root/arch/mips/include/asm/mmu_context.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. asid_version_mask
  2. asid_first_version
  3. cpu_context
  4. set_cpu_context
  5. enter_lazy_tlb
  6. init_new_context
  7. switch_mm
  8. destroy_context
  9. drop_mmu_context

   1 /*
   2  * Switch a MMU context.
   3  *
   4  * This file is subject to the terms and conditions of the GNU General Public
   5  * License.  See the file "COPYING" in the main directory of this archive
   6  * for more details.
   7  *
   8  * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
   9  * Copyright (C) 1999 Silicon Graphics, Inc.
  10  */
  11 #ifndef _ASM_MMU_CONTEXT_H
  12 #define _ASM_MMU_CONTEXT_H
  13 
  14 #include <linux/errno.h>
  15 #include <linux/sched.h>
  16 #include <linux/mm_types.h>
  17 #include <linux/smp.h>
  18 #include <linux/slab.h>
  19 
  20 #include <asm/barrier.h>
  21 #include <asm/cacheflush.h>
  22 #include <asm/dsemul.h>
  23 #include <asm/ginvt.h>
  24 #include <asm/hazards.h>
  25 #include <asm/tlbflush.h>
  26 #include <asm-generic/mm_hooks.h>
  27 
  28 #define htw_set_pwbase(pgd)                                             \
  29 do {                                                                    \
  30         if (cpu_has_htw) {                                              \
  31                 write_c0_pwbase(pgd);                                   \
  32                 back_to_back_c0_hazard();                               \
  33         }                                                               \
  34 } while (0)
  35 
  36 extern void tlbmiss_handler_setup_pgd(unsigned long);
  37 extern char tlbmiss_handler_setup_pgd_end[];
  38 
  39 /* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
  40 #define TLBMISS_HANDLER_SETUP_PGD(pgd)                                  \
  41 do {                                                                    \
  42         tlbmiss_handler_setup_pgd((unsigned long)(pgd));                \
  43         htw_set_pwbase((unsigned long)pgd);                             \
  44 } while (0)
  45 
  46 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  47 
  48 #define TLBMISS_HANDLER_RESTORE()                                       \
  49         write_c0_xcontext((unsigned long) smp_processor_id() <<         \
  50                           SMP_CPUID_REGSHIFT)
  51 
  52 #define TLBMISS_HANDLER_SETUP()                                         \
  53         do {                                                            \
  54                 TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);              \
  55                 TLBMISS_HANDLER_RESTORE();                              \
  56         } while (0)
  57 
  58 #else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
  59 
  60 /*
  61  * For the fast tlb miss handlers, we keep a per cpu array of pointers
  62  * to the current pgd for each processor. Also, the proc. id is stuffed
  63  * into the context register.
  64  */
  65 extern unsigned long pgd_current[];
  66 
  67 #define TLBMISS_HANDLER_RESTORE()                                       \
  68         write_c0_context((unsigned long) smp_processor_id() <<          \
  69                          SMP_CPUID_REGSHIFT)
  70 
  71 #define TLBMISS_HANDLER_SETUP()                                         \
  72         TLBMISS_HANDLER_RESTORE();                                      \
  73         back_to_back_c0_hazard();                                       \
  74         TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
  75 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
  76 
  77 /*
  78  * The ginvt instruction will invalidate wired entries when its type field
  79  * targets anything other than the entire TLB. That means that if we were to
  80  * allow the kernel to create wired entries with the MMID of current->active_mm
  81  * then those wired entries could be invalidated when we later use ginvt to
  82  * invalidate TLB entries with that MMID.
  83  *
  84  * In order to prevent ginvt from trashing wired entries, we reserve one MMID
  85  * for use by the kernel when creating wired entries. This MMID will never be
  86  * assigned to a struct mm, and we'll never target it with a ginvt instruction.
  87  */
  88 #define MMID_KERNEL_WIRED       0
  89 
  90 /*
  91  *  All unused by hardware upper bits will be considered
  92  *  as a software asid extension.
