root/drivers/staging/wusbcore/crypto.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. wusb_key_dump
  2. wusb_ccm_mac
  3. wusb_prf
  4. wusb_oob_mic_verify
  5. wusb_key_derive_verify
  6. wusb_crypto_init
  7. wusb_crypto_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Ultra Wide Band
   4  * AES-128 CCM Encryption
   5  *
   6  * Copyright (C) 2007 Intel Corporation
   7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   8  *
   9  * We don't do any encryption here; we use the Linux Kernel's AES-128
  10  * crypto modules to construct keys and payload blocks in a way
  11  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  12  * there.
  13  *
  14  * Thanks a zillion to John Keys for his help and clarifications over
  15  * the designed-by-a-committee text.
  16  *
  17  * So the idea is that there is this basic Pseudo-Random-Function
  18  * defined in WUSB1.0[6.5] which is the core of everything. It works
  19  * by tweaking some blocks, AES crypting them and then xoring
  20  * something else with them (this seems to be called CBC(AES) -- can
  21  * you tell I know jack about crypto?). So we just funnel it into the
  22  * Linux Crypto API.
  23  *
  24  * We leave a crypto test module so we can verify that vectors match,
  25  * every now and then.
  26  *
  27  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  28  *             am learning a lot...
  29  *
  30  *             Conveniently, some data structures that need to be
  31  *             funneled through AES are...16 bytes in size!
  32  */
  33 
  34 #include <crypto/aes.h>
  35 #include <crypto/algapi.h>
  36 #include <crypto/hash.h>
  37 #include <crypto/skcipher.h>
  38 #include <linux/crypto.h>
  39 #include <linux/module.h>
  40 #include <linux/err.h>
  41 #include <linux/slab.h>
  42 #include <linux/scatterlist.h>
  43 #include "../uwb/uwb.h"
  44 #include "include/wusb.h"
  45 
  46 static int debug_crypto_verify;
  47 
  48 module_param(debug_crypto_verify, int, 0);
  49 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  50 
  51 static void wusb_key_dump(const void *buf, size_t len)
  52 {
  53         print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
  54                        buf, len, 0);
  55 }
  56 
  57 /*
  58  * Block of data, as understood by AES-CCM
  59  *
  60  * The code assumes this structure is nothing but a 16 byte array
  61  * (packed in a struct to avoid common mess ups that I usually do with
  62  * arrays and enforcing type checking).
  63  */
  64 struct aes_ccm_block {
  65         u8 data[16];
  66 } __attribute__((packed));
  67 
  68 /*
  69  * Counter-mode Blocks (WUSB1.0[6.4])
  70  *
  71  * According to CCM (or so it seems), for the purpose of calculating
  72  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  73  * ... BN.
  74  *
  75  * B0 contains flags, the CCM nonce and l(m).
  76  *
  77  * B1 contains l(a), the MAC header, the encryption offset and padding.
  78  *
  79  * If EO is nonzero, additional blocks are built from payload bytes
  80  * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
  81  * padding is not xmitted.
  82  */
  83 
  84 /* WUSB1.0[T6.4] */
  85 struct aes_ccm_b0 {
  86         u8 flags;       /* 0x59, per CCM spec */
  87         struct aes_ccm_nonce ccm_nonce;
  88         __be16 lm;
  89 } __attribute__((packed));
  90 
  91 /* WUSB1.0[T6.5] */
  92 struct aes_ccm_b1 {
  93         __be16 la;
  94         u8 mac_header[10];
  95         __le16 eo;
  96         u8 security_reserved;   /* This is always zero */
  97         u8 padding;             /* 0 */
  98 } __attribute__((packed));
  99 
 100 /*
 101  * Encryption Blocks (WUSB1.0[6.4.4])
 102  *
 103  * CCM uses Ax blocks to generate a keystream with which the MIC and
 104  * the message's payload are encoded. A0 always encrypts/decrypts the
 105  * MIC. Ax (x>0) are used for the successive payload blocks.
 106  *
 107  * The x is the counter, and is increased for each block.
