root/drivers/staging/wilc1000/wilc_spi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. crc7_byte
  2. crc7
  3. wilc_bus_probe
  4. wilc_bus_remove
  5. wilc_spi_tx
  6. wilc_spi_rx
  7. wilc_spi_tx_rx
  8. spi_cmd_complete
  9. spi_data_write
  10. spi_internal_write
  11. spi_internal_read
  12. wilc_spi_write_reg
  13. wilc_spi_write
  14. wilc_spi_read_reg
  15. wilc_spi_read
  16. wilc_spi_deinit
  17. wilc_spi_init
  18. wilc_spi_read_size
  19. wilc_spi_read_int
  20. wilc_spi_clear_int_ext
  21. wilc_spi_sync_ext

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
   4  * All rights reserved.
   5  */
   6 
   7 #include <linux/spi/spi.h>
   8 
   9 #include "wilc_wfi_netdevice.h"
  10 #include "wilc_wfi_cfgoperations.h"
  11 
  12 struct wilc_spi {
  13         int crc_off;
  14         int nint;
  15         int has_thrpt_enh;
  16 };
  17 
  18 static const struct wilc_hif_func wilc_hif_spi;
  19 
  20 /********************************************
  21  *
  22  *      Crc7
  23  *
  24  ********************************************/
  25 
  26 static const u8 crc7_syndrome_table[256] = {
  27         0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
  28         0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
  29         0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
  30         0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
  31         0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d,
  32         0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
  33         0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14,
  34         0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
  35         0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
  36         0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
  37         0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42,
  38         0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
  39         0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69,
  40         0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
  41         0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
  42         0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
  43         0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e,
  44         0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
  45         0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
  46         0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
  47         0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
  48         0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
  49         0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55,
  50         0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
  51         0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a,
  52         0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
  53         0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
  54         0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
  55         0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28,
  56         0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
  57         0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31,
  58         0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
  59 };
  60 
  61 static u8 crc7_byte(u8 crc, u8 data)
  62 {
  63         return crc7_syndrome_table[(crc << 1) ^ data];
  64 }
  65 
  66 static u8 crc7(u8 crc, const u8 *buffer, u32 len)
  67 {
  68         while (len--)
  69                 crc = crc7_byte(crc, *buffer++);
  70         return crc;
  71 }
  72 
  73 /********************************************
  74  *
  75  *      Spi protocol Function
  76  *
  77  ********************************************/
  78 
  79 #define CMD_DMA_WRITE                           0xc1
  80 #define CMD_DMA_READ                            0xc2
  81 #define CMD_INTERNAL_WRITE                      0xc3
  82 #define CMD_INTERNAL_READ                       0xc4
  83 #define CMD_TERMINATE                           0xc5
  84 #define CMD_REPEAT                              0xc6
  85 #define CMD_DMA_EXT_WRITE                       0xc7
  86 #define CMD_DMA_EXT_READ                        0xc8
  87 #define CMD_SINGLE_WRITE                        0xc9
  88 #define CMD_SINGLE_READ                         0xca
  89 #define CMD_RESET                               0xcf
  90 
  91 #define N_OK                                    1
  92 #define N_FAIL                                  0
  93 #define N_RESET                                 -1
  94 #define N_RETRY                                 -2
  95 
  96 #define DATA_PKT_SZ_256                         256
  97 #define DATA_PKT_SZ_512                         512
  98 #define DATA_PKT_SZ_1K                          1024
  99 #define DATA_PKT_SZ_4K                          (4 * 1024)
 100 #define DATA_PKT_SZ_8K                          (8 * 1024)
 101 #define DATA_PKT_SZ                             DATA_PKT_SZ_8K
 102 
 103 #define USE_SPI_DMA                             0
 104 
 105 static int wilc_bus_probe(struct spi_device *spi)
 106 {
 107         int ret;
 108         struct wilc *wilc;
 109         struct gpio_desc *gpio;
 110         struct wilc_spi *spi_priv;
