root/arch/mips/mm/uasm-mips.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. build_bimm
  2. build_jimm
  3. build_insn
  4. __resolve_relocs

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * A small micro-assembler. It is intentionally kept simple, does only
   7  * support a subset of instructions, and does not try to hide pipeline
   8  * effects like branch delay slots.
   9  *
  10  * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
  11  * Copyright (C) 2005, 2007  Maciej W. Rozycki
  12  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
  13  * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
  14  */
  15 
  16 #include <linux/kernel.h>
  17 #include <linux/types.h>
  18 
  19 #include <asm/inst.h>
  20 #include <asm/elf.h>
  21 #include <asm/bugs.h>
  22 #include <asm/uasm.h>
  23 
  24 #define RS_MASK         0x1f
  25 #define RS_SH           21
  26 #define RT_MASK         0x1f
  27 #define RT_SH           16
  28 #define SCIMM_MASK      0xfffff
  29 #define SCIMM_SH        6
  30 
  31 /* This macro sets the non-variable bits of an instruction. */
  32 #define M(a, b, c, d, e, f)                                     \
  33         ((a) << OP_SH                                           \
  34          | (b) << RS_SH                                         \
  35          | (c) << RT_SH                                         \
  36          | (d) << RD_SH                                         \
  37          | (e) << RE_SH                                         \
  38          | (f) << FUNC_SH)
  39 
  40 /* This macro sets the non-variable bits of an R6 instruction. */
  41 #define M6(a, b, c, d, e)                                       \
  42         ((a) << OP_SH                                           \
  43          | (b) << RS_SH                                         \
  44          | (c) << RT_SH                                         \
  45          | (d) << SIMM9_SH                                      \
  46          | (e) << FUNC_SH)
  47 
  48 #include "uasm.c"
  49 
  50 static const struct insn insn_table[insn_invalid] = {
  51         [insn_addiu]    = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
  52         [insn_addu]     = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
  53         [insn_and]      = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
  54         [insn_andi]     = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
  55         [insn_bbit0]    = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  56         [insn_bbit1]    = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  57         [insn_beq]      = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  58         [insn_beql]     = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  59         [insn_bgez]     = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
  60         [insn_bgezl]    = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
  61         [insn_bgtz]     = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
  62         [insn_blez]     = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
  63         [insn_bltz]     = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
  64         [insn_bltzl]    = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
  65         [insn_bne]      = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  66         [insn_break]    = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
  67 #ifndef CONFIG_CPU_MIPSR6
  68         [insn_cache]    = {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
  69 #else
  70         [insn_cache]    = {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
  71 #endif
  72         [insn_cfc1]     = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
  73         [insn_cfcmsa]   = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
  74         [insn_ctc1]     = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
  75         [insn_ctcmsa]   = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
  76         [insn_daddiu]   = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
  77         [insn_daddu]    = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
  78         [insn_ddivu]    = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
  79         [insn_ddivu_r6] = {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
  80                                 RS | RT | RD},
  81         [insn_di]       = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
  82         [insn_dins]     = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
  83         [insn_dinsm]    = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
  84         [insn_dinsu]    = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
  85         [insn_divu]     = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
  86         [insn_divu_r6]  = {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
  87                                 RS | RT | RD},
  88         [insn_dmfc0]    = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
  89         [insn_dmodu]    = {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
  90                                 RS | RT | RD},
  91         [insn_dmtc0]    = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
  92         [insn_dmultu]   = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
  93         [insn_dmulu]    = {M(spec_op, 0, 0, 0, dmult_dmul_op, dmultu_op),
  94                                 RS | RT | RD},
  95         [insn_drotr]    = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
  96         [insn_drotr32]  = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
  97         [insn_dsbh]     = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
  98         [insn_dshd]     = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
  99         [insn_dsll]     = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
 100         [insn_dsll32]   = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
 101         [insn_dsllv]    = {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
 102         [insn_dsra]     = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
 103         [insn_dsra32]   = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
 104         [insn_dsrav]    = {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
 105         [insn_dsrl]     = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
 106         [insn_dsrl32]   = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
 107         [insn_dsrlv]    = {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
 108         [insn_dsubu]    = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
 109         [insn_eret]     = {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
 110         [insn_ext]      = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
 111         [insn_ins]      = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
 112         [insn_j]        = {M(j_op, 0, 0, 0, 0, 0),  JIMM},
 113         [insn_jal]      = {M(jal_op, 0, 0, 0, 0, 0),    JIMM},
 114         [insn_jalr]     = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
 115 #ifndef CONFIG_CPU_MIPSR6
 116         [insn_jr]       = {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
 117 #else
 118         [insn_jr]       = {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
 119 #endif
 120         [insn_lb]       = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 121         [insn_lbu]      = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 122         [insn_ld]       = {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 123         [insn_lddir]    = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
 124         [insn_ldpte]    = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
 125         [insn_ldx]      = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
 126         [insn_lh]       = {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 127         [insn_lhu]      = {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 128 #ifndef CONFIG_CPU_MIPSR6
 129         [insn_ll]       = {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 130         [insn_lld]      = {M(lld_op, 0, 0, 0, 0, 0),    RS | RT | SIMM},
 131 #else
 132         [insn_ll]       = {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
