  20  * lock tree is an RB-tree which refers all the currently locked logical
  21  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  22  * They are indexed by (@vol_id, @lnum) pairs.
  23  *
  24  * EBA also maintains the global sequence counter which is incremented each
  25  * time a logical eraseblock is mapped to a physical eraseblock and it is
  26  * stored in the volume identifier header. This means that each VID header has
  27  * a unique sequence number. The sequence number is only increased an we assume
  28  * 64 bits is enough to never overflow.
  29  */
  30 
  31 #include <linux/slab.h>
  32 #include <linux/crc32.h>
  33 #include <linux/err.h>
  34 #include "ubi.h"
  35 
  36 /* Number of physical eraseblocks reserved for atomic LEB change operation */
  37 #define EBA_RESERVED_PEBS 1
  38 
  39 /**
  40  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
  41  * @pnum: the physical eraseblock number attached to the LEB
  42  *
  43  * This structure is encoding a LEB -> PEB association. Note that the LEB
  44  * number is not stored here, because it is the index used to access the
  45  * entries table.
  46  */
  47 struct ubi_eba_entry {
  48         int pnum;
  49 };
  50 
  51 /**
  52  * struct ubi_eba_table - LEB -> PEB association information
  53  * @entries: the LEB to PEB mapping (one entry per LEB).
  54  *
  55  * This structure is private to the EBA logic and should be kept here.
  56  * It is encoding the LEB to PEB association table, and is subject to
  57  * changes.
  58  */
  59 struct ubi_eba_table {
  60         struct ubi_eba_entry *entries;
  61 };
  62 
  63 /**
  64  * next_sqnum - get next sequence number.
  65  * @ubi: UBI device description object
  66  *
  67  * This function returns next sequence number to use, which is just the current
  68  * global sequence counter value. It also increases the global sequence
  69  * counter.
  70  */
  71 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  72 {
  73         unsigned long long sqnum;
  74 
  75         spin_lock(&ubi->ltree_lock);
  76         sqnum = ubi->global_sqnum++;
  77         spin_unlock(&ubi->ltree_lock);
  78 
  79         return sqnum;
  80 }
  81 
  82 /**
  83  * ubi_get_compat - get compatibility flags of a volume.
  84  * @ubi: UBI device description object
  85  * @vol_id: volume ID
  86  *
  87  * This function returns compatibility flags for an internal volume. User
  88  * volumes have no compatibility flags, so %0 is returned.
  89  */
  90 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  91 {
  92         if (vol_id == UBI_LAYOUT_VOLUME_ID)
  93                 return UBI_LAYOUT_VOLUME_COMPAT;
  94         return 0;
  95 }
  96 
  97 /**
  98  * ubi_eba_get_ldesc - get information about a LEB
  99  * @vol: volume description object
 100  * @lnum: logical eraseblock number
 101  * @ldesc: the LEB descriptor to fill
 102  *
 103  * Used to query information about a specific LEB.
 104  * It is currently only returning the physical position of the LEB, but will be
 105  * extended to provide more information.
 106  */
 107 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
 108                        struct ubi_eba_leb_desc *ldesc)
 109 {
 110         ldesc->lnum = lnum;
 111         ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
 112 }
 113 
 114 /**
 115  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
 116  *                        LEBs unmapped
 117  * @vol: volume containing the EBA table to copy
 118  * @nentries: number of entries in the table
 119  *
 120  * Allocate a new EBA table and initialize it with all LEBs unmapped.
 121  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
 122  */
 123 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
 124                                            int nentries)
 125 {
 126         struct ubi_eba_table *tbl;
 127         int err = -ENOMEM;
 128         int i;
 129 
 130         tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
 131         if (!tbl)
 132                 return ERR_PTR(-ENOMEM);
 133 
 134         tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
 135                                      GFP_KERNEL);
 136         if (!tbl->entries)
 137                 goto err;
 138 
 139         for (i = 0; i < nentries; i++)
 140                 tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
 141 
 142         return tbl;
 143 
 144 err:
 145         kfree(tbl->entries);
 146         kfree(tbl);
 147 
 148         return ERR_PTR(err);
 149 }
 150 
 151 /**
 152  * ubi_eba_destroy_table - destroy an EBA table
 153  * @tbl: the table to destroy
 154  *
 155  * Destroy an EBA table.
 156  */
 157 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
 158 {
 159         if (!tbl)
 160                 return;
 161 
 162         kfree(tbl->entries);
 163         kfree(tbl);
 164 }
 165 
 166 /**
 167  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
 168  * @vol: volume containing the EBA table to copy
 169  * @dst: destination
 170  * @nentries: number of entries to copy
 171  *
 172  * Copy the EBA table stored in vol into the one pointed by dst.
 173  */
 174 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
 175                         int nentries)
 176 {
 177         struct ubi_eba_table *src;
 178         int i;
 179 
 180         ubi_assert(dst && vol && vol->eba_tbl);
 181 
 182         src = vol->eba_tbl;
 183 
 184         for (i = 0; i < nentries; i++)
 185                 dst->entries[i].pnum = src->entries[i].pnum;
 186 }
 187 
 188 /**
 189  * ubi_eba_replace_table - assign a new EBA table to a volume
 190  * @vol: volume containing the EBA table to copy
 191  * @tbl: new EBA table
 192  *
 193  * Assign a new EBA table to the volume and release the old one.
 194  */
 195 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
 196 {
 197         ubi_eba_destroy_table(vol->eba_tbl);
 198         vol->eba_tbl = tbl;
 199 }
 200 
 201 /**
 202  * ltree_lookup - look up the lock tree.
 203  * @ubi: UBI device description object
 204  * @vol_id: volume ID
 205  * @lnum: logical eraseblock number
 206  *
 207  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
 208  * object if the logical eraseblock is locked and %NULL if it is not.
 209  * @ubi->ltree_lock has to be locked.
 210  */
 211 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 212                                             int lnum)
 213 {
 214         struct rb_node *p;
 215 
 216         p = ubi->ltree.rb_node;
 217         while (p) {
 218                 struct ubi_ltree_entry *le;
 219 
 220                 le = rb_entry(p, struct ubi_ltree_entry, rb);
 221 
 222                 if (vol_id < le->vol_id)
 223                         p = p->rb_left;
 224                 else if (vol_id > le->vol_id)
 225                         p = p->rb_right;
 226                 else {
 227                         if (lnum < le->lnum)
 228                                 p = p->rb_left;
 229                         else if (lnum > le->lnum)
 230                                 p = p->rb_right;
 231                         else
 232                                 return le;
 233                 }
 234         }
 235 
 236         return NULL;
 237 }
 238 
 239 /**
 240  * ltree_add_entry - add new entry to the lock tree.