 111 
 112         spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
 113         if (!spi_priv)
 114                 return -ENOMEM;
 115 
 116         gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN);
 117         if (IS_ERR(gpio)) {
 118                 /* get the GPIO descriptor from hardcode GPIO number */
 119                 gpio = gpio_to_desc(GPIO_NUM);
 120                 if (!gpio)
 121                         dev_err(&spi->dev, "failed to get the irq gpio\n");
 122         }
 123 
 124         ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
 125         if (ret) {
 126                 kfree(spi_priv);
 127                 return ret;
 128         }
 129 
 130         spi_set_drvdata(spi, wilc);
 131         wilc->dev = &spi->dev;
 132         wilc->bus_data = spi_priv;
 133         wilc->gpio_irq = gpio;
 134 
 135         return 0;
 136 }
 137 
 138 static int wilc_bus_remove(struct spi_device *spi)
 139 {
 140         struct wilc *wilc = spi_get_drvdata(spi);
 141 
 142         /* free the GPIO in module remove */
 143         if (wilc->gpio_irq)
 144                 gpiod_put(wilc->gpio_irq);
 145         wilc_netdev_cleanup(wilc);
 146         return 0;
 147 }
 148 
 149 static const struct of_device_id wilc_of_match[] = {
 150         { .compatible = "microchip,wilc1000-spi", },
 151         { /* sentinel */ }
 152 };
 153 MODULE_DEVICE_TABLE(of, wilc_of_match);
 154 
 155 static struct spi_driver wilc_spi_driver = {
 156         .driver = {
 157                 .name = MODALIAS,
 158                 .of_match_table = wilc_of_match,
 159         },
 160         .probe =  wilc_bus_probe,
 161         .remove = wilc_bus_remove,
 162 };
 163 module_spi_driver(wilc_spi_driver);
 164 MODULE_LICENSE("GPL");
 165 
 166 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
 167 {
 168         struct spi_device *spi = to_spi_device(wilc->dev);
 169         int ret;
 170         struct spi_message msg;
 171 
 172         if (len > 0 && b) {
 173                 struct spi_transfer tr = {
 174                         .tx_buf = b,
 175                         .len = len,
 176                         .delay_usecs = 0,
 177                 };
 178                 char *r_buffer = kzalloc(len, GFP_KERNEL);
 179 
 180                 if (!r_buffer)
 181                         return -ENOMEM;
 182 
 183                 tr.rx_buf = r_buffer;
 184                 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
 185 
 186                 memset(&msg, 0, sizeof(msg));
 187                 spi_message_init(&msg);
 188                 msg.spi = spi;
 189                 msg.is_dma_mapped = USE_SPI_DMA;
 190                 spi_message_add_tail(&tr, &msg);
 191 
 192                 ret = spi_sync(spi, &msg);
 193                 if (ret < 0)
 194                         dev_err(&spi->dev, "SPI transaction failed\n");
 195 
 196                 kfree(r_buffer);
 197         } else {
 198                 dev_err(&spi->dev,
 199                         "can't write data with the following length: %d\n",
 200                         len);
 201                 ret = -EINVAL;
 202         }
 203 
 204         return ret;
 205 }
 206 
 207 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
 208 {
 209         struct spi_device *spi = to_spi_device(wilc->dev);
 210         int ret;
 211 
 212         if (rlen > 0) {
 213                 struct spi_message msg;
 214                 struct spi_transfer tr = {
 215                         .rx_buf = rb,
 216                         .len = rlen,
 217                         .delay_usecs = 0,
 218 
 219                 };
 220                 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
 221 
 222                 if (!t_buffer)
 223                         return -ENOMEM;
 224 
 225                 tr.tx_buf = t_buffer;
 226 
 227                 memset(&msg, 0, sizeof(msg));
 228                 spi_message_init(&msg);
 229                 msg.spi = spi;
 230                 msg.is_dma_mapped = USE_SPI_DMA;
 231                 spi_message_add_tail(&tr, &msg);
 232 
 233                 ret = spi_sync(spi, &msg);
 234                 if (ret < 0)
 235                         dev_err(&spi->dev, "SPI transaction failed\n");
 236                 kfree(t_buffer);
 237         } else {
 238                 dev_err(&spi->dev,
 239                         "can't read data with the following length: %u\n",
 240                         rlen);
 241                 ret = -EINVAL;
 242         }
 243 
 244         return ret;
 245 }
 246 
 247 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
 248 {
 249         struct spi_device *spi = to_spi_device(wilc->dev);
 250         int ret;
 251 
 252         if (rlen > 0) {
 253                 struct spi_message msg;
 254                 struct spi_transfer tr = {
 255                         .rx_buf = rb,
 256                         .tx_buf = wb,
 257                         .len = rlen,
 258                         .bits_per_word = 8,
 259                         .delay_usecs = 0,
 260 
 261                 };
 262 
 263                 memset(&msg, 0, sizeof(msg));
 264                 spi_message_init(&msg);
 265                 msg.spi = spi;
