root/drivers/mtd/devices/lart.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read8
  2. read32
  3. write32
  4. flash_probe
  5. erase_block
  6. flash_erase
  7. flash_read
  8. write_dword
  9. flash_write
  10. lart_flash_init
  11. lart_flash_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 
   3 /*
   4  * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
   5  *
   6  * Author: Abraham vd Merwe <abraham@2d3d.co.za>
   7  *
   8  * Copyright (c) 2001, 2d3D, Inc.
   9  *
  10  * References:
  11  *
  12  *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  13  *           - Order Number: 290644-005
  14  *           - January 2000
  15  *
  16  *    [2] MTD internal API documentation
  17  *           - http://www.linux-mtd.infradead.org/ 
  18  *
  19  * Limitations:
  20  *
  21  *    Even though this driver is written for 3 Volt Fast Boot
  22  *    Block Flash Memory, it is rather specific to LART. With
  23  *    Minor modifications, notably the without data/address line
  24  *    mangling and different bus settings, etc. it should be
  25  *    trivial to adapt to other platforms.
  26  *
  27  *    If somebody would sponsor me a different board, I'll
  28  *    adapt the driver (:
  29  */
  30 
  31 /* debugging */
  32 //#define LART_DEBUG
  33 
  34 #include <linux/kernel.h>
  35 #include <linux/module.h>
  36 #include <linux/types.h>
  37 #include <linux/init.h>
  38 #include <linux/errno.h>
  39 #include <linux/string.h>
  40 #include <linux/mtd/mtd.h>
  41 #include <linux/mtd/partitions.h>
  42 
  43 #ifndef CONFIG_SA1100_LART
  44 #error This is for LART architecture only
  45 #endif
  46 
  47 static char module_name[] = "lart";
  48 
  49 /*
  50  * These values is specific to 28Fxxxx3 flash memory.
  51  * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  52  */
  53 #define FLASH_BLOCKSIZE_PARAM           (4096 * BUSWIDTH)
  54 #define FLASH_NUMBLOCKS_16m_PARAM       8
  55 #define FLASH_NUMBLOCKS_8m_PARAM        8
  56 
  57 /*
  58  * These values is specific to 28Fxxxx3 flash memory.
  59  * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  60  */
  61 #define FLASH_BLOCKSIZE_MAIN            (32768 * BUSWIDTH)
  62 #define FLASH_NUMBLOCKS_16m_MAIN        31
  63 #define FLASH_NUMBLOCKS_8m_MAIN         15
  64 
  65 /*
  66  * These values are specific to LART
  67  */
  68 
  69 /* general */
  70 #define BUSWIDTH                        4                               /* don't change this - a lot of the code _will_ break if you change this */
  71 #define FLASH_OFFSET            0xe8000000              /* see linux/arch/arm/mach-sa1100/lart.c */
  72 
  73 /* blob */
  74 #define NUM_BLOB_BLOCKS         FLASH_NUMBLOCKS_16m_PARAM
  75 #define PART_BLOB_START         0x00000000
  76 #define PART_BLOB_LEN           (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
  77 
  78 /* kernel */
  79 #define NUM_KERNEL_BLOCKS       7
  80 #define PART_KERNEL_START       (PART_BLOB_START + PART_BLOB_LEN)
  81 #define PART_KERNEL_LEN         (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  82 
  83 /* initial ramdisk */
  84 #define NUM_INITRD_BLOCKS       24
  85 #define PART_INITRD_START       (PART_KERNEL_START + PART_KERNEL_LEN)
  86 #define PART_INITRD_LEN         (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  87 
  88 /*
  89  * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  90  */
  91 #define READ_ARRAY                      0x00FF00FF              /* Read Array/Reset */
  92 #define READ_ID_CODES           0x00900090              /* Read Identifier Codes */
  93 #define ERASE_SETUP                     0x00200020              /* Block Erase */
  94 #define ERASE_CONFIRM           0x00D000D0              /* Block Erase and Program Resume */
  95 #define PGM_SETUP                       0x00400040              /* Program */
  96 #define STATUS_READ                     0x00700070              /* Read Status Register */
  97 #define STATUS_CLEAR            0x00500050              /* Clear Status Register */
  98 #define STATUS_BUSY                     0x00800080              /* Write State Machine Status (WSMS) */
  99 #define STATUS_ERASE_ERR        0x00200020              /* Erase Status (ES) */