 108  */
 109 struct aes_ccm_a {
 110         u8 flags;       /* 0x01, per CCM spec */
 111         struct aes_ccm_nonce ccm_nonce;
 112         __be16 counter; /* Value of x */
 113 } __attribute__((packed));
 114 
 115 /* Scratch space for MAC calculations. */
 116 struct wusb_mac_scratch {
 117         struct aes_ccm_b0 b0;
 118         struct aes_ccm_b1 b1;
 119         struct aes_ccm_a ax;
 120 };
 121 
 122 /*
 123  * CC-MAC function WUSB1.0[6.5]
 124  *
 125  * Take a data string and produce the encrypted CBC Counter-mode MIC
 126  *
 127  * Note the names for most function arguments are made to (more or
 128  * less) match those used in the pseudo-function definition given in
 129  * WUSB1.0[6.5].
 130  *
 131  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 132  *
 133  * @tfm_aes: AES cipher handle (initialized)
 134  *
 135  * @mic: buffer for placing the computed MIC (Message Integrity
 136  *       Code). This is exactly 8 bytes, and we expect the buffer to
 137  *       be at least eight bytes in length.
 138  *
 139  * @key: 128 bit symmetric key
 140  *
 141  * @n: CCM nonce
 142  *
 143  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 144  *     we use exactly 14 bytes).
 145  *
 146  * @b: data stream to be processed
 147  *
 148  * @blen: size of b...
 149  *
 150  * Still not very clear how this is done, but looks like this: we
 151  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 152  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 153  * take the payload and divide it in blocks (16 bytes), xor them with
 154  * the previous crypto result (16 bytes) and crypt it, repeat the next
 155  * block with the output of the previous one, rinse wash. So we use
 156  * the CBC-MAC(AES) shash, that does precisely that. The IV (Initial
 157  * Vector) is 16 bytes and is set to zero, so
 158  *
 159  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 160  *     using the 14 bytes of @a to fill up
 161  *     b1.{mac_header,e0,security_reserved,padding}.
 162  *
 163  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
 164  *       l(m) is orthogonal, they bear no relationship, so it is not
 165  *       in conflict with the parameter's relation that
 166  *       WUSB1.0[6.4.2]) defines.
 167  *
 168  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 169  *       first errata released on 2005/07.
 170  *
 171  * NOTE: we need to clean IV to zero at each invocation to make sure
 172  *       we start with a fresh empty Initial Vector, so that the CBC
 173  *       works ok.
 174  *
 175  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 176  *       what sg[4] is for. Maybe there is a smarter way to do this.
 177  */
 178 static int wusb_ccm_mac(struct crypto_shash *tfm_cbcmac,
 179                         struct wusb_mac_scratch *scratch,
 180                         void *mic,
 181                         const struct aes_ccm_nonce *n,
 182                         const struct aes_ccm_label *a, const void *b,
 183                         size_t blen)
 184 {
 185         SHASH_DESC_ON_STACK(desc, tfm_cbcmac);
 186         u8 iv[AES_BLOCK_SIZE];
 187 
 188         /*
 189          * These checks should be compile time optimized out
 190          * ensure @a fills b1's mac_header and following fields
 191          */
 192         BUILD_BUG_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
 193         BUILD_BUG_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
 194         BUILD_BUG_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
 195         BUILD_BUG_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
 196 
 197         /* Setup B0 */
 198         scratch->b0.flags = 0x59;       /* Format B0 */
 199         scratch->b0.ccm_nonce = *n;
 200         scratch->b0.lm = cpu_to_be16(0);        /* WUSB1.0[6.5] sez l(m) is 0 */
 201 
 202         /* Setup B1
 203          *
 204          * The WUSB spec is anything but clear! WUSB1.0[6.5]
 205          * says that to initialize B1 from A with 'l(a) = blen +
 206          * 14'--after clarification, it means to use A's contents
 207          * for MAC Header, EO, sec reserved and padding.
