root/arch/mips/mm/dma-noncoherent.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cpu_needs_post_dma_flush
  2. arch_dma_prep_coherent
  3. uncached_kernel_address
  4. cached_kernel_address
  5. arch_dma_coherent_to_pfn
  6. dma_sync_virt
  7. dma_sync_phys
  8. arch_sync_dma_for_device
  9. arch_sync_dma_for_cpu
  10. arch_dma_cache_sync
  11. arch_setup_dma_ops

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
   4  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
   5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
   6  */
   7 #include <linux/dma-direct.h>
   8 #include <linux/dma-noncoherent.h>
   9 #include <linux/dma-contiguous.h>
  10 #include <linux/highmem.h>
  11 
  12 #include <asm/cache.h>
  13 #include <asm/cpu-type.h>
  14 #include <asm/dma-coherence.h>
  15 #include <asm/io.h>
  16 
  17 /*
  18  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
  19  * fill random cachelines with stale data at any time, requiring an extra
  20  * flush post-DMA.
  21  *
  22  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
  23  * terminology calls memory areas with hardware maintained coherency coherent.
  24  *
  25  * Note that the R14000 and R16000 should also be checked for in this condition.
  26  * However this function is only called on non-I/O-coherent systems and only the
  27  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
  28  * SGI IP32 aka O2.
  29  */
  30 static inline bool cpu_needs_post_dma_flush(struct device *dev)
  31 {
  32         switch (boot_cpu_type()) {
  33         case CPU_R10000:
  34         case CPU_R12000:
  35         case CPU_BMIPS5000:
  36                 return true;
  37         default:
  38                 /*
  39                  * Presence of MAARs suggests that the CPU supports
  40                  * speculatively prefetching data, and therefore requires
  41                  * the post-DMA flush/invalidate.
  42                  */
  43                 return cpu_has_maar;
  44         }
  45 }
  46 
  47 void arch_dma_prep_coherent(struct page *page, size_t size)
  48 {
  49         dma_cache_wback_inv((unsigned long)page_address(page), size);
  50 }
  51 
  52 void *uncached_kernel_address(void *addr)
  53 {
  54         return (void *)(__pa(addr) + UNCAC_BASE);
  55 }
  56 
  57 void *cached_kernel_address(void *addr)
  58 {
  59         return __va(addr) - UNCAC_BASE;
  60 }
  61 
  62 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
  63                 dma_addr_t dma_addr)
  64 {
  65         return page_to_pfn(virt_to_page(cached_kernel_address(cpu_addr)));
  66 }
  67 
  68 static inline void dma_sync_virt(void *addr, size_t size,
  69                 enum dma_data_direction dir)
  70 {
  71         switch (dir) {
  72         case DMA_TO_DEVICE:
  73                 dma_cache_wback((unsigned long)addr, size);
  74                 break;
  75 
  76         case DMA_FROM_DEVICE:
  77                 dma_cache_inv((unsigned long)addr, size);
  78                 break;
  79 
  80         case DMA_BIDIRECTIONAL:
  81                 dma_cache_wback_inv((unsigned long)addr, size);
  82                 break;
  83 
  84         default:
  85                 BUG();
  86         }
  87 }
  88 
  89 /*
  90  * A single sg entry may refer to multiple physically contiguous pages.  But
  91  * we still need to process highmem pages individually.  If highmem is not
  92  * configured then the bulk of this loop gets optimized out.
  93  */
  94 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
  95                 enum dma_data_direction dir)
  96 {
  97         struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
  98         unsigned long offset = paddr & ~PAGE_MASK;
  99         size_t left = size;
 100 
 101         do {
 102                 size_t len = left;
 103 
 104                 if (PageHighMem(page)) {
 105                         void *addr;
 106 
 107                         if (offset + len > PAGE_SIZE)
 108                                 len = PAGE_SIZE - offset;
 109 
 110                         addr = kmap_atomic(page);
 111                         dma_sync_virt(addr + offset, len, dir);
 112                         kunmap_atomic(addr);
 113                 } else
 114                         dma_sync_virt(page_address(page) + offset, size, dir);
 115                 offset = 0;
 116                 page++;
 117                 left -= len;
 118         } while (left);
 119 }
 120 
 121 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
 122                 size_t size, enum dma_data_direction dir)
 123 {
 124         dma_sync_phys(paddr, size, dir);
 125 }
 126 
 127 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
 128 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
 129                 size_t size, enum dma_data_direction dir)
 130 {
 131         if (cpu_needs_post_dma_flush(dev))
 132                 dma_sync_phys(paddr, size, dir);
 133 }
 134 #endif
 135 
 136 void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 137                 enum dma_data_direction direction)
 138 {
 139         BUG_ON(direction == DMA_NONE);
 140 
 141         dma_sync_virt(vaddr, size, direction);
 142 }
 143 
 144 #ifdef CONFIG_DMA_PERDEV_COHERENT
 145 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
 146                 const struct iommu_ops *iommu, bool coherent)
 147 {
 148         dev->dma_coherent = coherent;
 149 }
 150 #endif

/* [<][>][^][v][top][bottom][index][help] */