 241  * @ubi: UBI device description object
 242  * @vol_id: volume ID
 243  * @lnum: logical eraseblock number
 244  *
 245  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 246  * lock tree. If such entry is already there, its usage counter is increased.
 247  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 248  * failed.
 249  */
 250 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 251                                                int vol_id, int lnum)
 252 {
 253         struct ubi_ltree_entry *le, *le1, *le_free;
 254 
 255         le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 256         if (!le)
 257                 return ERR_PTR(-ENOMEM);
 258 
 259         le->users = 0;
 260         init_rwsem(&le->mutex);
 261         le->vol_id = vol_id;
 262         le->lnum = lnum;
 263 
 264         spin_lock(&ubi->ltree_lock);
 265         le1 = ltree_lookup(ubi, vol_id, lnum);
 266 
 267         if (le1) {
 268                 /*
 269                  * This logical eraseblock is already locked. The newly
 270                  * allocated lock entry is not needed.
 271                  */
 272                 le_free = le;
 273                 le = le1;
 274         } else {
 275                 struct rb_node **p, *parent = NULL;
 276 
 277                 /*
 278                  * No lock entry, add the newly allocated one to the
 279                  * @ubi->ltree RB-tree.
 280                  */
 281                 le_free = NULL;
 282 
 283                 p = &ubi->ltree.rb_node;
 284                 while (*p) {
 285                         parent = *p;
 286                         le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 287 
 288                         if (vol_id < le1->vol_id)
 289                                 p = &(*p)->rb_left;
 290                         else if (vol_id > le1->vol_id)
 291                                 p = &(*p)->rb_right;
 292                         else {
 293                                 ubi_assert(lnum != le1->lnum);
 294                                 if (lnum < le1->lnum)
 295                                         p = &(*p)->rb_left;
 296                                 else
 297                                         p = &(*p)->rb_right;
 298                         }
 299                 }
 300 
 301                 rb_link_node(&le->rb, parent, p);
 302                 rb_insert_color(&le->rb, &ubi->ltree);
 303         }
 304         le->users += 1;
 305         spin_unlock(&ubi->ltree_lock);
 306 
 307         kfree(le_free);
 308         return le;
 309 }
 310 
 311 /**
 312  * leb_read_lock - lock logical eraseblock for reading.
 313  * @ubi: UBI device description object
 314  * @vol_id: volume ID
 315  * @lnum: logical eraseblock number
 316  *
 317  * This function locks a logical eraseblock for reading. Returns zero in case
 318  * of success and a negative error code in case of failure.
 319  */
 320 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 321 {
 322         struct ubi_ltree_entry *le;
 323 
 324         le = ltree_add_entry(ubi, vol_id, lnum);
 325         if (IS_ERR(le))
 326                 return PTR_ERR(le);
 327         down_read(&le->mutex);
 328         return 0;
 329 }
 330 
 331 /**
 332  * leb_read_unlock - unlock logical eraseblock.
 333  * @ubi: UBI device description object
 334  * @vol_id: volume ID
 335  * @lnum: logical eraseblock number
 336  */
 337 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 338 {
 339         struct ubi_ltree_entry *le;
 340 
 341         spin_lock(&ubi->ltree_lock);
 342         le = ltree_lookup(ubi, vol_id, lnum);
 343         le->users -= 1;
 344         ubi_assert(le->users >= 0);
 345         up_read(&le->mutex);
 346         if (le->users == 0) {
 347                 rb_erase(&le->rb, &ubi->ltree);
 348                 kfree(le);
 349         }
 350         spin_unlock(&ubi->ltree_lock);
 351 }
 352 
 353 /**
 354  * leb_write_lock - lock logical eraseblock for writing.
 355  * @ubi: UBI device description object
 356  * @vol_id: volume ID
 357  * @lnum: logical eraseblock number
 358  *
 359  * This function locks a logical eraseblock for writing. Returns zero in case
 360  * of success and a negative error code in case of failure.
 361  */
 362 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 363 {
 364         struct ubi_ltree_entry *le;
 365 
 366         le = ltree_add_entry(ubi, vol_id, lnum);
 367         if (IS_ERR(le))
 368                 return PTR_ERR(le);
 369         down_write(&le->mutex);
 370         return 0;
 371 }
 372 
 373 /**
 374  * leb_write_trylock - try to lock logical eraseblock for writing.
 375  * @ubi: UBI device description object
 376  * @vol_id: volume ID
 377  * @lnum: logical eraseblock number
 378  *
 379  * This function locks a logical eraseblock for writing if there is no
 380  * contention and does nothing if there is contention. Returns %0 in case of
 381  * success, %1 in case of contention, and and a negative error code in case of
 382  * failure.
 383  */
 384 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 385 {
 386         struct ubi_ltree_entry *le;
 387 
 388         le = ltree_add_entry(ubi, vol_id, lnum);
 389         if (IS_ERR(le))
 390                 return PTR_ERR(le);
 391         if (down_write_trylock(&le->mutex))
 392                 return 0;
 393 
 394         /* Contention, cancel */
 395         spin_lock(&ubi->ltree_lock);
 396         le->users -= 1;
 397         ubi_assert(le->users >= 0);
 398         if (le->users == 0) {
 399                 rb_erase(&le->rb, &ubi->ltree);
 400                 kfree(le);
 401         }
 402         spin_unlock(&ubi->ltree_lock);
 403 
 404         return 1;
 405 }
 406 
 407 /**
 408  * leb_write_unlock - unlock logical eraseblock.
 409  * @ubi: UBI device description object
 410  * @vol_id: volume ID
 411  * @lnum: logical eraseblock number
 412  */
 413 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 414 {
 415         struct ubi_ltree_entry *le;
 416 
 417         spin_lock(&ubi->ltree_lock);
 418         le = ltree_lookup(ubi, vol_id, lnum);
 419         le->users -= 1;
 420         ubi_assert(le->users >= 0);
 421         up_write(&le->mutex);
 422         if (le->users == 0) {
 423                 rb_erase(&le->rb, &ubi->ltree);
 424                 kfree(le);
 425         }
 426         spin_unlock(&ubi->ltree_lock);
 427 }
 428 
 429 /**
 430  * ubi_eba_is_mapped - check if a LEB is mapped.
 431  * @vol: volume description object
 432  * @lnum: logical eraseblock number
 433  *
 434  * This function returns true if the LEB is mapped, false otherwise.
 435  */
 436 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
 437 {
 438         return vol->eba_tbl->entries[lnum].pnum >= 0;
 439 }
 440 
 441 /**
 442  * ubi_eba_unmap_leb - un-map logical eraseblock.
 443  * @ubi: UBI device description object
 444  * @vol: volume description object
 445  * @lnum: logical eraseblock number
 446  *
 447  * This function un-maps logical eraseblock @lnum and schedules corresponding
 448  * physical eraseblock for erasure. Returns zero in case of success and a
 449  * negative error code in case of failure.