 133         [insn_lld]      = {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
 134 #endif
 135         [insn_lui]      = {M(lui_op, 0, 0, 0, 0, 0),    RT | SIMM},
 136         [insn_lw]       = {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 137         [insn_lwu]      = {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 138         [insn_lwx]      = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
 139         [insn_mfc0]     = {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
 140         [insn_mfhc0]    = {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
 141         [insn_mfhi]     = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
 142         [insn_mflo]     = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
 143         [insn_modu]     = {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
 144                                 RS | RT | RD},
 145         [insn_movn]     = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
 146         [insn_movz]     = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
 147         [insn_mtc0]     = {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
 148         [insn_mthc0]    = {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
 149         [insn_mthi]     = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
 150         [insn_mtlo]     = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
 151         [insn_mulu]     = {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
 152                                 RS | RT | RD},
 153 #ifndef CONFIG_CPU_MIPSR6
 154         [insn_mul]      = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
 155 #else
 156         [insn_mul]      = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
 157 #endif
 158         [insn_multu]    = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
 159         [insn_nor]      = {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
 160         [insn_or]       = {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
 161         [insn_ori]      = {M(ori_op, 0, 0, 0, 0, 0),    RS | RT | UIMM},
 162 #ifndef CONFIG_CPU_MIPSR6
 163         [insn_pref]     = {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 164 #else
 165         [insn_pref]     = {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
 166 #endif
 167         [insn_rfe]      = {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
 168         [insn_rotr]     = {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
 169         [insn_sb]       = {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 170 #ifndef CONFIG_CPU_MIPSR6
 171         [insn_sc]       = {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 172         [insn_scd]      = {M(scd_op, 0, 0, 0, 0, 0),    RS | RT | SIMM},
 173 #else
 174         [insn_sc]       = {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
 175         [insn_scd]      = {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
 176 #endif
 177         [insn_sd]       = {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 178         [insn_seleqz]   = {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
 179         [insn_selnez]   = {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
 180         [insn_sh]       = {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 181         [insn_sll]      = {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
 182         [insn_sllv]     = {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
 183         [insn_slt]      = {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
 184         [insn_slti]     = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 185         [insn_sltiu]    = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 186         [insn_sltu]     = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
 187         [insn_sra]      = {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
 188         [insn_srav]     = {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
 189         [insn_srl]      = {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
 190         [insn_srlv]     = {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
 191         [insn_subu]     = {M(spec_op, 0, 0, 0, 0, subu_op),     RS | RT | RD},
 192         [insn_sw]       = {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 193         [insn_sync]     = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
 194         [insn_syscall]  = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
 195         [insn_tlbp]     = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
 196         [insn_tlbr]     = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
 197         [insn_tlbwi]    = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
 198         [insn_tlbwr]    = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
 199         [insn_wait]     = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
 200         [insn_wsbh]     = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
 201         [insn_xor]      = {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
 202         [insn_xori]     = {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
 203         [insn_yield]    = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
 204 };
 205 
 206 #undef M
 207 
 208 static inline u32 build_bimm(s32 arg)
 209 {
 210         WARN(arg > 0x1ffff || arg < -0x20000,
 211              KERN_WARNING "Micro-assembler field overflow\n");
 212 
 213         WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
 214 
 215         return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
 216 }
 217 
 218 static inline u32 build_jimm(u32 arg)
 219 {
 220         WARN(arg & ~(JIMM_MASK << 2),
 221              KERN_WARNING "Micro-assembler field overflow\n");
 222 
 223         return (arg >> 2) & JIMM_MASK;
 224 }
 225 
 226 /*
 227  * The order of opcode arguments is implicitly left to right,
 228  * starting with RS and ending with FUNC or IMM.
 229  */
 230 static void build_insn(u32 **buf, enum opcode opc, ...)
 231 {
 232         const struct insn *ip;
 233         va_list ap;
 234         u32 op;
 235 
 236         if (opc < 0 || opc >= insn_invalid ||
 237             (opc == insn_daddiu && r4k_daddiu_bug()) ||
 238             (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
 239                 panic("Unsupported Micro-assembler instruction %d", opc);
 240 
 241         ip = &insn_table[opc];
 242 
 243         op = ip->match;
 244         va_start(ap, opc);
 245         if (ip->fields & RS)
 246                 op |= build_rs(va_arg(ap, u32));
 247         if (ip->fields & RT)
 248                 op |= build_rt(va_arg(ap, u32));
 249         if (ip->fields & RD)
 250                 op |= build_rd(va_arg(ap, u32));
 251         if (ip->fields & RE)
 252                 op |= build_re(va_arg(ap, u32));
 253         if (ip->fields & SIMM)
 254                 op |= build_simm(va_arg(ap, s32));
 255         if (ip->fields & UIMM)
 256                 op |= build_uimm(va_arg(ap, u32));
 257         if (ip->fields & BIMM)
 258                 op |= build_bimm(va_arg(ap, s32));
 259         if (ip->fields & JIMM)
 260                 op |= build_jimm(va_arg(ap, u32));
 261         if (ip->fields & FUNC)
 262                 op |= build_func(va_arg(ap, u32));
 263         if (ip->fields & SET)
 264                 op |= build_set(va_arg(ap, u32));
 265         if (ip->fields & SCIMM)
 266                 op |= build_scimm(va_arg(ap, u32));
 267         if (ip->fields & SIMM9)
 268                 op |= build_scimm9(va_arg(ap, u32));
 269         va_end(ap);
 270 
 271         **buf = op;
 272         (*buf)++;
 273 }
 274 
 275 static inline void
 276 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
 277 {
 278         long laddr = (long)lab->addr;
 279         long raddr = (long)rel->addr;
 280 
 281         switch (rel->type) {
 282         case R_MIPS_PC16:
 283                 *rel->addr |= build_bimm(laddr - (raddr + 4));
 284                 break;
 285 
 286         default:
 287                 panic("Unsupported Micro-assembler relocation %d",
 288                       rel->type);
 289         }
 290 }

/* [<][>][^][v][top][bottom][index][help] */