  93  */
  94 static inline u64 asid_version_mask(unsigned int cpu)
  95 {
  96         unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
  97 
  98         return ~(u64)(asid_mask | (asid_mask - 1));
  99 }
 100 
 101 static inline u64 asid_first_version(unsigned int cpu)
 102 {
 103         return ~asid_version_mask(cpu) + 1;
 104 }
 105 
 106 static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
 107 {
 108         if (cpu_has_mmid)
 109                 return atomic64_read(&mm->context.mmid);
 110 
 111         return mm->context.asid[cpu];
 112 }
 113 
 114 static inline void set_cpu_context(unsigned int cpu,
 115                                    struct mm_struct *mm, u64 ctx)
 116 {
 117         if (cpu_has_mmid)
 118                 atomic64_set(&mm->context.mmid, ctx);
 119         else
 120                 mm->context.asid[cpu] = ctx;
 121 }
 122 
 123 #define asid_cache(cpu)         (cpu_data[cpu].asid_cache)
 124 #define cpu_asid(cpu, mm) \
 125         (cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
 126 
 127 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 128 {
 129 }
 130 
 131 extern void get_new_mmu_context(struct mm_struct *mm);
 132 extern void check_mmu_context(struct mm_struct *mm);
 133 extern void check_switch_mmu_context(struct mm_struct *mm);
 134 
 135 /*
 136  * Initialize the context related info for a new mm_struct
 137  * instance.
 138  */
 139 static inline int
 140 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 141 {
 142         int i;
 143 
 144         if (cpu_has_mmid) {
 145                 set_cpu_context(0, mm, 0);
 146         } else {
 147                 for_each_possible_cpu(i)
 148                         set_cpu_context(i, mm, 0);
 149         }
 150 
 151         mm->context.bd_emupage_allocmap = NULL;
 152         spin_lock_init(&mm->context.bd_emupage_lock);
 153         init_waitqueue_head(&mm->context.bd_emupage_queue);
 154 
 155         return 0;
 156 }
 157 
 158 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 159                              struct task_struct *tsk)
 160 {
 161         unsigned int cpu = smp_processor_id();
 162         unsigned long flags;
 163         local_irq_save(flags);
 164 
 165         htw_stop();
 166         check_switch_mmu_context(next);
 167 
 168         /*
 169          * Mark current->active_mm as not "active" anymore.
 170          * We don't want to mislead possible IPI tlb flush routines.
 171          */
 172         cpumask_clear_cpu(cpu, mm_cpumask(prev));
 173         cpumask_set_cpu(cpu, mm_cpumask(next));
 174         htw_start();
 175 
 176         local_irq_restore(flags);
 177 }
 178 
 179 /*
 180  * Destroy context related info for an mm_struct that is about
 181  * to be put to rest.
 182  */
 183 static inline void destroy_context(struct mm_struct *mm)
 184 {
 185         dsemul_mm_cleanup(mm);
 186 }
 187 
 188 #define activate_mm(prev, next) switch_mm(prev, next, current)
 189 #define deactivate_mm(tsk, mm)  do { } while (0)
 190 
 191 static inline void
 192 drop_mmu_context(struct mm_struct *mm)
 193 {
 194         unsigned long flags;
 195         unsigned int cpu;
 196         u32 old_mmid;
 197         u64 ctx;
 198 
 199         local_irq_save(flags);
 200 
 201         cpu = smp_processor_id();
 202         ctx = cpu_context(cpu, mm);
 203 
 204         if (!ctx) {
 205                 /* no-op */
 206         } else if (cpu_has_mmid) {
 207                 /*
 208                  * Globally invalidating TLB entries associated with the MMID
 209                  * is pretty cheap using the GINVT instruction, so we'll do
 210                  * that rather than incur the overhead of allocating a new
 211                  * MMID. The latter would be especially difficult since MMIDs
 212                  * are global & other CPUs may be actively using ctx.
 213                  */
 214                 htw_stop();
 215                 old_mmid = read_c0_memorymapid();
 216                 write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
 217                 mtc0_tlbw_hazard();
 218                 ginvt_mmid();
 219                 sync_ginv();
 220                 write_c0_memorymapid(old_mmid);
 221                 instruction_hazard();
 222                 htw_start();
 223         } else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
 224                 /*
 225                  * mm is currently active, so we can't really drop it.
 226                  * Instead we bump the ASID.
 227                  */
 228                 htw_stop();
 229                 get_new_mmu_context(mm);
 230                 write_c0_entryhi(cpu_asid(cpu, mm));
 231                 htw_start();
 232         } else {
 233                 /* will get a new context next time */
 234                 set_cpu_context(cpu, mm, 0);
 235         }
 236 
 237         local_irq_restore(flags);
 238 }
 239 
 240 #endif /* _ASM_MMU_CONTEXT_H */

/* [<][>][^][v][top][bottom][index][help] */