 450  */
 451 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 452                       int lnum)
 453 {
 454         int err, pnum, vol_id = vol->vol_id;
 455 
 456         if (ubi->ro_mode)
 457                 return -EROFS;
 458 
 459         err = leb_write_lock(ubi, vol_id, lnum);
 460         if (err)
 461                 return err;
 462 
 463         pnum = vol->eba_tbl->entries[lnum].pnum;
 464         if (pnum < 0)
 465                 /* This logical eraseblock is already unmapped */
 466                 goto out_unlock;
 467 
 468         dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 469 
 470         down_read(&ubi->fm_eba_sem);
 471         vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 472         up_read(&ubi->fm_eba_sem);
 473         err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 474 
 475 out_unlock:
 476         leb_write_unlock(ubi, vol_id, lnum);
 477         return err;
 478 }
 479 
 480 #ifdef CONFIG_MTD_UBI_FASTMAP
 481 /**
 482  * check_mapping - check and fixup a mapping
 483  * @ubi: UBI device description object
 484  * @vol: volume description object
 485  * @lnum: logical eraseblock number
 486  * @pnum: physical eraseblock number
 487  *
 488  * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
 489  * operations, if such an operation is interrupted the mapping still looks
 490  * good, but upon first read an ECC is reported to the upper layer.
 491  * Normaly during the full-scan at attach time this is fixed, for Fastmap
 492  * we have to deal with it while reading.
 493  * If the PEB behind a LEB shows this symthom we change the mapping to
 494  * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
 495  *
 496  * Returns 0 on success, negative error code in case of failure.
 497  */
 498 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 499                          int *pnum)
 500 {
 501         int err;
 502         struct ubi_vid_io_buf *vidb;
 503         struct ubi_vid_hdr *vid_hdr;
 504 
 505         if (!ubi->fast_attach)
 506                 return 0;
 507 
 508         if (!vol->checkmap || test_bit(lnum, vol->checkmap))
 509                 return 0;
 510 
 511         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 512         if (!vidb)
 513                 return -ENOMEM;
 514 
 515         err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
 516         if (err > 0 && err != UBI_IO_BITFLIPS) {
 517                 int torture = 0;
 518 
 519                 switch (err) {
 520                         case UBI_IO_FF:
 521                         case UBI_IO_FF_BITFLIPS:
 522                         case UBI_IO_BAD_HDR:
 523                         case UBI_IO_BAD_HDR_EBADMSG:
 524                                 break;
 525                         default:
 526                                 ubi_assert(0);
 527                 }
 528 
 529                 if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
 530                         torture = 1;
 531 
 532                 down_read(&ubi->fm_eba_sem);
 533                 vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 534                 up_read(&ubi->fm_eba_sem);
 535                 ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
 536 
 537                 *pnum = UBI_LEB_UNMAPPED;
 538         } else if (err < 0) {
 539                 ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
 540                         *pnum, err);
 541 
 542                 goto out_free;
 543         } else {
 544                 int found_vol_id, found_lnum;
 545 
 546                 ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
 547 
 548                 vid_hdr = ubi_get_vid_hdr(vidb);
 549                 found_vol_id = be32_to_cpu(vid_hdr->vol_id);
 550                 found_lnum = be32_to_cpu(vid_hdr->lnum);
 551 
 552                 if (found_lnum != lnum || found_vol_id != vol->vol_id) {
 553                         ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
 554                                 *pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
 555                         ubi_ro_mode(ubi);
 556                         err = -EINVAL;
 557                         goto out_free;
 558                 }
 559         }
 560 
 561         set_bit(lnum, vol->checkmap);
 562         err = 0;
 563 
 564 out_free:
 565         ubi_free_vid_buf(vidb);
 566 
 567         return err;
 568 }
 569 #else
 570 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 571                   int *pnum)
 572 {
 573         return 0;
 574 }
 575 #endif
 576 
 577 /**
 578  * ubi_eba_read_leb - read data.
 579  * @ubi: UBI device description object
 580  * @vol: volume description object
 581  * @lnum: logical eraseblock number
 582  * @buf: buffer to store the read data
 583  * @offset: offset from where to read
 584  * @len: how many bytes to read
 585  * @check: data CRC check flag
 586  *
 587  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 588  * bytes. The @check flag only makes sense for static volumes and forces
 589  * eraseblock data CRC checking.
 590  *
 591  * In case of success this function returns zero. In case of a static volume,
 592  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 593  * returned for any volume type if an ECC error was detected by the MTD device
 594  * driver. Other negative error cored may be returned in case of other errors.
 595  */
 596 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 597                      void *buf, int offset, int len, int check)
 598 {
 599         int err, pnum, scrub = 0, vol_id = vol->vol_id;
 600         struct ubi_vid_io_buf *vidb;
 601         struct ubi_vid_hdr *vid_hdr;
 602         uint32_t uninitialized_var(crc);
 603 
 604         err = leb_read_lock(ubi, vol_id, lnum);
 605         if (err)
 606                 return err;
 607 
 608         pnum = vol->eba_tbl->entries[lnum].pnum;
 609         if (pnum >= 0) {
 610                 err = check_mapping(ubi, vol, lnum, &pnum);
 611                 if (err < 0)
 612                         goto out_unlock;
 613         }
 614 
 615         if (pnum == UBI_LEB_UNMAPPED) {
 616                 /*
 617                  * The logical eraseblock is not mapped, fill the whole buffer
 618                  * with 0xFF bytes. The exception is static volumes for which
 619                  * it is an error to read unmapped logical eraseblocks.
 620                  */
 621                 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 622                         len, offset, vol_id, lnum);
 623                 leb_read_unlock(ubi, vol_id, lnum);
 624                 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 625                 memset(buf, 0xFF, len);
 626                 return 0;
 627         }
 628 
 629         dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 630                 len, offset, vol_id, lnum, pnum);
 631 
 632         if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 633                 check = 0;
 634 
 635 retry:
 636         if (check) {
 637                 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 638                 if (!vidb) {
 639                         err = -ENOMEM;
 640                         goto out_unlock;
 641                 }
 642 
 643                 vid_hdr = ubi_get_vid_hdr(vidb);
 644 
 645                 err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 646                 if (err && err != UBI_IO_BITFLIPS) {
 647                         if (err > 0) {
 648                                 /*
 649                                  * The header is either absent or corrupted.
 650                                  * The former case means there is a bug -
 651                                  * switch to read-only mode just in case.
 652                                  * The latter case means a real corruption - we
 653                                  * may try to recover data. FIXME: but this is
 654                                  * not implemented.