 100 #define STATUS_PGM_ERR          0x00100010              /* Program Status (PS) */
 101 
 102 /*
 103  * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 104  */
 105 #define FLASH_MANUFACTURER                      0x00890089
 106 #define FLASH_DEVICE_8mbit_TOP          0x88f188f1
 107 #define FLASH_DEVICE_8mbit_BOTTOM       0x88f288f2
 108 #define FLASH_DEVICE_16mbit_TOP         0x88f388f3
 109 #define FLASH_DEVICE_16mbit_BOTTOM      0x88f488f4
 110 
 111 /***************************************************************************************************/
 112 
 113 /*
 114  * The data line mapping on LART is as follows:
 115  *
 116  *       U2  CPU |   U3  CPU
 117  *       -------------------
 118  *        0  20  |   0   12
 119  *        1  22  |   1   14
 120  *        2  19  |   2   11
 121  *        3  17  |   3   9
 122  *        4  24  |   4   0
 123  *        5  26  |   5   2
 124  *        6  31  |   6   7
 125  *        7  29  |   7   5
 126  *        8  21  |   8   13
 127  *        9  23  |   9   15
 128  *        10 18  |   10  10
 129  *        11 16  |   11  8
 130  *        12 25  |   12  1
 131  *        13 27  |   13  3
 132  *        14 30  |   14  6
 133  *        15 28  |   15  4
 134  */
 135 
 136 /* Mangle data (x) */
 137 #define DATA_TO_FLASH(x)                                \
 138         (                                                                       \
 139                 (((x) & 0x08009000) >> 11)      +       \
 140                 (((x) & 0x00002000) >> 10)      +       \
 141                 (((x) & 0x04004000) >> 8)       +       \
 142                 (((x) & 0x00000010) >> 4)       +       \
 143                 (((x) & 0x91000820) >> 3)       +       \
 144                 (((x) & 0x22080080) >> 2)       +       \
 145                 ((x) & 0x40000400)                      +       \
 146                 (((x) & 0x00040040) << 1)       +       \
 147                 (((x) & 0x00110000) << 4)       +       \
 148                 (((x) & 0x00220100) << 5)       +       \
 149                 (((x) & 0x00800208) << 6)       +       \
 150                 (((x) & 0x00400004) << 9)       +       \
 151                 (((x) & 0x00000001) << 12)      +       \
 152                 (((x) & 0x00000002) << 13)              \
 153         )
 154 
 155 /* Unmangle data (x) */
 156 #define FLASH_TO_DATA(x)                                \
 157         (                                                                       \
 158                 (((x) & 0x00010012) << 11)      +       \
 159                 (((x) & 0x00000008) << 10)      +       \
 160                 (((x) & 0x00040040) << 8)       +       \
 161                 (((x) & 0x00000001) << 4)       +       \
 162                 (((x) & 0x12200104) << 3)       +       \
 163                 (((x) & 0x08820020) << 2)       +       \
 164                 ((x) & 0x40000400)                      +       \
 165                 (((x) & 0x00080080) >> 1)       +       \
 166                 (((x) & 0x01100000) >> 4)       +       \
 167                 (((x) & 0x04402000) >> 5)       +       \
 168                 (((x) & 0x20008200) >> 6)       +       \
 169                 (((x) & 0x80000800) >> 9)       +       \
 170                 (((x) & 0x00001000) >> 12)      +       \
 171                 (((x) & 0x00004000) >> 13)              \
 172         )
 173 
 174 /*
 175  * The address line mapping on LART is as follows:
 176  *
 177  *       U3  CPU |   U2  CPU
 178  *       -------------------
 179  *        0  2   |   0   2
 180  *        1  3   |   1   3
 181  *        2  9   |   2   9
 182  *        3  13  |   3   8
 183  *        4  8   |   4   7
 184  *        5  12  |   5   6
 185  *        6  11  |   6   5
 186  *        7  10  |   7   4
 187  *        8  4   |   8   10
 188  *        9  5   |   9   11
 189  *       10  6   |   10  12
 190  *       11  7   |   11  13
 191  *
 192  *       BOOT BLOCK BOUNDARY
 193  *
 194  *       12  15  |   12  15
 195  *       13  14  |   13  14
 196  *       14  16  |   14  16
 197  *
 198  *       MAIN BLOCK BOUNDARY
 199  *
 200  *       15  17  |   15  18
 201  *       16  18  |   16  17
 202  *       17  20  |   17  20
 203  *       18  19  |   18  19