 266                 msg.is_dma_mapped = USE_SPI_DMA;
 267 
 268                 spi_message_add_tail(&tr, &msg);
 269                 ret = spi_sync(spi, &msg);
 270                 if (ret < 0)
 271                         dev_err(&spi->dev, "SPI transaction failed\n");
 272         } else {
 273                 dev_err(&spi->dev,
 274                         "can't read data with the following length: %u\n",
 275                         rlen);
 276                 ret = -EINVAL;
 277         }
 278 
 279         return ret;
 280 }
 281 
 282 static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz,
 283                             u8 clockless)
 284 {
 285         struct spi_device *spi = to_spi_device(wilc->dev);
 286         struct wilc_spi *spi_priv = wilc->bus_data;
 287         u8 wb[32], rb[32];
 288         u8 wix, rix;
 289         u32 len2;
 290         u8 rsp;
 291         int len = 0;
 292         int result = N_OK;
 293         int retry;
 294         u8 crc[2];
 295 
 296         wb[0] = cmd;
 297         switch (cmd) {
 298         case CMD_SINGLE_READ: /* single word (4 bytes) read */
 299                 wb[1] = (u8)(adr >> 16);
 300                 wb[2] = (u8)(adr >> 8);
 301                 wb[3] = (u8)adr;
 302                 len = 5;
 303                 break;
 304 
 305         case CMD_INTERNAL_READ: /* internal register read */
 306                 wb[1] = (u8)(adr >> 8);
 307                 if (clockless == 1)
 308                         wb[1] |= BIT(7);
 309                 wb[2] = (u8)adr;
 310                 wb[3] = 0x00;
 311                 len = 5;
 312                 break;
 313 
 314         case CMD_TERMINATE:
 315                 wb[1] = 0x00;
 316                 wb[2] = 0x00;
 317                 wb[3] = 0x00;
 318                 len = 5;
 319                 break;
 320 
 321         case CMD_REPEAT:
 322                 wb[1] = 0x00;
 323                 wb[2] = 0x00;
 324                 wb[3] = 0x00;
 325                 len = 5;
 326                 break;
 327 
 328         case CMD_RESET:
 329                 wb[1] = 0xff;
 330                 wb[2] = 0xff;
 331                 wb[3] = 0xff;
 332                 len = 5;
 333                 break;
 334 
 335         case CMD_DMA_WRITE: /* dma write */
 336         case CMD_DMA_READ:  /* dma read */
 337                 wb[1] = (u8)(adr >> 16);
 338                 wb[2] = (u8)(adr >> 8);
 339                 wb[3] = (u8)adr;
 340                 wb[4] = (u8)(sz >> 8);
 341                 wb[5] = (u8)(sz);
 342                 len = 7;
 343                 break;
 344 
 345         case CMD_DMA_EXT_WRITE: /* dma extended write */
 346         case CMD_DMA_EXT_READ:  /* dma extended read */
 347                 wb[1] = (u8)(adr >> 16);
 348                 wb[2] = (u8)(adr >> 8);
 349                 wb[3] = (u8)adr;
 350                 wb[4] = (u8)(sz >> 16);
 351                 wb[5] = (u8)(sz >> 8);
 352                 wb[6] = (u8)(sz);
 353                 len = 8;
 354                 break;
 355 
 356         case CMD_INTERNAL_WRITE: /* internal register write */
 357                 wb[1] = (u8)(adr >> 8);
 358                 if (clockless == 1)
 359                         wb[1] |= BIT(7);
 360                 wb[2] = (u8)(adr);
 361                 wb[3] = b[3];
 362                 wb[4] = b[2];
 363                 wb[5] = b[1];
 364                 wb[6] = b[0];
 365                 len = 8;
 366                 break;
 367 
 368         case CMD_SINGLE_WRITE: /* single word write */
 369                 wb[1] = (u8)(adr >> 16);
 370                 wb[2] = (u8)(adr >> 8);
 371                 wb[3] = (u8)(adr);
 372                 wb[4] = b[3];
 373                 wb[5] = b[2];
 374                 wb[6] = b[1];
 375                 wb[7] = b[0];
 376                 len = 9;
 377                 break;
 378 
 379         default:
 380                 result = N_FAIL;
 381                 break;
 382         }
 383 
 384         if (result != N_OK)
 385                 return result;
 386 
 387         if (!spi_priv->crc_off)
 388                 wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1;
 389         else
 390                 len -= 1;
 391 
 392 #define NUM_SKIP_BYTES (1)
 393 #define NUM_RSP_BYTES (2)
 394 #define NUM_DATA_HDR_BYTES (1)
 395 #define NUM_DATA_BYTES (4)
 396 #define NUM_CRC_BYTES (2)
 397 #define NUM_DUMMY_BYTES (3)
 398         if (cmd == CMD_RESET ||
 399             cmd == CMD_TERMINATE ||
 400             cmd == CMD_REPEAT) {
 401                 len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
 402         } else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
 403                 int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES
 404                         + NUM_DUMMY_BYTES;
 405                 if (!spi_priv->crc_off)
 406                         len2 = len + tmp + NUM_CRC_BYTES;
 407                 else
 408                         len2 = len + tmp;
 409         } else {
 410                 len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
 411         }
 412 #undef NUM_DUMMY_BYTES
 413 
 414         if (len2 > ARRAY_SIZE(wb)) {
 415                 dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n",