 208          */
 209         scratch->b1.la = cpu_to_be16(blen + 14);
 210         memcpy(&scratch->b1.mac_header, a, sizeof(*a));
 211 
 212         desc->tfm = tfm_cbcmac;
 213         crypto_shash_init(desc);
 214         crypto_shash_update(desc, (u8 *)&scratch->b0, sizeof(scratch->b0) +
 215                                                       sizeof(scratch->b1));
 216         crypto_shash_finup(desc, b, blen, iv);
 217 
 218         /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
 219          * The procedure is to AES crypt the A0 block and XOR the MIC
 220          * Tag against it; we only do the first 8 bytes and place it
 221          * directly in the destination buffer.
 222          */
 223         scratch->ax.flags = 0x01;               /* as per WUSB 1.0 spec */
 224         scratch->ax.ccm_nonce = *n;
 225         scratch->ax.counter = 0;
 226 
 227         /* reuse the CBC-MAC transform to perform the single block encryption */
 228         crypto_shash_digest(desc, (u8 *)&scratch->ax, sizeof(scratch->ax),
 229                             (u8 *)&scratch->ax);
 230 
 231         crypto_xor_cpy(mic, (u8 *)&scratch->ax, iv, 8);
 232 
 233         return 8;
 234 }
 235 
 236 /*
 237  * WUSB Pseudo Random Function (WUSB1.0[6.5])
 238  *
 239  * @b: buffer to the source data; cannot be a global or const local
 240  *     (will confuse the scatterlists)
 241  */
 242 ssize_t wusb_prf(void *out, size_t out_size,
 243                  const u8 key[16], const struct aes_ccm_nonce *_n,
 244                  const struct aes_ccm_label *a,
 245                  const void *b, size_t blen, size_t len)
 246 {
 247         ssize_t result, bytes = 0, bitr;
 248         struct aes_ccm_nonce n = *_n;
 249         struct crypto_shash *tfm_cbcmac;
 250         struct wusb_mac_scratch scratch;
 251         u64 sfn = 0;
 252         __le64 sfn_le;
 253 
 254         tfm_cbcmac = crypto_alloc_shash("cbcmac(aes)", 0, 0);
 255         if (IS_ERR(tfm_cbcmac)) {
 256                 result = PTR_ERR(tfm_cbcmac);
 257                 printk(KERN_ERR "E: can't load CBCMAC-AES: %d\n", (int)result);
 258                 goto error_alloc_cbcmac;
 259         }
 260 
 261         result = crypto_shash_setkey(tfm_cbcmac, key, AES_BLOCK_SIZE);
 262         if (result < 0) {
 263                 printk(KERN_ERR "E: can't set CBCMAC-AES key: %d\n", (int)result);
 264                 goto error_setkey_cbcmac;
 265         }
 266 
 267         for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
 268                 sfn_le = cpu_to_le64(sfn++);
 269                 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
 270                 result = wusb_ccm_mac(tfm_cbcmac, &scratch, out + bytes,
 271                                       &n, a, b, blen);
 272                 if (result < 0)
 273                         goto error_ccm_mac;
 274                 bytes += result;
 275         }
 276         result = bytes;
 277 
 278 error_ccm_mac:
 279 error_setkey_cbcmac:
 280         crypto_free_shash(tfm_cbcmac);
 281 error_alloc_cbcmac:
 282         return result;
 283 }
 284 
 285 /* WUSB1.0[A.2] test vectors */
 286 static const u8 stv_hsmic_key[16] = {
 287         0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 288         0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 289 };
 290 
 291 static const struct aes_ccm_nonce stv_hsmic_n = {
 292         .sfn = { 0 },
 293         .tkid = { 0x76, 0x98, 0x01,  },
 294         .dest_addr = { .data = { 0xbe, 0x00 } },
 295                 .src_addr = { .data = { 0x76, 0x98 } },
 296 };
 297 
 298 /*
 299  * Out-of-band MIC Generation verification code
 300  *
 301  */
 302 static int wusb_oob_mic_verify(void)
 303 {
 304         int result;
 305         u8 mic[8];
 306         /* WUSB1.0[A.2] test vectors */
 307         static const struct usb_handshake stv_hsmic_hs = {
 308                 .bMessageNumber = 2,
 309                 .bStatus        = 00,
 310                 .tTKID          = { 0x76, 0x98, 0x01 },
 311                 .bReserved      = 00,
 312                 .CDID           = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
 313                                     0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
 314                                     0x3c, 0x3d, 0x3e, 0x3f },
 315                 .nonce          = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
 316                                     0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
 317                                     0x2c, 0x2d, 0x2e, 0x2f },
 318                 .MIC            = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
 319                                     0x14, 0x7b },
 320         };
 321         size_t hs_size;
 322 
 323         result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
 324         if (result < 0)
 325                 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