 655                                  */
 656                                 if (err == UBI_IO_BAD_HDR_EBADMSG ||
 657                                     err == UBI_IO_BAD_HDR) {
 658                                         ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
 659                                                  pnum, vol_id, lnum);
 660                                         err = -EBADMSG;
 661                                 } else {
 662                                         /*
 663                                          * Ending up here in the non-Fastmap case
 664                                          * is a clear bug as the VID header had to
 665                                          * be present at scan time to have it referenced.
 666                                          * With fastmap the story is more complicated.
 667                                          * Fastmap has the mapping info without the need
 668                                          * of a full scan. So the LEB could have been
 669                                          * unmapped, Fastmap cannot know this and keeps
 670                                          * the LEB referenced.
 671                                          * This is valid and works as the layer above UBI
 672                                          * has to do bookkeeping about used/referenced
 673                                          * LEBs in any case.
 674                                          */
 675                                         if (ubi->fast_attach) {
 676                                                 err = -EBADMSG;
 677                                         } else {
 678                                                 err = -EINVAL;
 679                                                 ubi_ro_mode(ubi);
 680                                         }
 681                                 }
 682                         }
 683                         goto out_free;
 684                 } else if (err == UBI_IO_BITFLIPS)
 685                         scrub = 1;
 686 
 687                 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 688                 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 689 
 690                 crc = be32_to_cpu(vid_hdr->data_crc);
 691                 ubi_free_vid_buf(vidb);
 692         }
 693 
 694         err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 695         if (err) {
 696                 if (err == UBI_IO_BITFLIPS)
 697                         scrub = 1;
 698                 else if (mtd_is_eccerr(err)) {
 699                         if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 700                                 goto out_unlock;
 701                         scrub = 1;
 702                         if (!check) {
 703                                 ubi_msg(ubi, "force data checking");
 704                                 check = 1;
 705                                 goto retry;
 706                         }
 707                 } else
 708                         goto out_unlock;
 709         }
 710 
 711         if (check) {
 712                 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 713                 if (crc1 != crc) {
 714                         ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
 715                                  crc1, crc);
 716                         err = -EBADMSG;
 717                         goto out_unlock;
 718                 }
 719         }
 720 
 721         if (scrub)
 722                 err = ubi_wl_scrub_peb(ubi, pnum);
 723 
 724         leb_read_unlock(ubi, vol_id, lnum);
 725         return err;
 726 
 727 out_free:
 728         ubi_free_vid_buf(vidb);
 729 out_unlock:
 730         leb_read_unlock(ubi, vol_id, lnum);
 731         return err;
 732 }
 733 
 734 /**
 735  * ubi_eba_read_leb_sg - read data into a scatter gather list.
 736  * @ubi: UBI device description object
 737  * @vol: volume description object
 738  * @lnum: logical eraseblock number
 739  * @sgl: UBI scatter gather list to store the read data
 740  * @offset: offset from where to read
 741  * @len: how many bytes to read
 742  * @check: data CRC check flag
 743  *
 744  * This function works exactly like ubi_eba_read_leb(). But instead of
 745  * storing the read data into a buffer it writes to an UBI scatter gather
 746  * list.
 747  */
 748 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
 749                         struct ubi_sgl *sgl, int lnum, int offset, int len,
 750                         int check)
 751 {
 752         int to_read;
 753         int ret;
 754         struct scatterlist *sg;
 755 
 756         for (;;) {
 757                 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
 758                 sg = &sgl->sg[sgl->list_pos];
 759                 if (len < sg->length - sgl->page_pos)
 760                         to_read = len;
 761                 else
 762                         to_read = sg->length - sgl->page_pos;
 763 
 764                 ret = ubi_eba_read_leb(ubi, vol, lnum,
 765                                        sg_virt(sg) + sgl->page_pos, offset,
 766                                        to_read, check);
 767                 if (ret < 0)
 768                         return ret;
 769 
 770                 offset += to_read;
 771                 len -= to_read;
 772                 if (!len) {
 773                         sgl->page_pos += to_read;
 774                         if (sgl->page_pos == sg->length) {
 775                                 sgl->list_pos++;
 776                                 sgl->page_pos = 0;
 777                         }
 778 
 779                         break;
 780                 }
 781 
 782                 sgl->list_pos++;
 783                 sgl->page_pos = 0;
 784         }
 785 
 786         return ret;
 787 }
 788 
 789 /**
 790  * try_recover_peb - try to recover from write failure.
 791  * @vol: volume description object
 792  * @pnum: the physical eraseblock to recover
 793  * @lnum: logical eraseblock number
 794  * @buf: data which was not written because of the write failure
 795  * @offset: offset of the failed write
 796  * @len: how many bytes should have been written
 797  * @vidb: VID buffer
 798  * @retry: whether the caller should retry in case of failure
 799  *
 800  * This function is called in case of a write failure and moves all good data
 801  * from the potentially bad physical eraseblock to a good physical eraseblock.
 802  * This function also writes the data which was not written due to the failure.
 803  * Returns 0 in case of success, and a negative error code in case of failure.
 804  * In case of failure, the %retry parameter is set to false if this is a fatal
 805  * error (retrying won't help), and true otherwise.
 806  */
 807 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
 808                            const void *buf, int offset, int len,
 809                            struct ubi_vid_io_buf *vidb, bool *retry)
 810 {
 811         struct ubi_device *ubi = vol->ubi;
 812         struct ubi_vid_hdr *vid_hdr;
 813         int new_pnum, err, vol_id = vol->vol_id, data_size;
 814         uint32_t crc;
 815 
 816         *retry = false;
 817 
 818         new_pnum = ubi_wl_get_peb(ubi);
 819         if (new_pnum < 0) {
 820                 err = new_pnum;
 821                 goto out_put;
 822         }
 823 
 824         ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
 825                 pnum, new_pnum);
 826 
 827         err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 828         if (err && err != UBI_IO_BITFLIPS) {
 829                 if (err > 0)
 830                         err = -EIO;
 831                 goto out_put;
 832         }
 833 
 834         vid_hdr = ubi_get_vid_hdr(vidb);
 835         ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
 836 
 837         mutex_lock(&ubi->buf_mutex);
 838         memset(ubi->peb_buf + offset, 0xFF, len);
 839 
 840         /* Read everything before the area where the write failure happened */
 841         if (offset > 0) {
 842                 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 843                 if (err && err != UBI_IO_BITFLIPS)
 844                         goto out_unlock;
 845         }
 846 
 847         *retry = true;
 848 
 849         memcpy(ubi->peb_buf + offset, buf, len);
 850 
 851         data_size = offset + len;
 852         crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
 853         vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 854         vid_hdr->copy_flag = 1;
 855         vid_hdr->data_size = cpu_to_be32(data_size);
 856         vid_hdr->data_crc = cpu_to_be32(crc);
 857         err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
 858         if (err)
 859                 goto out_unlock;
 860 
 861         err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 862 
 863 out_unlock:
 864         mutex_unlock(&ubi->buf_mutex);
 865 
 866         if (!err)
 867                 vol->eba_tbl->entries[lnum].pnum = new_pnum;
 868 
 869 out_put:
 870         up_read(&ubi->fm_eba_sem);
 871 
 872         if (!err) {
 873                 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 874                 ubi_msg(ubi, "data was successfully recovered");
 875         } else if (new_pnum >= 0) {
 876                 /*
 877                  * Bad luck? This physical eraseblock is bad too? Crud. Let's
 878                  * try to get another one.