 416                         len2, ARRAY_SIZE(wb));
 417                 return N_FAIL;
 418         }
 419         /* zero spi write buffers. */
 420         for (wix = len; wix < len2; wix++)
 421                 wb[wix] = 0;
 422         rix = len;
 423 
 424         if (wilc_spi_tx_rx(wilc, wb, rb, len2)) {
 425                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
 426                 return N_FAIL;
 427         }
 428 
 429         /*
 430          * Command/Control response
 431          */
 432         if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT)
 433                 rix++; /* skip 1 byte */
 434 
 435         rsp = rb[rix++];
 436 
 437         if (rsp != cmd) {
 438                 dev_err(&spi->dev,
 439                         "Failed cmd response, cmd (%02x), resp (%02x)\n",
 440                         cmd, rsp);
 441                 return N_FAIL;
 442         }
 443 
 444         /*
 445          * State response
 446          */
 447         rsp = rb[rix++];
 448         if (rsp != 0x00) {
 449                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
 450                         rsp);
 451                 return N_FAIL;
 452         }
 453 
 454         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ ||
 455             cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) {
 456                 /*
 457                  * Data Respnose header
 458                  */
 459                 retry = 100;
 460                 do {
 461                         /*
 462                          * ensure there is room in buffer later
 463                          * to read data and crc
 464                          */
 465                         if (rix < len2) {
 466                                 rsp = rb[rix++];
 467                         } else {
 468                                 retry = 0;
 469                                 break;
 470                         }
 471                         if (((rsp >> 4) & 0xf) == 0xf)
 472                                 break;
 473                 } while (retry--);
 474 
 475                 if (retry <= 0) {
 476                         dev_err(&spi->dev,
 477                                 "Error, data read response (%02x)\n", rsp);
 478                         return N_RESET;
 479                 }
 480         }
 481 
 482         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
 483                 /*
 484                  * Read bytes
 485                  */
 486                 if ((rix + 3) < len2) {
 487                         b[0] = rb[rix++];
 488                         b[1] = rb[rix++];
 489                         b[2] = rb[rix++];
 490                         b[3] = rb[rix++];
 491                 } else {
 492                         dev_err(&spi->dev,
 493                                 "buffer overrun when reading data.\n");
 494                         return N_FAIL;
 495                 }
 496 
 497                 if (!spi_priv->crc_off) {
 498                         /*
 499                          * Read Crc
 500                          */
 501                         if ((rix + 1) < len2) {
 502                                 crc[0] = rb[rix++];
 503                                 crc[1] = rb[rix++];
 504                         } else {
 505                                 dev_err(&spi->dev,
 506                                         "buffer overrun when reading crc.\n");
 507                                 return N_FAIL;
 508                         }
 509                 }
 510         } else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
 511                 int ix;
 512 
 513                 /* some data may be read in response to dummy bytes. */
 514                 for (ix = 0; (rix < len2) && (ix < sz); )
 515                         b[ix++] = rb[rix++];
 516 
 517                 sz -= ix;
 518 
 519                 if (sz > 0) {
 520                         int nbytes;
 521 
 522                         if (sz <= (DATA_PKT_SZ - ix))
 523                                 nbytes = sz;
 524                         else
 525                                 nbytes = DATA_PKT_SZ - ix;
 526 
 527                         /*
 528                          * Read bytes
 529                          */
 530                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
 531                                 dev_err(&spi->dev,
 532                                         "Failed block read, bus err\n");
 533                                 return N_FAIL;
 534                         }
 535 
 536                         /*
 537                          * Read Crc
 538                          */
 539                         if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
 540                                 dev_err(&spi->dev,
 541                                         "Failed block crc read, bus err\n");
 542                                 return N_FAIL;
 543                         }
 544 
 545                         ix += nbytes;
 546                         sz -= nbytes;
 547                 }
 548 
 549                 /*
 550                  * if any data in left unread,
 551                  * then read the rest using normal DMA code.