 204  *       19  21  |   19  21
 205  *
 206  * As we can see from above, the addresses aren't mangled across
 207  * block boundaries, so we don't need to worry about address
 208  * translations except for sending/reading commands during
 209  * initialization
 210  */
 211 
 212 /* Mangle address (x) on chip U2 */
 213 #define ADDR_TO_FLASH_U2(x)                             \
 214         (                                                                       \
 215                 (((x) & 0x00000f00) >> 4)       +       \
 216                 (((x) & 0x00042000) << 1)       +       \
 217                 (((x) & 0x0009c003) << 2)       +       \
 218                 (((x) & 0x00021080) << 3)       +       \
 219                 (((x) & 0x00000010) << 4)       +       \
 220                 (((x) & 0x00000040) << 5)       +       \
 221                 (((x) & 0x00000024) << 7)       +       \
 222                 (((x) & 0x00000008) << 10)              \
 223         )
 224 
 225 /* Unmangle address (x) on chip U2 */
 226 #define FLASH_U2_TO_ADDR(x)                             \
 227         (                                                                       \
 228                 (((x) << 4) & 0x00000f00)       +       \
 229                 (((x) >> 1) & 0x00042000)       +       \
 230                 (((x) >> 2) & 0x0009c003)       +       \
 231                 (((x) >> 3) & 0x00021080)       +       \
 232                 (((x) >> 4) & 0x00000010)       +       \
 233                 (((x) >> 5) & 0x00000040)       +       \
 234                 (((x) >> 7) & 0x00000024)       +       \
 235                 (((x) >> 10) & 0x00000008)              \
 236         )
 237 
 238 /* Mangle address (x) on chip U3 */
 239 #define ADDR_TO_FLASH_U3(x)                             \
 240         (                                                                       \
 241                 (((x) & 0x00000080) >> 3)       +       \
 242                 (((x) & 0x00000040) >> 1)       +       \
 243                 (((x) & 0x00052020) << 1)       +       \
 244                 (((x) & 0x00084f03) << 2)       +       \
 245                 (((x) & 0x00029010) << 3)       +       \
 246                 (((x) & 0x00000008) << 5)       +       \
 247                 (((x) & 0x00000004) << 7)               \
 248         )
 249 
 250 /* Unmangle address (x) on chip U3 */
 251 #define FLASH_U3_TO_ADDR(x)                             \
 252         (                                                                       \
 253                 (((x) << 3) & 0x00000080)       +       \
 254                 (((x) << 1) & 0x00000040)       +       \
 255                 (((x) >> 1) & 0x00052020)       +       \
 256                 (((x) >> 2) & 0x00084f03)       +       \
 257                 (((x) >> 3) & 0x00029010)       +       \
 258                 (((x) >> 5) & 0x00000008)       +       \
 259                 (((x) >> 7) & 0x00000004)               \
 260         )
 261 
 262 /***************************************************************************************************/
 263 
 264 static __u8 read8 (__u32 offset)
 265 {
 266    volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
 267 #ifdef LART_DEBUG
 268    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
 269 #endif
 270    return (*data);
 271 }
 272 
 273 static __u32 read32 (__u32 offset)
 274 {
 275    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 276 #ifdef LART_DEBUG
 277    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
 278 #endif
 279    return (*data);
 280 }
 281 
 282 static void write32 (__u32 x,__u32 offset)
 283 {
 284    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 285    *data = x;
 286 #ifdef LART_DEBUG
 287    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
 288 #endif
 289 }
 290 
 291 /***************************************************************************************************/
 292 
 293 /*
 294  * Probe for 16mbit flash memory on a LART board without doing
 295  * too much damage. Since we need to write 1 dword to memory,
 296  * we're f**cked if this happens to be DRAM since we can't
 297  * restore the memory (otherwise we might exit Read Array mode).