 879                  */
 880                 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 881                 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
 882         }
 883 
 884         return err;
 885 }
 886 
 887 /**
 888  * recover_peb - recover from write failure.
 889  * @ubi: UBI device description object
 890  * @pnum: the physical eraseblock to recover
 891  * @vol_id: volume ID
 892  * @lnum: logical eraseblock number
 893  * @buf: data which was not written because of the write failure
 894  * @offset: offset of the failed write
 895  * @len: how many bytes should have been written
 896  *
 897  * This function is called in case of a write failure and moves all good data
 898  * from the potentially bad physical eraseblock to a good physical eraseblock.
 899  * This function also writes the data which was not written due to the failure.
 900  * Returns 0 in case of success, and a negative error code in case of failure.
 901  * This function tries %UBI_IO_RETRIES before giving up.
 902  */
 903 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 904                        const void *buf, int offset, int len)
 905 {
 906         int err, idx = vol_id2idx(ubi, vol_id), tries;
 907         struct ubi_volume *vol = ubi->volumes[idx];
 908         struct ubi_vid_io_buf *vidb;
 909 
 910         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 911         if (!vidb)
 912                 return -ENOMEM;
 913 
 914         for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
 915                 bool retry;
 916 
 917                 err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
 918                                       &retry);
 919                 if (!err || !retry)
 920                         break;
 921 
 922                 ubi_msg(ubi, "try again");
 923         }
 924 
 925         ubi_free_vid_buf(vidb);
 926 
 927         return err;
 928 }
 929 
 930 /**
 931  * try_write_vid_and_data - try to write VID header and data to a new PEB.
 932  * @vol: volume description object
 933  * @lnum: logical eraseblock number
 934  * @vidb: the VID buffer to write
 935  * @buf: buffer containing the data
 936  * @offset: where to start writing data
 937  * @len: how many bytes should be written
 938  *
 939  * This function tries to write VID header and data belonging to logical
 940  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
 941  * in case of success and a negative error code in case of failure.
 942  * In case of error, it is possible that something was still written to the
 943  * flash media, but may be some garbage.
 944  */
 945 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
 946                                   struct ubi_vid_io_buf *vidb, const void *buf,
 947                                   int offset, int len)
 948 {
 949         struct ubi_device *ubi = vol->ubi;
 950         int pnum, opnum, err, vol_id = vol->vol_id;
 951 
 952         pnum = ubi_wl_get_peb(ubi);
 953         if (pnum < 0) {
 954                 err = pnum;
 955                 goto out_put;
 956         }
 957 
 958         opnum = vol->eba_tbl->entries[lnum].pnum;
 959 
 960         dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 961                 len, offset, vol_id, lnum, pnum);
 962 
 963         err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
 964         if (err) {
 965                 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 966                          vol_id, lnum, pnum);
 967                 goto out_put;
 968         }
 969 
 970         if (len) {
 971                 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 972                 if (err) {
 973                         ubi_warn(ubi,
 974                                  "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 975                                  len, offset, vol_id, lnum, pnum);
 976                         goto out_put;
 977                 }
 978         }
 979 
 980         vol->eba_tbl->entries[lnum].pnum = pnum;
 981 
 982 out_put:
 983         up_read(&ubi->fm_eba_sem);
 984 
 985         if (err && pnum >= 0)
 986                 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 987         else if (!err && opnum >= 0)
 988                 err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
 989 
 990         return err;
 991 }
 992 
 993 /**
 994  * ubi_eba_write_leb - write data to dynamic volume.
 995  * @ubi: UBI device description object
 996  * @vol: volume description object
 997  * @lnum: logical eraseblock number
 998  * @buf: the data to write
 999  * @offset: offset within the logical eraseblock where to write
1000  * @len: how many bytes to write
1001  *
1002  * This function writes data to logical eraseblock @lnum of a dynamic volume
1003  * @vol. Returns zero in case of success and a negative error code in case
1004  * of failure. In case of error, it is possible that something was still
1005  * written to the flash media, but may be some garbage.
1006  * This function retries %UBI_IO_RETRIES times before giving up.
1007  */
1008 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1009                       const void *buf, int offset, int len)
1010 {
1011         int err, pnum, tries, vol_id = vol->vol_id;
1012         struct ubi_vid_io_buf *vidb;
1013         struct ubi_vid_hdr *vid_hdr;
1014 
1015         if (ubi->ro_mode)
1016                 return -EROFS;
1017 
1018         err = leb_write_lock(ubi, vol_id, lnum);
1019         if (err)
1020                 return err;
1021 
1022         pnum = vol->eba_tbl->entries[lnum].pnum;
1023         if (pnum >= 0) {
1024                 err = check_mapping(ubi, vol, lnum, &pnum);
1025                 if (err < 0)
1026                         goto out;
1027         }
1028 
1029         if (pnum >= 0) {
1030                 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1031                         len, offset, vol_id, lnum, pnum);
1032 
1033                 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1034                 if (err) {
1035                         ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1036                         if (err == -EIO && ubi->bad_allowed)
1037                                 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1038                                                   offset, len);
1039                 }
1040 
1041                 goto out;
1042         }
1043 
1044         /*
1045          * The logical eraseblock is not mapped. We have to get a free physical
1046          * eraseblock and write the volume identifier header there first.
1047          */
1048         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1049         if (!vidb) {
1050                 leb_write_unlock(ubi, vol_id, lnum);
1051                 return -ENOMEM;
1052         }
1053 
1054         vid_hdr = ubi_get_vid_hdr(vidb);
1055 
1056         vid_hdr->vol_type = UBI_VID_DYNAMIC;
1057         vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1058         vid_hdr->vol_id = cpu_to_be32(vol_id);
1059         vid_hdr->lnum = cpu_to_be32(lnum);
1060         vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1061         vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1062 
1063         for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1064                 err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1065                 if (err != -EIO || !ubi->bad_allowed)
1066                         break;
1067 
1068                 /*
1069                  * Fortunately, this is the first write operation to this
1070                  * physical eraseblock, so just put it and request a new one.
1071                  * We assume that if this physical eraseblock went bad, the
1072                  * erase code will handle that.