 552                  */
 553                 while (sz > 0) {
 554                         int nbytes;
 555 
 556                         if (sz <= DATA_PKT_SZ)
 557                                 nbytes = sz;
 558                         else
 559                                 nbytes = DATA_PKT_SZ;
 560 
 561                         /*
 562                          * read data response only on the next DMA cycles not
 563                          * the first DMA since data response header is already
 564                          * handled above for the first DMA.
 565                          */
 566                         /*
 567                          * Data Respnose header
 568                          */
 569                         retry = 10;
 570                         do {
 571                                 if (wilc_spi_rx(wilc, &rsp, 1)) {
 572                                         dev_err(&spi->dev,
 573                                                 "Failed resp read, bus err\n");
 574                                         result = N_FAIL;
 575                                         break;
 576                                 }
 577                                 if (((rsp >> 4) & 0xf) == 0xf)
 578                                         break;
 579                         } while (retry--);
 580 
 581                         if (result == N_FAIL)
 582                                 break;
 583 
 584                         /*
 585                          * Read bytes
 586                          */
 587                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
 588                                 dev_err(&spi->dev,
 589                                         "Failed block read, bus err\n");
 590                                 result = N_FAIL;
 591                                 break;
 592                         }
 593 
 594                         /*
 595                          * Read Crc
 596                          */
 597                         if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
 598                                 dev_err(&spi->dev,
 599                                         "Failed block crc read, bus err\n");
 600                                 result = N_FAIL;
 601                                 break;
 602                         }
 603 
 604                         ix += nbytes;
 605                         sz -= nbytes;
 606                 }
 607         }
 608         return result;
 609 }
 610 
 611 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
 612 {
 613         struct spi_device *spi = to_spi_device(wilc->dev);
 614         struct wilc_spi *spi_priv = wilc->bus_data;
 615         int ix, nbytes;
 616         int result = 1;
 617         u8 cmd, order, crc[2] = {0};
 618 
 619         /*
 620          * Data
 621          */
 622         ix = 0;
 623         do {
 624                 if (sz <= DATA_PKT_SZ) {
 625                         nbytes = sz;
 626                         order = 0x3;
 627                 } else {
 628                         nbytes = DATA_PKT_SZ;
 629                         if (ix == 0)
 630                                 order = 0x1;
 631                         else
 632                                 order = 0x02;
 633                 }
 634 
 635                 /*
 636                  * Write command
 637                  */
 638                 cmd = 0xf0;
 639                 cmd |= order;
 640 
 641                 if (wilc_spi_tx(wilc, &cmd, 1)) {
 642                         dev_err(&spi->dev,
 643                                 "Failed data block cmd write, bus error...\n");
 644                         result = N_FAIL;
 645                         break;
 646                 }
 647 
 648                 /*
 649                  * Write data
 650                  */
 651                 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
 652                         dev_err(&spi->dev,
 653                                 "Failed data block write, bus error...\n");
 654                         result = N_FAIL;
 655                         break;
 656                 }
 657 
 658                 /*
 659                  * Write Crc
 660                  */
 661                 if (!spi_priv->crc_off) {
 662                         if (wilc_spi_tx(wilc, crc, 2)) {
 663                                 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
 664                                 result = N_FAIL;
 665                                 break;
 666                         }
 667                 }
 668 
 669                 /*
 670                  * No need to wait for response
 671                  */
 672                 ix += nbytes;
 673                 sz -= nbytes;
 674         } while (sz);
 675 
 676         return result;
 677 }
 678 
 679 /********************************************
 680  *
 681  *      Spi Internal Read/Write Function
 682  *
 683  ********************************************/
 684 
 685 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
 686 {
 687         struct spi_device *spi = to_spi_device(wilc->dev);
 688         int result;
 689 
 690         cpu_to_le32s(&dat);
 691         result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4,
 692                                   0);
 693         if (result != N_OK)
 694                 dev_err(&spi->dev, "Failed internal write cmd...\n");
 695 
 696         return result;
 697 }
 698 
 699 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
 700 {
 701         struct spi_device *spi = to_spi_device(wilc->dev);
 702         int result;
 703 
 704         result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4,
 705                                   0);
 706         if (result != N_OK) {
 707                 dev_err(&spi->dev, "Failed internal read cmd...\n");
 708                 return 0;
 709         }
 710 
 711         le32_to_cpus(data);
 712 
 713         return 1;
 714 }
 715 
 716 /********************************************
 717  *
 718  *      Spi interfaces
 719  *
 720  ********************************************/
 721 
 722 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
 723 {
 724         struct spi_device *spi = to_spi_device(wilc->dev);
 725         int result = N_OK;
 726         u8 cmd = CMD_SINGLE_WRITE;
 727         u8 clockless = 0;
 728 
 729         cpu_to_le32s(&data);
 730         if (addr < 0x30) {
 731                 /* Clockless register */
 732                 cmd = CMD_INTERNAL_WRITE;
 733                 clockless = 1;
 734         }
 735 
 736         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless);
 737         if (result != N_OK)
 738                 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
 739 
 740         return result;
 741 }
 742 
 743 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
 744 {
 745         struct spi_device *spi = to_spi_device(wilc->dev);
 746         int result;
 747 
 748         /*
 749          * has to be greated than 4
 750          */
 751         if (size <= 4)
 752                 return 0;
 753 
 754         result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0);
 755         if (result != N_OK) {
 756                 dev_err(&spi->dev,
 757                         "Failed cmd, write block (%08x)...\n", addr);
 758                 return 0;
 759         }
 760 
 761         /*
 762          * Data
 763          */
 764         result = spi_data_write(wilc, buf, size);
 765         if (result != N_OK)
 766                 dev_err(&spi->dev, "Failed block data write...\n");
 767 
 768         return 1;
 769 }
 770 
 771 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
 772 {
 773         struct spi_device *spi = to_spi_device(wilc->dev);
 774         int result = N_OK;
 775         u8 cmd = CMD_SINGLE_READ;
 776         u8 clockless = 0;
 777 
 778         if (addr < 0x30) {
 779                 /* Clockless register */
 780                 cmd = CMD_INTERNAL_READ;
 781                 clockless = 1;
 782         }
 783 
 784         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless);
 785         if (result != N_OK) {
 786                 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
 787                 return 0;
 788         }
 789 
 790         le32_to_cpus(data);
 791 
 792         return 1;
 793 }
 794 
 795 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
 796 {
 797         struct spi_device *spi = to_spi_device(wilc->dev);
 798         int result;
 799 
 800         if (size <= 4)
 801                 return 0;
 802 
 803         result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0);
 804         if (result != N_OK) {
 805                 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
 806                 return 0;
 807         }
 808 
 809         return 1;
 810 }
 811 
 812 /********************************************
 813  *
 814  *      Bus interfaces
 815  *
 816  ********************************************/
 817 
 818 static int wilc_spi_deinit(struct wilc *wilc)
 819 {
 820         /*
 821          * TODO:
 822          */
 823         return 1;
 824 }
 825 
 826 static int wilc_spi_init(struct wilc *wilc, bool resume)
 827 {
 828         struct spi_device *spi = to_spi_device(wilc->dev);
 829         struct wilc_spi *spi_priv = wilc->bus_data;
 830         u32 reg;
 831         u32 chipid;
 832         static int isinit;
 833 
 834         if (isinit) {
 835                 if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
 836                         dev_err(&spi->dev, "Fail cmd read chip id...\n");
 837                         return 0;
 838                 }
 839                 return 1;
 840         }
 841 
 842         /*
 843          * configure protocol
 844          */
 845 
 846         /*
 847          * TODO: We can remove the CRC trials if there is a definite
 848          * way to reset
 849          */
 850         /* the SPI to it's initial value. */
 851         if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
 852                 /*
 853                  * Read failed. Try with CRC off. This might happen when module
 854                  * is removed but chip isn't reset
 855                  */
 856                 spi_priv->crc_off = 1;
 857                 dev_err(&spi->dev,
 858                         "Failed read with CRC on, retrying with CRC off\n");
