root/drivers/staging/comedi/drivers/icp_multi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. icp_multi_ai_eoc
  2. icp_multi_ai_insn_read
  3. icp_multi_ao_ready
  4. icp_multi_ao_insn_write
  5. icp_multi_di_insn_bits
  6. icp_multi_do_insn_bits
  7. icp_multi_reset
  8. icp_multi_auto_attach
  9. icp_multi_pci_probe

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * icp_multi.c
   4  * Comedi driver for Inova ICP_MULTI board
   5  *
   6  * COMEDI - Linux Control and Measurement Device Interface
   7  * Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
   8  */
   9 
  10 /*
  11  * Driver: icp_multi
  12  * Description: Inova ICP_MULTI
  13  * Devices: [Inova] ICP_MULTI (icp_multi)
  14  * Author: Anne Smorthit <anne.smorthit@sfwte.ch>
  15  * Status: works
  16  *
  17  * Configuration options: not applicable, uses PCI auto config
  18  *
  19  * The driver works for analog input and output and digital input and
  20  * output. It does not work with interrupts or with the counters. Currently
  21  * no support for DMA.
  22  *
  23  * It has 16 single-ended or 8 differential Analogue Input channels with
  24  * 12-bit resolution.  Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA.
  25  * Input ranges can be individually programmed for each channel.  Voltage or
  26  * current measurement is selected by jumper.
  27  *
  28  * There are 4 x 12-bit Analogue Outputs.  Ranges : 5V, 10V, +/-5V, +/-10V
  29  *
  30  * 16 x Digital Inputs, 24V
  31  *
  32  * 8 x Digital Outputs, 24V, 1A
  33  *
  34  * 4 x 16-bit counters - not implemented
  35  */
  36 
  37 #include <linux/module.h>
  38 #include <linux/delay.h>
  39 
  40 #include "../comedi_pci.h"
  41 
  42 #define ICP_MULTI_ADC_CSR       0x00    /* R/W: ADC command/status register */
  43 #define ICP_MULTI_ADC_CSR_ST    BIT(0)  /* Start ADC */
  44 #define ICP_MULTI_ADC_CSR_BSY   BIT(0)  /* ADC busy */
  45 #define ICP_MULTI_ADC_CSR_BI    BIT(4)  /* Bipolar input range */
  46 #define ICP_MULTI_ADC_CSR_RA    BIT(5)  /* Input range 0 = 5V, 1 = 10V */
  47 #define ICP_MULTI_ADC_CSR_DI    BIT(6)  /* Input mode 1 = differential */
  48 #define ICP_MULTI_ADC_CSR_DI_CHAN(x) (((x) & 0x7) << 9)
  49 #define ICP_MULTI_ADC_CSR_SE_CHAN(x) (((x) & 0xf) << 8)
  50 #define ICP_MULTI_AI            2       /* R:   Analogue input data */
  51 #define ICP_MULTI_DAC_CSR       0x04    /* R/W: DAC command/status register */
  52 #define ICP_MULTI_DAC_CSR_ST    BIT(0)  /* Start DAC */
  53 #define ICP_MULTI_DAC_CSR_BSY   BIT(0)  /* DAC busy */
  54 #define ICP_MULTI_DAC_CSR_BI    BIT(4)  /* Bipolar output range */
  55 #define ICP_MULTI_DAC_CSR_RA    BIT(5)  /* Output range 0 = 5V, 1 = 10V */
  56 #define ICP_MULTI_DAC_CSR_CHAN(x) (((x) & 0x3) << 8)
  57 #define ICP_MULTI_AO            6       /* R/W: Analogue output data */
  58 #define ICP_MULTI_DI            8       /* R/W: Digital inputs */
  59 #define ICP_MULTI_DO            0x0A    /* R/W: Digital outputs */
  60 #define ICP_MULTI_INT_EN        0x0c    /* R/W: Interrupt enable register */
  61 #define ICP_MULTI_INT_STAT      0x0e    /* R/W: Interrupt status register */
  62 #define ICP_MULTI_INT_ADC_RDY   BIT(0)  /* A/D conversion ready interrupt */
  63 #define ICP_MULTI_INT_DAC_RDY   BIT(1)  /* D/A conversion ready interrupt */
  64 #define ICP_MULTI_INT_DOUT_ERR  BIT(2)  /* Digital output error interrupt */
  65 #define ICP_MULTI_INT_DIN_STAT  BIT(3)  /* Digital input status change int. */