1073                  */
1074                 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1075                 ubi_msg(ubi, "try another PEB");
1076         }
1077 
1078         ubi_free_vid_buf(vidb);
1079 
1080 out:
1081         if (err)
1082                 ubi_ro_mode(ubi);
1083 
1084         leb_write_unlock(ubi, vol_id, lnum);
1085 
1086         return err;
1087 }
1088 
1089 /**
1090  * ubi_eba_write_leb_st - write data to static volume.
1091  * @ubi: UBI device description object
1092  * @vol: volume description object
1093  * @lnum: logical eraseblock number
1094  * @buf: data to write
1095  * @len: how many bytes to write
1096  * @used_ebs: how many logical eraseblocks will this volume contain
1097  *
1098  * This function writes data to logical eraseblock @lnum of static volume
1099  * @vol. The @used_ebs argument should contain total number of logical
1100  * eraseblock in this static volume.
1101  *
1102  * When writing to the last logical eraseblock, the @len argument doesn't have
1103  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1104  * to the real data size, although the @buf buffer has to contain the
1105  * alignment. In all other cases, @len has to be aligned.
1106  *
1107  * It is prohibited to write more than once to logical eraseblocks of static
1108  * volumes. This function returns zero in case of success and a negative error
1109  * code in case of failure.
1110  */
1111 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1112                          int lnum, const void *buf, int len, int used_ebs)
1113 {
1114         int err, tries, data_size = len, vol_id = vol->vol_id;
1115         struct ubi_vid_io_buf *vidb;
1116         struct ubi_vid_hdr *vid_hdr;
1117         uint32_t crc;
1118 
1119         if (ubi->ro_mode)
1120                 return -EROFS;
1121 
1122         if (lnum == used_ebs - 1)
1123                 /* If this is the last LEB @len may be unaligned */
1124                 len = ALIGN(data_size, ubi->min_io_size);
1125         else
1126                 ubi_assert(!(len & (ubi->min_io_size - 1)));
1127 
1128         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1129         if (!vidb)
1130                 return -ENOMEM;
1131 
1132         vid_hdr = ubi_get_vid_hdr(vidb);
1133 
1134         err = leb_write_lock(ubi, vol_id, lnum);
1135         if (err)
1136                 goto out;
1137 
1138         vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1139         vid_hdr->vol_id = cpu_to_be32(vol_id);
1140         vid_hdr->lnum = cpu_to_be32(lnum);
1141         vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1142         vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1143 
1144         crc = crc32(UBI_CRC32_INIT, buf, data_size);
1145         vid_hdr->vol_type = UBI_VID_STATIC;
1146         vid_hdr->data_size = cpu_to_be32(data_size);
1147         vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1148         vid_hdr->data_crc = cpu_to_be32(crc);
1149 
1150         ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1151 
1152         for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1153                 err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1154                 if (err != -EIO || !ubi->bad_allowed)
1155                         break;
1156 
1157                 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1158                 ubi_msg(ubi, "try another PEB");
1159         }
1160 
1161         if (err)
1162                 ubi_ro_mode(ubi);
1163 
1164         leb_write_unlock(ubi, vol_id, lnum);
1165 
1166 out:
1167         ubi_free_vid_buf(vidb);
1168 
1169         return err;
1170 }
1171 
1172 /*
1173  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1174  * @ubi: UBI device description object
1175  * @vol: volume description object
1176  * @lnum: logical eraseblock number
1177  * @buf: data to write
1178  * @len: how many bytes to write
1179  *
1180  * This function changes the contents of a logical eraseblock atomically. @buf
1181  * has to contain new logical eraseblock data, and @len - the length of the
1182  * data, which has to be aligned. This function guarantees that in case of an
1183  * unclean reboot the old contents is preserved. Returns zero in case of
1184  * success and a negative error code in case of failure.
1185  *
1186  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1187  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1188  */
1189 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1190                               int lnum, const void *buf, int len)
1191 {
1192         int err, tries, vol_id = vol->vol_id;
1193         struct ubi_vid_io_buf *vidb;
1194         struct ubi_vid_hdr *vid_hdr;
1195         uint32_t crc;
1196 
1197         if (ubi->ro_mode)
1198                 return -EROFS;
1199 
1200         if (len == 0) {
1201                 /*
1202                  * Special case when data length is zero. In this case the LEB
1203                  * has to be unmapped and mapped somewhere else.
1204                  */
1205                 err = ubi_eba_unmap_leb(ubi, vol, lnum);
1206                 if (err)
1207                         return err;
1208                 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1209         }
1210 
1211         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1212         if (!vidb)
1213                 return -ENOMEM;
1214 
1215         vid_hdr = ubi_get_vid_hdr(vidb);
1216 
1217         mutex_lock(&ubi->alc_mutex);
1218         err = leb_write_lock(ubi, vol_id, lnum);
1219         if (err)
1220                 goto out_mutex;
1221 
1222         vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1223         vid_hdr->vol_id = cpu_to_be32(vol_id);
1224         vid_hdr->lnum = cpu_to_be32(lnum);
1225         vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1226         vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1227 
1228         crc = crc32(UBI_CRC32_INIT, buf, len);
1229         vid_hdr->vol_type = UBI_VID_DYNAMIC;
1230         vid_hdr->data_size = cpu_to_be32(len);
1231         vid_hdr->copy_flag = 1;
1232         vid_hdr->data_crc = cpu_to_be32(crc);
1233 
1234         dbg_eba("change LEB %d:%d", vol_id, lnum);
1235 
1236         for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1237                 err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1238                 if (err != -EIO || !ubi->bad_allowed)
1239                         break;
1240 
1241                 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1242                 ubi_msg(ubi, "try another PEB");
1243         }
1244 
1245         /*
1246          * This flash device does not admit of bad eraseblocks or
1247          * something nasty and unexpected happened. Switch to read-only
1248          * mode just in case.
1249          */
1250         if (err)
1251                 ubi_ro_mode(ubi);
1252 
1253         leb_write_unlock(ubi, vol_id, lnum);
1254 
1255 out_mutex:
1256         mutex_unlock(&ubi->alc_mutex);
1257         ubi_free_vid_buf(vidb);
1258         return err;
1259 }
1260 
1261 /**
1262  * is_error_sane - check whether a read error is sane.
1263  * @err: code of the error happened during reading
1264  *
1265  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1266  * cannot read data from the target PEB (an error @err happened). If the error
1267  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1268  * fatal and UBI will be switched to R/O mode later.
1269  *
1270  * The idea is that we try not to switch to R/O mode if the read error is
1271  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1272  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1273  * mode, simply because we do not know what happened at the MTD level, and we
1274  * cannot handle this. E.g., the underlying driver may have become crazy, and
1275  * it is safer to switch to R/O mode to preserve the data.
1276  *
1277  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1278  * which we have just written.
1279  */
1280 static int is_error_sane(int err)
1281 {
1282         if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1283             err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1284                 return 0;
1285         return 1;
1286 }
1287 
1288 /**
1289  * ubi_eba_copy_leb - copy logical eraseblock.