 298  *
 299  * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
 300  */
 301 static int flash_probe (void)
 302 {
 303    __u32 manufacturer,devtype;
 304 
 305    /* setup "Read Identifier Codes" mode */
 306    write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
 307 
 308    /* probe U2. U2/U3 returns the same data since the first 3
 309         * address lines is mangled in the same way */
 310    manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
 311    devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
 312 
 313    /* put the flash back into command mode */
 314    write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
 315 
 316    return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
 317 }
 318 
 319 /*
 320  * Erase one block of flash memory at offset ``offset'' which is any
 321  * address within the block which should be erased.
 322  *
 323  * Returns 1 if successful, 0 otherwise.
 324  */
 325 static inline int erase_block (__u32 offset)
 326 {
 327    __u32 status;
 328 
 329 #ifdef LART_DEBUG
 330    printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
 331 #endif
 332 
 333    /* erase and confirm */
 334    write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
 335    write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
 336 
 337    /* wait for block erase to finish */
 338    do
 339          {
 340                 write32 (DATA_TO_FLASH (STATUS_READ),offset);
 341                 status = FLASH_TO_DATA (read32 (offset));
 342          }
 343    while ((~status & STATUS_BUSY) != 0);
 344 
 345    /* put the flash back into command mode */
 346    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 347 
 348    /* was the erase successful? */
 349    if ((status & STATUS_ERASE_ERR))
 350          {
 351                 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
 352                 return (0);
 353          }
 354 
 355    return (1);
 356 }
 357 
 358 static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
 359 {
 360    __u32 addr,len;
 361    int i,first;
 362 
 363 #ifdef LART_DEBUG
 364    printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
 365 #endif
 366 
 367    /*
 368         * check that both start and end of the requested erase are
 369         * aligned with the erasesize at the appropriate addresses.
 370         *
 371         * skip all erase regions which are ended before the start of
 372         * the requested erase. Actually, to save on the calculations,
 373         * we skip to the first erase region which starts after the
 374         * start of the requested erase, and then go back one.
 375         */
 376    for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
 377    i--;
 378 
 379    /*
 380         * ok, now i is pointing at the erase region in which this
 381         * erase request starts. Check the start of the requested
 382         * erase range is aligned with the erase size which is in
 383         * effect here.
 384         */
 385    if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
 386       return -EINVAL;
 387 
 388    /* Remember the erase region we start on */
 389    first = i;
 390 
 391    /*
 392         * next, check that the end of the requested erase is aligned
 393         * with the erase region at that address.