  66 #define ICP_MULTI_INT_CIE0      BIT(4)  /* Counter 0 overrun interrupt */
  67 #define ICP_MULTI_INT_CIE1      BIT(5)  /* Counter 1 overrun interrupt */
  68 #define ICP_MULTI_INT_CIE2      BIT(6)  /* Counter 2 overrun interrupt */
  69 #define ICP_MULTI_INT_CIE3      BIT(7)  /* Counter 3 overrun interrupt */
  70 #define ICP_MULTI_INT_MASK      0xff    /* All interrupts */
  71 #define ICP_MULTI_CNTR0         0x10    /* R/W: Counter 0 */
  72 #define ICP_MULTI_CNTR1         0x12    /* R/W: counter 1 */
  73 #define ICP_MULTI_CNTR2         0x14    /* R/W: Counter 2 */
  74 #define ICP_MULTI_CNTR3         0x16    /* R/W: Counter 3 */
  75 
  76 /* analog input and output have the same range options */
  77 static const struct comedi_lrange icp_multi_ranges = {
  78         4, {
  79                 UNI_RANGE(5),
  80                 UNI_RANGE(10),
  81                 BIP_RANGE(5),
  82                 BIP_RANGE(10)
  83         }
  84 };
  85 
  86 static const char range_codes_analog[] = { 0x00, 0x20, 0x10, 0x30 };
  87 
  88 static int icp_multi_ai_eoc(struct comedi_device *dev,
  89                             struct comedi_subdevice *s,
  90                             struct comedi_insn *insn,
  91                             unsigned long context)
  92 {
  93         unsigned int status;
  94 
  95         status = readw(dev->mmio + ICP_MULTI_ADC_CSR);
  96         if ((status & ICP_MULTI_ADC_CSR_BSY) == 0)
  97                 return 0;
  98         return -EBUSY;
  99 }
 100 
 101 static int icp_multi_ai_insn_read(struct comedi_device *dev,
 102                                   struct comedi_subdevice *s,
 103                                   struct comedi_insn *insn,
 104                                   unsigned int *data)
 105 {
 106         unsigned int chan = CR_CHAN(insn->chanspec);
 107         unsigned int range = CR_RANGE(insn->chanspec);
 108         unsigned int aref = CR_AREF(insn->chanspec);
 109         unsigned int adc_csr;
 110         int ret = 0;
 111         int n;
 112 
 113         /* Set mode and range data for specified channel */
 114         if (aref == AREF_DIFF) {
 115                 adc_csr = ICP_MULTI_ADC_CSR_DI_CHAN(chan) |
 116                           ICP_MULTI_ADC_CSR_DI;
 117         } else {
 118                 adc_csr = ICP_MULTI_ADC_CSR_SE_CHAN(chan);
 119         }
 120         adc_csr |= range_codes_analog[range];
 121         writew(adc_csr, dev->mmio + ICP_MULTI_ADC_CSR);
 122 
 123         for (n = 0; n < insn->n; n++) {
 124                 /*  Set start ADC bit */
 125                 writew(adc_csr | ICP_MULTI_ADC_CSR_ST,
 126                        dev->mmio + ICP_MULTI_ADC_CSR);
 127 
 128                 udelay(1);
 129 
 130                 /*  Wait for conversion to complete, or get fed up waiting */
 131                 ret = comedi_timeout(dev, s, insn, icp_multi_ai_eoc, 0);
 132                 if (ret)
 133                         break;
 134 
 135                 data[n] = (readw(dev->mmio + ICP_MULTI_AI) >> 4) & 0x0fff;
 136         }
 137 
 138         return ret ? ret : n;
 139 }
 140 
 141 static int icp_multi_ao_ready(struct comedi_device *dev,
 142                               struct comedi_subdevice *s,
 143                               struct comedi_insn *insn,
 144                               unsigned long context)
 145 {
 146         unsigned int status;
 147 
 148         status = readw(dev->mmio + ICP_MULTI_DAC_CSR);
 149         if ((status & ICP_MULTI_DAC_CSR_BSY) == 0)