1290  * @ubi: UBI device description object
1291  * @from: physical eraseblock number from where to copy
1292  * @to: physical eraseblock number where to copy
1293  * @vid_hdr: VID header of the @from physical eraseblock
1294  *
1295  * This function copies logical eraseblock from physical eraseblock @from to
1296  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1297  * function. Returns:
1298  *   o %0 in case of success;
1299  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1300  *   o a negative error code in case of failure.
1301  */
1302 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1303                      struct ubi_vid_io_buf *vidb)
1304 {
1305         int err, vol_id, lnum, data_size, aldata_size, idx;
1306         struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1307         struct ubi_volume *vol;
1308         uint32_t crc;
1309 
1310         ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1311 
1312         vol_id = be32_to_cpu(vid_hdr->vol_id);
1313         lnum = be32_to_cpu(vid_hdr->lnum);
1314 
1315         dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1316 
1317         if (vid_hdr->vol_type == UBI_VID_STATIC) {
1318                 data_size = be32_to_cpu(vid_hdr->data_size);
1319                 aldata_size = ALIGN(data_size, ubi->min_io_size);
1320         } else
1321                 data_size = aldata_size =
1322                             ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1323 
1324         idx = vol_id2idx(ubi, vol_id);
1325         spin_lock(&ubi->volumes_lock);
1326         /*
1327          * Note, we may race with volume deletion, which means that the volume
1328          * this logical eraseblock belongs to might be being deleted. Since the
1329          * volume deletion un-maps all the volume's logical eraseblocks, it will
1330          * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1331          */
1332         vol = ubi->volumes[idx];
1333         spin_unlock(&ubi->volumes_lock);
1334         if (!vol) {
1335                 /* No need to do further work, cancel */
1336                 dbg_wl("volume %d is being removed, cancel", vol_id);
1337                 return MOVE_CANCEL_RACE;
1338         }
1339 
1340         /*
1341          * We do not want anybody to write to this logical eraseblock while we
1342          * are moving it, so lock it.
1343          *
1344          * Note, we are using non-waiting locking here, because we cannot sleep
1345          * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1346          * unmapping the LEB which is mapped to the PEB we are going to move
1347          * (@from). This task locks the LEB and goes sleep in the
1348          * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1349          * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1350          * LEB is already locked, we just do not move it and return
1351          * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1352          * we do not know the reasons of the contention - it may be just a
1353          * normal I/O on this LEB, so we want to re-try.
1354          */
1355         err = leb_write_trylock(ubi, vol_id, lnum);
1356         if (err) {
1357                 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1358                 return MOVE_RETRY;
1359         }
1360 
1361         /*
1362          * The LEB might have been put meanwhile, and the task which put it is
1363          * probably waiting on @ubi->move_mutex. No need to continue the work,
1364          * cancel it.
1365          */
1366         if (vol->eba_tbl->entries[lnum].pnum != from) {
1367                 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1368                        vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1369                 err = MOVE_CANCEL_RACE;
1370                 goto out_unlock_leb;
1371         }
1372 
1373         /*
1374          * OK, now the LEB is locked and we can safely start moving it. Since
1375          * this function utilizes the @ubi->peb_buf buffer which is shared
1376          * with some other functions - we lock the buffer by taking the
1377          * @ubi->buf_mutex.
1378          */
1379         mutex_lock(&ubi->buf_mutex);
1380         dbg_wl("read %d bytes of data", aldata_size);
1381         err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1382         if (err && err != UBI_IO_BITFLIPS) {
1383                 ubi_warn(ubi, "error %d while reading data from PEB %d",
1384                          err, from);
1385                 err = MOVE_SOURCE_RD_ERR;
1386                 goto out_unlock_buf;
1387         }
1388 
1389         /*
1390          * Now we have got to calculate how much data we have to copy. In
1391          * case of a static volume it is fairly easy - the VID header contains
1392          * the data size. In case of a dynamic volume it is more difficult - we
1393          * have to read the contents, cut 0xFF bytes from the end and copy only
1394          * the first part. We must do this to avoid writing 0xFF bytes as it
1395          * may have some side-effects. And not only this. It is important not
1396          * to include those 0xFFs to CRC because later the they may be filled
1397          * by data.
1398          */
1399         if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1400                 aldata_size = data_size =
1401                         ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1402 
1403         cond_resched();
1404         crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1405         cond_resched();
1406 
1407         /*
1408          * It may turn out to be that the whole @from physical eraseblock
1409          * contains only 0xFF bytes. Then we have to only write the VID header
1410          * and do not write any data. This also means we should not set
1411          * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1412          */
1413         if (data_size > 0) {
1414                 vid_hdr->copy_flag = 1;
1415                 vid_hdr->data_size = cpu_to_be32(data_size);
1416                 vid_hdr->data_crc = cpu_to_be32(crc);
1417         }
1418         vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1419 
1420         err = ubi_io_write_vid_hdr(ubi, to, vidb);
1421         if (err) {
1422                 if (err == -EIO)
1423                         err = MOVE_TARGET_WR_ERR;
1424                 goto out_unlock_buf;
1425         }
1426 
1427         cond_resched();
1428 
1429         /* Read the VID header back and check if it was written correctly */
1430         err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1431         if (err) {
1432                 if (err != UBI_IO_BITFLIPS) {
1433                         ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1434                                  err, to);
1435                         if (is_error_sane(err))
1436                                 err = MOVE_TARGET_RD_ERR;
1437                 } else
1438                         err = MOVE_TARGET_BITFLIPS;
1439                 goto out_unlock_buf;
1440         }
1441 
1442         if (data_size > 0) {
1443                 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1444                 if (err) {
1445                         if (err == -EIO)
1446                                 err = MOVE_TARGET_WR_ERR;
1447                         goto out_unlock_buf;
1448                 }
1449 
1450                 cond_resched();
1451         }
1452 
1453         ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1454         vol->eba_tbl->entries[lnum].pnum = to;
1455 
1456 out_unlock_buf:
1457         mutex_unlock(&ubi->buf_mutex);
1458 out_unlock_leb:
1459         leb_write_unlock(ubi, vol_id, lnum);
1460         return err;
1461 }
1462 
1463 /**
1464  * print_rsvd_warning - warn about not having enough reserved PEBs.
1465  * @ubi: UBI device description object
1466  *
1467  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1468  * cannot reserve enough PEBs for bad block handling. This function makes a
1469  * decision whether we have to print a warning or not. The algorithm is as
1470  * follows:
1471  *   o if this is a new UBI image, then just print the warning
1472  *   o if this is an UBI image which has already been used for some time, print
1473  *     a warning only if we can reserve less than 10% of the expected amount of
1474  *     the reserved PEB.