 394         *
 395         * as before, drop back one to point at the region in which
 396         * the address actually falls
 397         */
 398    for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
 399    i--;
 400 
 401    /* is the end aligned on a block boundary? */
 402    if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
 403       return -EINVAL;
 404 
 405    addr = instr->addr;
 406    len = instr->len;
 407 
 408    i = first;
 409 
 410    /* now erase those blocks */
 411    while (len)
 412          {
 413                 if (!erase_block (addr))
 414                          return (-EIO);
 415 
 416                 addr += mtd->eraseregions[i].erasesize;
 417                 len -= mtd->eraseregions[i].erasesize;
 418 
 419                 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
 420          }
 421 
 422    return (0);
 423 }
 424 
 425 static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
 426 {
 427 #ifdef LART_DEBUG
 428    printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
 429 #endif
 430 
 431    /* we always read len bytes */
 432    *retlen = len;
 433 
 434    /* first, we read bytes until we reach a dword boundary */
 435    if (from & (BUSWIDTH - 1))
 436          {
 437                 int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
 438 
 439                 while (len && gap--) *buf++ = read8 (from++), len--;
 440          }
 441 
 442    /* now we read dwords until we reach a non-dword boundary */
 443    while (len >= BUSWIDTH)
 444          {
 445                 *((__u32 *) buf) = read32 (from);
 446 
 447                 buf += BUSWIDTH;
 448                 from += BUSWIDTH;
 449                 len -= BUSWIDTH;
 450          }
 451 
 452    /* top up the last unaligned bytes */
 453    if (len & (BUSWIDTH - 1))
 454          while (len--) *buf++ = read8 (from++);
 455 
 456    return (0);
 457 }
 458 
 459 /*
 460  * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
 461  * must be 32 bits, i.e. it must be on a dword boundary.
 462  *
 463  * Returns 1 if successful, 0 otherwise.
 464  */
 465 static inline int write_dword (__u32 offset,__u32 x)
 466 {
 467    __u32 status;
 468 
 469 #ifdef LART_DEBUG
 470    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
 471 #endif
 472 
 473    /* setup writing */
 474    write32 (DATA_TO_FLASH (PGM_SETUP),offset);
 475 
 476    /* write the data */
 477    write32 (x,offset);
 478 
 479    /* wait for the write to finish */
 480    do
 481          {
 482                 write32 (DATA_TO_FLASH (STATUS_READ),offset);
 483                 status = FLASH_TO_DATA (read32 (offset));
 484          }
 485    while ((~status & STATUS_BUSY) != 0);
 486 
 487    /* put the flash back into command mode */
 488    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 489 
 490    /* was the write successful? */
 491    if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
 492          {
 493                 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
 494                 return (0);
 495          }
 496 
 497    return (1);
 498 }
 499 
 500 static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
 501 {
 502    __u8 tmp[4];
 503    int i,n;
 504 
 505 #ifdef LART_DEBUG
 506    printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
 507 #endif
 508 
 509    /* sanity checks */
 510    if (!len) return (0);
 511 
 512    /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
 513    if (to & (BUSWIDTH - 1))
 514          {
 515                 __u32 aligned = to & ~(BUSWIDTH - 1);
 516                 int gap = to - aligned;
 517 
 518                 i = n = 0;
 519 
 520                 while (gap--) tmp[i++] = 0xFF;
 521                 while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
 522                 while (i < BUSWIDTH) tmp[i++] = 0xFF;
 523 
 524                 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
 525 
 526                 to += n;
 527                 buf += n;
 528                 *retlen += n;
 529          }
 530 
 531    /* now we write dwords until we reach a non-dword boundary */
 532    while (len >= BUSWIDTH)
 533          {
 534                 if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
 535 
 536                 to += BUSWIDTH;
 537                 buf += BUSWIDTH;
 538                 *retlen += BUSWIDTH;
 539                 len -= BUSWIDTH;
 540          }
 541 
 542    /* top up the last unaligned bytes, padded with 0xFF.... */
 543    if (len & (BUSWIDTH - 1))
 544          {
 545                 i = n = 0;
 546 
 547                 while (len--) tmp[i++] = buf[n++];
 548                 while (i < BUSWIDTH) tmp[i++] = 0xFF;
 549 
 550                 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
 551 
 552                 *retlen += n;
 553          }
 554 
 555    return (0);
 556 }
 557 