 150                 return 0;
 151         return -EBUSY;
 152 }
 153 
 154 static int icp_multi_ao_insn_write(struct comedi_device *dev,
 155                                    struct comedi_subdevice *s,
 156                                    struct comedi_insn *insn,
 157                                    unsigned int *data)
 158 {
 159         unsigned int chan = CR_CHAN(insn->chanspec);
 160         unsigned int range = CR_RANGE(insn->chanspec);
 161         unsigned int dac_csr;
 162         int i;
 163 
 164         /* Select channel and range */
 165         dac_csr = ICP_MULTI_DAC_CSR_CHAN(chan);
 166         dac_csr |= range_codes_analog[range];
 167         writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
 168 
 169         for (i = 0; i < insn->n; i++) {
 170                 unsigned int val = data[i];
 171                 int ret;
 172 
 173                 /* Wait for analog output to be ready for new data */
 174                 ret = comedi_timeout(dev, s, insn, icp_multi_ao_ready, 0);
 175                 if (ret)
 176                         return ret;
 177 
 178                 writew(val, dev->mmio + ICP_MULTI_AO);
 179 
 180                 /* Set start conversion bit to write data to channel */
 181                 writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
 182                        dev->mmio + ICP_MULTI_DAC_CSR);
 183 
 184                 s->readback[chan] = val;
 185         }
 186 
 187         return insn->n;
 188 }
 189 
 190 static int icp_multi_di_insn_bits(struct comedi_device *dev,
 191                                   struct comedi_subdevice *s,
 192                                   struct comedi_insn *insn,
 193                                   unsigned int *data)
 194 {
 195         data[1] = readw(dev->mmio + ICP_MULTI_DI);
 196 
 197         return insn->n;
 198 }
 199 
 200 static int icp_multi_do_insn_bits(struct comedi_device *dev,
 201                                   struct comedi_subdevice *s,
 202                                   struct comedi_insn *insn,
 203                                   unsigned int *data)
 204 {
 205         if (comedi_dio_update_state(s, data))
 206                 writew(s->state, dev->mmio + ICP_MULTI_DO);
 207 
 208         data[1] = s->state;
 209 
 210         return insn->n;
 211 }
 212 
 213 static int icp_multi_reset(struct comedi_device *dev)
 214 {
 215         int i;
 216 
 217         /* Disable all interrupts and clear any requests */
 218         writew(0, dev->mmio + ICP_MULTI_INT_EN);
 219         writew(ICP_MULTI_INT_MASK, dev->mmio + ICP_MULTI_INT_STAT);
 220 
 221         /* Reset the analog output channels to 0V */
 222         for (i = 0; i < 4; i++) {
 223                 unsigned int dac_csr = ICP_MULTI_DAC_CSR_CHAN(i);
 224 
 225                 /* Select channel and 0..5V range */
 226                 writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
 227 
 228                 /* Output 0V */
 229                 writew(0, dev->mmio + ICP_MULTI_AO);
 230 
 231                 /* Set start conversion bit to write data to channel */
 232                 writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
 233                        dev->mmio + ICP_MULTI_DAC_CSR);
 234                 udelay(1);
 235         }
 236 
 237         /* Digital outputs to 0 */
 238         writew(0, dev->mmio + ICP_MULTI_DO);
 239 
 240         return 0;
 241 }
 242 