 859                 if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
 860                         /*
 861                          * Read failed with both CRC on and off,
 862                          * something went bad
 863                          */
 864                         dev_err(&spi->dev, "Failed internal read protocol\n");
 865                         return 0;
 866                 }
 867         }
 868         if (spi_priv->crc_off == 0) {
 869                 reg &= ~0xc; /* disable crc checking */
 870                 reg &= ~0x70;
 871                 reg |= (0x5 << 4);
 872                 if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) {
 873                         dev_err(&spi->dev,
 874                                 "[wilc spi %d]: Failed internal write reg\n",
 875                                 __LINE__);
 876                         return 0;
 877                 }
 878                 spi_priv->crc_off = 1;
 879         }
 880 
 881         /*
 882          * make sure can read back chip id correctly
 883          */
 884         if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
 885                 dev_err(&spi->dev, "Fail cmd read chip id...\n");
 886                 return 0;
 887         }
 888 
 889         spi_priv->has_thrpt_enh = 1;
 890 
 891         isinit = 1;
 892 
 893         return 1;
 894 }
 895 
 896 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
 897 {
 898         struct spi_device *spi = to_spi_device(wilc->dev);
 899         struct wilc_spi *spi_priv = wilc->bus_data;
 900         int ret;
 901 
 902         if (spi_priv->has_thrpt_enh) {
 903                 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
 904                                         size);
 905                 *size = *size  & IRQ_DMA_WD_CNT_MASK;
 906         } else {
 907                 u32 tmp;
 908                 u32 byte_cnt;
 909 
 910                 ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE,
 911                                         &byte_cnt);
 912                 if (!ret) {
 913                         dev_err(&spi->dev,
 914                                 "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
 915                         return ret;
 916                 }
 917                 tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
 918                 *size = tmp;
 919         }
 920 
 921         return ret;
 922 }
 923 
 924 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
 925 {
 926         struct spi_device *spi = to_spi_device(wilc->dev);
 927         struct wilc_spi *spi_priv = wilc->bus_data;
 928         int ret;
 929         u32 tmp;
 930         u32 byte_cnt;
 931         bool unexpected_irq;
 932         int j;
 933         u32 unknown_mask;
 934         u32 irq_flags;
 935         int k = IRG_FLAGS_OFFSET + 5;
 936 
 937         if (spi_priv->has_thrpt_enh)
 938                 return spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
 939                                          int_status);
 940         ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt);
 941         if (!ret) {
 942                 dev_err(&spi->dev,
 943                         "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
 944                 return ret;
 945         }
 946         tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
 947 
 948         j = 0;
 949         do {
 950                 wilc_spi_read_reg(wilc, 0x1a90, &irq_flags);
 951                 tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET);
 952 
 953                 if (spi_priv->nint > 5) {
 954                         wilc_spi_read_reg(wilc, 0x1a94, &irq_flags);
 955                         tmp |= (((irq_flags >> 0) & 0x7) << k);
 956                 }
 957 
 958                 unknown_mask = ~((1ul << spi_priv->nint) - 1);
 959 
 960                 unexpected_irq = (tmp >> IRG_FLAGS_OFFSET) & unknown_mask;
 961                 if (unexpected_irq) {
 962                         dev_err(&spi->dev,
 963                                 "Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n",
 964                                 j, tmp, unknown_mask);
 965                 }
 966 
 967                 j++;
 968         } while (unexpected_irq);
 969 
 970         *int_status = tmp;
 971 
 972         return ret;
 973 }
 974 
 975 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
 976 {
 977         struct spi_device *spi = to_spi_device(wilc->dev);
 978         struct wilc_spi *spi_priv = wilc->bus_data;
 979         int ret;
 980         u32 flags;
 981         u32 tbl_ctl;
 982 
 983         if (spi_priv->has_thrpt_enh) {
 984                 return spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE,
 985                                           val);
 986         }
 987 
 988         flags = val & (BIT(MAX_NUM_INT) - 1);
 989         if (flags) {
 990                 int i;
 991 
 992                 ret = 1;
 993                 for (i = 0; i < spi_priv->nint; i++) {
 994                         /*
 995                          * No matter what you write 1 or 0,
 996                          * it will clear interrupt.