1475  *
1476  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1477  * of PEBs becomes smaller, which is normal and we do not want to scare users
1478  * with a warning every time they attach the MTD device. This was an issue
1479  * reported by real users.
1480  */
1481 static void print_rsvd_warning(struct ubi_device *ubi,
1482                                struct ubi_attach_info *ai)
1483 {
1484         /*
1485          * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1486          * large number to distinguish between newly flashed and used images.
1487          */
1488         if (ai->max_sqnum > (1 << 18)) {
1489                 int min = ubi->beb_rsvd_level / 10;
1490 
1491                 if (!min)
1492                         min = 1;
1493                 if (ubi->beb_rsvd_pebs > min)
1494                         return;
1495         }
1496 
1497         ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1498                  ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1499         if (ubi->corr_peb_count)
1500                 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1501                          ubi->corr_peb_count);
1502 }
1503 
1504 /**
1505  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1506  * @ubi: UBI device description object
1507  * @ai_fastmap: UBI attach info object created by fastmap
1508  * @ai_scan: UBI attach info object created by scanning
1509  *
1510  * Returns < 0 in case of an internal error, 0 otherwise.
1511  * If a bad EBA table entry was found it will be printed out and
1512  * ubi_assert() triggers.
1513  */
1514 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1515                    struct ubi_attach_info *ai_scan)
1516 {
1517         int i, j, num_volumes, ret = 0;
1518         int **scan_eba, **fm_eba;
1519         struct ubi_ainf_volume *av;
1520         struct ubi_volume *vol;
1521         struct ubi_ainf_peb *aeb;
1522         struct rb_node *rb;
1523 
1524         num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1525 
1526         scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1527         if (!scan_eba)
1528                 return -ENOMEM;
1529 
1530         fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1531         if (!fm_eba) {
1532                 kfree(scan_eba);
1533                 return -ENOMEM;
1534         }
1535 
1536         for (i = 0; i < num_volumes; i++) {
1537                 vol = ubi->volumes[i];
1538                 if (!vol)
1539                         continue;
1540 
1541                 scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1542                                             sizeof(**scan_eba),
1543                                             GFP_KERNEL);
1544                 if (!scan_eba[i]) {
1545                         ret = -ENOMEM;
1546                         goto out_free;
1547                 }
1548 
1549                 fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1550                                           sizeof(**fm_eba),
1551                                           GFP_KERNEL);
1552                 if (!fm_eba[i]) {
1553                         ret = -ENOMEM;
1554                         goto out_free;
1555                 }
1556 
1557                 for (j = 0; j < vol->reserved_pebs; j++)
1558                         scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1559 
1560                 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1561                 if (!av)
1562                         continue;
1563 
1564                 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1565                         scan_eba[i][aeb->lnum] = aeb->pnum;
1566 
1567                 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1568                 if (!av)
1569                         continue;
1570 
1571                 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1572                         fm_eba[i][aeb->lnum] = aeb->pnum;
1573 
1574                 for (j = 0; j < vol->reserved_pebs; j++) {
1575                         if (scan_eba[i][j] != fm_eba[i][j]) {
1576                                 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1577                                         fm_eba[i][j] == UBI_LEB_UNMAPPED)
1578                                         continue;
1579 
1580                                 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1581                                         vol->vol_id, j, fm_eba[i][j],
1582                                         scan_eba[i][j]);
1583                                 ubi_assert(0);
1584                         }
1585                 }
1586         }
1587 
1588 out_free:
1589         for (i = 0; i < num_volumes; i++) {
1590                 if (!ubi->volumes[i])
1591                         continue;
1592 
1593                 kfree(scan_eba[i]);
1594                 kfree(fm_eba[i]);
1595         }
1596 
1597         kfree(scan_eba);
1598         kfree(fm_eba);
1599         return ret;
1600 }
1601 
1602 /**
1603  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1604  * @ubi: UBI device description object
1605  * @ai: attaching information
1606  *
1607  * This function returns zero in case of success and a negative error code in
1608  * case of failure.
1609  */
1610 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1611 {
1612         int i, err, num_volumes;
1613         struct ubi_ainf_volume *av;
1614         struct ubi_volume *vol;
1615         struct ubi_ainf_peb *aeb;
1616         struct rb_node *rb;
1617 
1618         dbg_eba("initialize EBA sub-system");
1619 
1620         spin_lock_init(&ubi->ltree_lock);
1621         mutex_init(&ubi->alc_mutex);
1622         ubi->ltree = RB_ROOT;
1623 
1624         ubi->global_sqnum = ai->max_sqnum + 1;
1625         num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1626 
1627         for (i = 0; i < num_volumes; i++) {
1628                 struct ubi_eba_table *tbl;
1629 
1630                 vol = ubi->volumes[i];
1631                 if (!vol)
1632                         continue;
1633 
1634                 cond_resched();
1635 
1636                 tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1637                 if (IS_ERR(tbl)) {
1638                         err = PTR_ERR(tbl);
1639                         goto out_free;
1640                 }
1641 
1642                 ubi_eba_replace_table(vol, tbl);
1643 
1644                 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1645                 if (!av)
1646                         continue;
1647 
1648                 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1649                         if (aeb->lnum >= vol->reserved_pebs) {
1650                                 /*
1651                                  * This may happen in case of an unclean reboot
1652                                  * during re-size.
1653                                  */
1654                                 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1655                         } else {
1656                                 struct ubi_eba_entry *entry;
1657 
1658                                 entry = &vol->eba_tbl->entries[aeb->lnum];
1659                                 entry->pnum = aeb->pnum;
1660                         }
1661                 }
1662         }
1663 
1664         if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1665                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1666                         ubi->avail_pebs, EBA_RESERVED_PEBS);
1667                 if (ubi->corr_peb_count)
1668                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1669                                 ubi->corr_peb_count);
1670                 err = -ENOSPC;
1671                 goto out_free;
1672         }
1673         ubi->avail_pebs -= EBA_RESERVED_PEBS;
1674         ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1675 
1676         if (ubi->bad_allowed) {
1677                 ubi_calculate_reserved(ubi);
1678 
1679                 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1680                         /* No enough free physical eraseblocks */
1681                         ubi->beb_rsvd_pebs = ubi->avail_pebs;
1682                         print_rsvd_warning(ubi, ai);
1683                 } else
1684                         ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1685 
1686                 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1687                 ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1688         }
1689 
1690         dbg_eba("EBA sub-system is initialized");
1691         return 0;
1692 
1693 out_free:
1694         for (i = 0; i < num_volumes; i++) {
1695                 if (!ubi->volumes[i])
1696                         continue;
1697                 ubi_eba_replace_table(ubi->volumes[i], NULL);
1698         }
1699         return err;
1700 }

/* [<][>][^][v][top][bottom][index][help] */