 243 static int icp_multi_auto_attach(struct comedi_device *dev,
 244                                  unsigned long context_unused)
 245 {
 246         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
 247         struct comedi_subdevice *s;
 248         int ret;
 249 
 250         ret = comedi_pci_enable(dev);
 251         if (ret)
 252                 return ret;
 253 
 254         dev->mmio = pci_ioremap_bar(pcidev, 2);
 255         if (!dev->mmio)
 256                 return -ENOMEM;
 257 
 258         ret = comedi_alloc_subdevices(dev, 4);
 259         if (ret)
 260                 return ret;
 261 
 262         icp_multi_reset(dev);
 263 
 264         /* Analog Input subdevice */
 265         s = &dev->subdevices[0];
 266         s->type         = COMEDI_SUBD_AI;
 267         s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_GROUND | SDF_DIFF;
 268         s->n_chan       = 16;
 269         s->maxdata      = 0x0fff;
 270         s->range_table  = &icp_multi_ranges;
 271         s->insn_read    = icp_multi_ai_insn_read;
 272 
 273         /* Analog Output subdevice */
 274         s = &dev->subdevices[1];
 275         s->type         = COMEDI_SUBD_AO;
 276         s->subdev_flags = SDF_WRITABLE | SDF_GROUND | SDF_COMMON;
 277         s->n_chan       = 4;
 278         s->maxdata      = 0x0fff;
 279         s->range_table  = &icp_multi_ranges;
 280         s->insn_write   = icp_multi_ao_insn_write;
 281 
 282         ret = comedi_alloc_subdev_readback(s);
 283         if (ret)
 284                 return ret;
 285 
 286         /* Digital Input subdevice */
 287         s = &dev->subdevices[2];
 288         s->type         = COMEDI_SUBD_DI;
 289         s->subdev_flags = SDF_READABLE;
 290         s->n_chan       = 16;
 291         s->maxdata      = 1;
 292         s->range_table  = &range_digital;
 293         s->insn_bits    = icp_multi_di_insn_bits;
 294 
 295         /* Digital Output subdevice */
 296         s = &dev->subdevices[3];
 297         s->type         = COMEDI_SUBD_DO;
 298         s->subdev_flags = SDF_WRITABLE;
 299         s->n_chan       = 8;
 300         s->maxdata      = 1;
 301         s->range_table  = &range_digital;
 302         s->insn_bits    = icp_multi_do_insn_bits;
 303 
 304         return 0;
 305 }
 306 
 307 static struct comedi_driver icp_multi_driver = {
 308         .driver_name    = "icp_multi",
 309         .module         = THIS_MODULE,
 310         .auto_attach    = icp_multi_auto_attach,
 311         .detach         = comedi_pci_detach,
 312 };
 313 
 314 static int icp_multi_pci_probe(struct pci_dev *dev,
 315                                const struct pci_device_id *id)
 316 {
 317         return comedi_pci_auto_config(dev, &icp_multi_driver, id->driver_data);
 318 }
 319 
 320 static const struct pci_device_id icp_multi_pci_table[] = {
 321         { PCI_DEVICE(PCI_VENDOR_ID_ICP, 0x8000) },
 322         { 0 }
 323 };
 324 MODULE_DEVICE_TABLE(pci, icp_multi_pci_table);
 325 
 326 static struct pci_driver icp_multi_pci_driver = {
 327         .name           = "icp_multi",
 328         .id_table       = icp_multi_pci_table,
 329         .probe          = icp_multi_pci_probe,
 330         .remove         = comedi_pci_auto_unconfig,
 331 };
 332 module_comedi_pci_driver(icp_multi_driver, icp_multi_pci_driver);
 333 
 334 MODULE_AUTHOR("Comedi http://www.comedi.org");
 335 MODULE_DESCRIPTION("Comedi driver for Inova ICP_MULTI board");
 336 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */