root/drivers/ide/ide-timings.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ide_timing_find_mode
  2. ide_pio_cycle_time
  3. ide_timing_quantize
  4. ide_timing_merge
  5. ide_timing_compute

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *  Copyright (c) 1999-2001 Vojtech Pavlik
   4  *  Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
   5  *
   6  * Should you need to contact me, the author, you can do so either by
   7  * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
   8  * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
   9  */
  10 
  11 #include <linux/kernel.h>
  12 #include <linux/ide.h>
  13 #include <linux/module.h>
  14 
  15 /*
  16  * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  17  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  18  * for PIO 5, which is a nonstandard extension and UDMA6, which
  19  * is currently supported only by Maxtor drives.
  20  */
  21 
  22 static struct ide_timing ide_timing[] = {
  23 
  24         { XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
  25         { XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
  26         { XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
  27         { XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
  28 
  29         { XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
  30         { XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
  31         { XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
  32 
  33         { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
  34         { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
  35         { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
  36         { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
  37         { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
  38 
  39         { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
  40         { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
  41         { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
  42 
  43         { XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
  44         { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
  45         { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
  46         { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
  47 
  48         { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
  49         { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
  50         { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
  51 
  52         { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 },
  53 
  54         { 0xff }
  55 };
  56 
  57 struct ide_timing *ide_timing_find_mode(u8 speed)
  58 {
  59         struct ide_timing *t;
  60 
  61         for (t = ide_timing; t->mode != speed; t++)
  62                 if (t->mode == 0xff)
  63                         return NULL;
  64         return t;
  65 }
  66 EXPORT_SYMBOL_GPL(ide_timing_find_mode);
  67 
  68 u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
  69 {
  70         u16 *id = drive->id;
  71         struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
  72         u16 cycle = 0;
  73 
  74         if (id[ATA_ID_FIELD_VALID] & 2) {
  75                 if (ata_id_has_iordy(drive->id))
  76                         cycle = id[ATA_ID_EIDE_PIO_IORDY];
  77                 else
  78                         cycle = id[ATA_ID_EIDE_PIO];
  79 
  80                 /* conservative "downgrade" for all pre-ATA2 drives */
  81                 if (pio < 3 && cycle < t->cycle)
  82                         cycle = 0; /* use standard timing */
  83 
  84                 /* Use the standard timing for the CF specific modes too */
  85                 if (pio > 4 && ata_id_is_cfa(id))
  86                         cycle = 0;
  87         }
  88 
  89         return cycle ? cycle : t->cycle;
  90 }
  91 EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
  92 
  93 #define ENOUGH(v, unit)         (((v) - 1) / (unit) + 1)
  94 #define EZ(v, unit)             ((v) ? ENOUGH((v) * 1000, unit) : 0)
  95 
  96 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
  97                                 int T, int UT)
  98 {
  99         q->setup   = EZ(t->setup,   T);
 100         q->act8b   = EZ(t->act8b,   T);
 101         q->rec8b   = EZ(t->rec8b,   T);
 102         q->cyc8b   = EZ(t->cyc8b,   T);
 103         q->active  = EZ(t->active,  T);
 104         q->recover = EZ(t->recover, T);
 105         q->cycle   = EZ(t->cycle,   T);
 106         q->udma    = EZ(t->udma,    UT);
 107 }
 108 
 109 void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
 110                       struct ide_timing *m, unsigned int what)
 111 {
 112         if (what & IDE_TIMING_SETUP)
 113                 m->setup   = max(a->setup,   b->setup);
 114         if (what & IDE_TIMING_ACT8B)
 115                 m->act8b   = max(a->act8b,   b->act8b);
 116         if (what & IDE_TIMING_REC8B)
 117                 m->rec8b   = max(a->rec8b,   b->rec8b);
 118         if (what & IDE_TIMING_CYC8B)
 119                 m->cyc8b   = max(a->cyc8b,   b->cyc8b);
 120         if (what & IDE_TIMING_ACTIVE)
 121                 m->active  = max(a->active,  b->active);
 122         if (what & IDE_TIMING_RECOVER)
 123                 m->recover = max(a->recover, b->recover);
 124         if (what & IDE_TIMING_CYCLE)
 125                 m->cycle   = max(a->cycle,   b->cycle);
 126         if (what & IDE_TIMING_UDMA)
 127                 m->udma    = max(a->udma,    b->udma);
 128 }
 129 EXPORT_SYMBOL_GPL(ide_timing_merge);
 130 
 131 int ide_timing_compute(ide_drive_t *drive, u8 speed,
 132                        struct ide_timing *t, int T, int UT)
 133 {
 134         u16 *id = drive->id;
 135         struct ide_timing *s, p;
 136 
 137         /*
 138          * Find the mode.
 139          */
 140         s = ide_timing_find_mode(speed);
 141         if (s == NULL)
 142                 return -EINVAL;
 143 
 144         /*
 145          * Copy the timing from the table.
 146          */
 147         *t = *s;
 148 
 149         /*
 150          * If the drive is an EIDE drive, it can tell us it needs extended
 151          * PIO/MWDMA cycle timing.
 152          */
 153         if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
 154                 memset(&p, 0, sizeof(p));
 155 
 156                 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
 157                         if (speed <= XFER_PIO_2)
 158                                 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
 159                         else if ((speed <= XFER_PIO_4) ||
 160                                  (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
 161                                 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
 162                 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
 163                         p.cycle = id[ATA_ID_EIDE_DMA_MIN];
 164 
 165                 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
 166         }
 167 
 168         /*
 169          * Convert the timing to bus clock counts.
 170          */
 171         ide_timing_quantize(t, t, T, UT);
 172 
 173         /*
 174          * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
 175          * S.M.A.R.T and some other commands. We have to ensure that the
 176          * DMA cycle timing is slower/equal than the current PIO timing.
 177          */
 178         if (speed >= XFER_SW_DMA_0) {
 179                 ide_timing_compute(drive, drive->pio_mode, &p, T, UT);
 180                 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
 181         }
 182 
 183         /*
 184          * Lengthen active & recovery time so that cycle time is correct.
 185          */
 186         if (t->act8b + t->rec8b < t->cyc8b) {
 187                 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
 188                 t->rec8b = t->cyc8b - t->act8b;
 189         }
 190 
 191         if (t->active + t->recover < t->cycle) {
 192                 t->active += (t->cycle - (t->active + t->recover)) / 2;
 193                 t->recover = t->cycle - t->active;
 194         }
 195 
 196         return 0;
 197 }
 198 EXPORT_SYMBOL_GPL(ide_timing_compute);

/* [<][>][^][v][top][bottom][index][help] */