 558 /***************************************************************************************************/
 559 
 560 static struct mtd_info mtd;
 561 
 562 static struct mtd_erase_region_info erase_regions[] = {
 563         /* parameter blocks */
 564         {
 565                 .offset         = 0x00000000,
 566                 .erasesize      = FLASH_BLOCKSIZE_PARAM,
 567                 .numblocks      = FLASH_NUMBLOCKS_16m_PARAM,
 568         },
 569         /* main blocks */
 570         {
 571                 .offset  = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
 572                 .erasesize      = FLASH_BLOCKSIZE_MAIN,
 573                 .numblocks      = FLASH_NUMBLOCKS_16m_MAIN,
 574         }
 575 };
 576 
 577 static const struct mtd_partition lart_partitions[] = {
 578         /* blob */
 579         {
 580                 .name   = "blob",
 581                 .offset = PART_BLOB_START,
 582                 .size   = PART_BLOB_LEN,
 583         },
 584         /* kernel */
 585         {
 586                 .name   = "kernel",
 587                 .offset = PART_KERNEL_START,    /* MTDPART_OFS_APPEND */
 588                 .size   = PART_KERNEL_LEN,
 589         },
 590         /* initial ramdisk / file system */
 591         {
 592                 .name   = "file system",
 593                 .offset = PART_INITRD_START,    /* MTDPART_OFS_APPEND */
 594                 .size   = PART_INITRD_LEN,      /* MTDPART_SIZ_FULL */
 595         }
 596 };
 597 #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
 598 
 599 static int __init lart_flash_init (void)
 600 {
 601    int result;
 602    memset (&mtd,0,sizeof (mtd));
 603    printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
 604    printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
 605    if (!flash_probe ())
 606          {
 607                 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
 608                 return (-ENXIO);
 609          }
 610    printk ("%s: This looks like a LART board to me.\n",module_name);
 611    mtd.name = module_name;
 612    mtd.type = MTD_NORFLASH;
 613    mtd.writesize = 1;
 614    mtd.writebufsize = 4;
 615    mtd.flags = MTD_CAP_NORFLASH;
 616    mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
 617    mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
 618    mtd.numeraseregions = ARRAY_SIZE(erase_regions);
 619    mtd.eraseregions = erase_regions;
 620    mtd._erase = flash_erase;
 621    mtd._read = flash_read;
 622    mtd._write = flash_write;
 623    mtd.owner = THIS_MODULE;
 624 
 625 #ifdef LART_DEBUG
 626    printk (KERN_DEBUG
 627                    "mtd.name = %s\n"
 628                    "mtd.size = 0x%.8x (%uM)\n"
 629                    "mtd.erasesize = 0x%.8x (%uK)\n"
 630                    "mtd.numeraseregions = %d\n",
 631                    mtd.name,
 632                    mtd.size,mtd.size / (1024*1024),
 633                    mtd.erasesize,mtd.erasesize / 1024,
 634                    mtd.numeraseregions);
 635 
 636    if (mtd.numeraseregions)
 637          for (result = 0; result < mtd.numeraseregions; result++)
 638            printk (KERN_DEBUG
 639                            "\n\n"
 640                            "mtd.eraseregions[%d].offset = 0x%.8x\n"
 641                            "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
 642                            "mtd.eraseregions[%d].numblocks = %d\n",
 643                            result,mtd.eraseregions[result].offset,
 644                            result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
 645                            result,mtd.eraseregions[result].numblocks);
 646 
 647    printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
 648 
 649    for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
 650          printk (KERN_DEBUG
 651                          "\n\n"
 652                          "lart_partitions[%d].name = %s\n"
 653                          "lart_partitions[%d].offset = 0x%.8x\n"
 654                          "lart_partitions[%d].size = 0x%.8x (%uK)\n",
 655                          result,lart_partitions[result].name,
 656                          result,lart_partitions[result].offset,
 657                          result,lart_partitions[result].size,lart_partitions[result].size / 1024);
 658 #endif
 659 
 660    result = mtd_device_register(&mtd, lart_partitions,
 661                                 ARRAY_SIZE(lart_partitions));
 662 
 663    return (result);
 664 }
 665 
 666 static void __exit lart_flash_exit (void)
 667 {
 668    mtd_device_unregister(&mtd);
 669 }
 670 
 671 module_init (lart_flash_init);
 672 module_exit (lart_flash_exit);
 673 
 674 MODULE_LICENSE("GPL");
 675 MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
 676 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");

/* [<][>][^][v][top][bottom][index][help] */