 326         else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
 327                 printk(KERN_ERR "E: OOB MIC test: "
 328                        "mismatch between MIC result and WUSB1.0[A2]\n");
 329                 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
 330                 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
 331                 wusb_key_dump(&stv_hsmic_hs, hs_size);
 332                 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
 333                        sizeof(stv_hsmic_n));
 334                 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
 335                 printk(KERN_ERR "E: MIC out:\n");
 336                 wusb_key_dump(mic, sizeof(mic));
 337                 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
 338                 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
 339                 result = -EINVAL;
 340         } else
 341                 result = 0;
 342         return result;
 343 }
 344 
 345 /*
 346  * Test vectors for Key derivation
 347  *
 348  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
 349  * (errata corrected in 2005/07).
 350  */
 351 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
 352         0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
 353         0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
 354 };
 355 
 356 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
 357         .sfn = { 0 },
 358         .tkid = { 0x76, 0x98, 0x01,  },
 359         .dest_addr = { .data = { 0xbe, 0x00 } },
 360         .src_addr = { .data = { 0x76, 0x98 } },
 361 };
 362 
 363 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
 364         .kck = {
 365                 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 366                 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 367         },
 368         .ptk = {
 369                 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
 370                 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
 371         }
 372 };
 373 
 374 /*
 375  * Performa a test to make sure we match the vectors defined in
 376  * WUSB1.0[A.1](Errata2006/12)
 377  */
 378 static int wusb_key_derive_verify(void)
 379 {
 380         int result = 0;
 381         struct wusb_keydvt_out keydvt_out;
 382         /* These come from WUSB1.0[A.1] + 2006/12 errata */
 383         static const struct wusb_keydvt_in stv_keydvt_in_a1 = {
 384                 .hnonce = {
 385                         0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 386                         0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 387                 },
 388                 .dnonce = {
 389                         0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
 390                         0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
 391                 }
 392         };
 393 
 394         result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
 395                                  &stv_keydvt_in_a1);
 396         if (result < 0)
 397                 printk(KERN_ERR "E: WUSB key derivation test: "
 398                        "derivation failed: %d\n", result);
 399         if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
 400                 printk(KERN_ERR "E: WUSB key derivation test: "
 401                        "mismatch between key derivation result "
 402                        "and WUSB1.0[A1] Errata 2006/12\n");
 403                 printk(KERN_ERR "E: keydvt in: key\n");
 404                 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
 405                 printk(KERN_ERR "E: keydvt in: nonce\n");
 406                 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
 407                 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
 408                 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
 409                 printk(KERN_ERR "E: keydvt out: KCK\n");
 410                 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
 411                 printk(KERN_ERR "E: keydvt out: PTK\n");
 412                 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
 413                 result = -EINVAL;
 414         } else
 415                 result = 0;
 416         return result;
 417 }
 418 
 419 /*
 420  * Initialize crypto system
 421  *
 422  * FIXME: we do nothing now, other than verifying. Later on we'll
 423  * cache the encryption stuff, so that's why we have a separate init.
 424  */
 425 int wusb_crypto_init(void)
 426 {
 427         int result;
 428 
 429         if (debug_crypto_verify) {
 430                 result = wusb_key_derive_verify();
 431                 if (result < 0)
 432                         return result;
 433                 return wusb_oob_mic_verify();
 434         }
 435         return 0;
 436 }
 437 
 438 void wusb_crypto_exit(void)
 439 {
 440         /* FIXME: free cached crypto transforms */
 441 }

/* [<][>][^][v][top][bottom][index][help] */