 997                          */
 998                         if (flags & 1)
 999                                 ret = wilc_spi_write_reg(wilc,
1000                                                          0x10c8 + i * 4, 1);
1001                         if (!ret)
1002                                 break;
1003                         flags >>= 1;
1004                 }
1005                 if (!ret) {
1006                         dev_err(&spi->dev,
1007                                 "Failed wilc_spi_write_reg, set reg %x ...\n",
1008                                 0x10c8 + i * 4);
1009                         return ret;
1010                 }
1011                 for (i = spi_priv->nint; i < MAX_NUM_INT; i++) {
1012                         if (flags & 1)
1013                                 dev_err(&spi->dev,
1014                                         "Unexpected interrupt cleared %d...\n",
1015                                         i);
1016                         flags >>= 1;
1017                 }
1018         }
1019 
1020         tbl_ctl = 0;
1021         /* select VMM table 0 */
1022         if (val & SEL_VMM_TBL0)
1023                 tbl_ctl |= BIT(0);
1024         /* select VMM table 1 */
1025         if (val & SEL_VMM_TBL1)
1026                 tbl_ctl |= BIT(1);
1027 
1028         ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl);
1029         if (!ret) {
1030                 dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n");
1031                 return ret;
1032         }
1033 
1034         if (val & EN_VMM) {
1035                 /*
1036                  * enable vmm transfer.
1037                  */
1038                 ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1);
1039                 if (!ret) {
1040                         dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n");
1041                         return ret;
1042                 }
1043         }
1044 
1045         return ret;
1046 }
1047 
1048 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1049 {
1050         struct spi_device *spi = to_spi_device(wilc->dev);
1051         struct wilc_spi *spi_priv = wilc->bus_data;
1052         u32 reg;
1053         int ret, i;
1054 
1055         if (nint > MAX_NUM_INT) {
1056                 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1057                 return 0;
1058         }
1059 
1060         spi_priv->nint = nint;
1061 
1062         /*
1063          * interrupt pin mux select
1064          */
1065         ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1066         if (!ret) {
1067                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1068                         WILC_PIN_MUX_0);
1069                 return 0;
1070         }
1071         reg |= BIT(8);
1072         ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1073         if (!ret) {
1074                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1075                         WILC_PIN_MUX_0);
1076                 return 0;
1077         }
1078 
1079         /*
1080          * interrupt enable
1081          */
1082         ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1083         if (!ret) {
1084                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1085                         WILC_INTR_ENABLE);
1086                 return 0;
1087         }
1088 
1089         for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1090                 reg |= (BIT((27 + i)));
1091 
1092         ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1093         if (!ret) {
1094                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1095                         WILC_INTR_ENABLE);
1096                 return 0;
1097         }
1098         if (nint) {
1099                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1100                 if (!ret) {
1101                         dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1102                                 WILC_INTR2_ENABLE);
1103                         return 0;
1104                 }
1105 
1106                 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1107                         reg |= BIT(i);
1108 
1109                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1110                 if (!ret) {
1111                         dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1112                                 WILC_INTR2_ENABLE);
1113                         return 0;
1114                 }
1115         }
1116 
1117         return 1;
1118 }
1119 
1120 /* Global spi HIF function table */
1121 static const struct wilc_hif_func wilc_hif_spi = {
1122         .hif_init = wilc_spi_init,
1123         .hif_deinit = wilc_spi_deinit,
1124         .hif_read_reg = wilc_spi_read_reg,
1125         .hif_write_reg = wilc_spi_write_reg,
1126         .hif_block_rx = wilc_spi_read,
1127         .hif_block_tx = wilc_spi_write,
1128         .hif_read_int = wilc_spi_read_int,
1129         .hif_clear_int_ext = wilc_spi_clear_int_ext,
1130         .hif_read_size = wilc_spi_read_size,
1131         .hif_block_tx_ext = wilc_spi_write,
1132         .hif_block_rx_ext = wilc_spi_read,
1133         .hif_sync_ext = wilc_spi_sync_ext,
1134 };

/* [<][>][^][v][top][bottom][index][help] */