root/drivers/vme/vme.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dev_to_vme_dev
  2. find_bridge
  3. vme_alloc_consistent
  4. vme_free_consistent
  5. vme_get_size
  6. vme_check_window
  7. vme_get_aspace
  8. vme_slave_request
  9. vme_slave_set
  10. vme_slave_get
  11. vme_slave_free
  12. vme_master_request
  13. vme_master_set
  14. vme_master_get
  15. vme_master_read
  16. vme_master_write
  17. vme_master_rmw
  18. vme_master_mmap
  19. vme_master_free
  20. vme_dma_request
  21. vme_new_dma_list
  22. vme_dma_pattern_attribute
  23. vme_dma_pci_attribute
  24. vme_dma_vme_attribute
  25. vme_dma_free_attribute
  26. vme_dma_list_add
  27. vme_dma_list_exec
  28. vme_dma_list_free
  29. vme_dma_free
  30. vme_bus_error_handler
  31. vme_register_error_handler
  32. vme_unregister_error_handler
  33. vme_irq_handler
  34. vme_irq_request
  35. vme_irq_free
  36. vme_irq_generate
  37. vme_lm_request
  38. vme_lm_count
  39. vme_lm_set
  40. vme_lm_get
  41. vme_lm_attach
  42. vme_lm_detach
  43. vme_lm_free
  44. vme_slot_num
  45. vme_bus_num
  46. vme_dev_release
  47. vme_init_bridge
  48. vme_register_bridge
  49. vme_unregister_bridge
  50. __vme_register_driver_bus
  51. __vme_register_driver
  52. vme_register_driver
  53. vme_unregister_driver
  54. vme_bus_match
  55. vme_bus_probe
  56. vme_bus_remove
  57. vme_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * VME Bridge Framework
   4  *
   5  * Author: Martyn Welch <martyn.welch@ge.com>
   6  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
   7  *
   8  * Based on work by Tom Armistead and Ajit Prem
   9  * Copyright 2004 Motorola Inc.
  10  */
  11 
  12 #include <linux/init.h>
  13 #include <linux/export.h>
  14 #include <linux/mm.h>
  15 #include <linux/types.h>
  16 #include <linux/kernel.h>
  17 #include <linux/errno.h>
  18 #include <linux/pci.h>
  19 #include <linux/poll.h>
  20 #include <linux/highmem.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/pagemap.h>
  23 #include <linux/device.h>
  24 #include <linux/dma-mapping.h>
  25 #include <linux/syscalls.h>
  26 #include <linux/mutex.h>
  27 #include <linux/spinlock.h>
  28 #include <linux/slab.h>
  29 #include <linux/vme.h>
  30 
  31 #include "vme_bridge.h"
  32 
  33 /* Bitmask and list of registered buses both protected by common mutex */
  34 static unsigned int vme_bus_numbers;
  35 static LIST_HEAD(vme_bus_list);
  36 static DEFINE_MUTEX(vme_buses_lock);
  37 
  38 static int __init vme_init(void);
  39 
  40 static struct vme_dev *dev_to_vme_dev(struct device *dev)
  41 {
  42         return container_of(dev, struct vme_dev, dev);
  43 }
  44 
  45 /*
  46  * Find the bridge that the resource is associated with.
  47  */
  48 static struct vme_bridge *find_bridge(struct vme_resource *resource)
  49 {
  50         /* Get list to search */
  51         switch (resource->type) {
  52         case VME_MASTER:
  53                 return list_entry(resource->entry, struct vme_master_resource,
  54                         list)->parent;
  55                 break;
  56         case VME_SLAVE:
  57                 return list_entry(resource->entry, struct vme_slave_resource,
  58                         list)->parent;
  59                 break;
  60         case VME_DMA:
  61                 return list_entry(resource->entry, struct vme_dma_resource,
  62                         list)->parent;
  63                 break;
  64         case VME_LM:
  65                 return list_entry(resource->entry, struct vme_lm_resource,
  66                         list)->parent;
  67                 break;
  68         default:
  69                 printk(KERN_ERR "Unknown resource type\n");
  70                 return NULL;
  71                 break;
  72         }
  73 }
  74 
  75 /**
  76  * vme_free_consistent - Allocate contiguous memory.
  77  * @resource: Pointer to VME resource.
  78  * @size: Size of allocation required.
  79  * @dma: Pointer to variable to store physical address of allocation.
  80  *
  81  * Allocate a contiguous block of memory for use by the driver. This is used to
  82  * create the buffers for the slave windows.
  83  *
  84  * Return: Virtual address of allocation on success, NULL on failure.
  85  */
  86 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
  87         dma_addr_t *dma)
  88 {
  89         struct vme_bridge *bridge;
  90 
  91         if (!resource) {
  92                 printk(KERN_ERR "No resource\n");
  93                 return NULL;
  94         }
  95 
  96         bridge = find_bridge(resource);
  97         if (!bridge) {
  98                 printk(KERN_ERR "Can't find bridge\n");
  99                 return NULL;
 100         }
 101 
 102         if (!bridge->parent) {
 103                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
 104                 return NULL;
 105         }
 106 
 107         if (!bridge->alloc_consistent) {
 108                 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
 109                        bridge->name);
 110                 return NULL;
 111         }
 112 
 113         return bridge->alloc_consistent(bridge->parent, size, dma);
 114 }
 115 EXPORT_SYMBOL(vme_alloc_consistent);
 116 
 117 /**
 118  * vme_free_consistent - Free previously allocated memory.
 119  * @resource: Pointer to VME resource.
 120  * @size: Size of allocation to free.
 121  * @vaddr: Virtual address of allocation.
 122  * @dma: Physical address of allocation.
 123  *
 124  * Free previously allocated block of contiguous memory.
 125  */
 126 void vme_free_consistent(struct vme_resource *resource, size_t size,
 127         void *vaddr, dma_addr_t dma)
 128 {
 129         struct vme_bridge *bridge;
 130 
 131         if (!resource) {
 132                 printk(KERN_ERR "No resource\n");
 133                 return;
 134         }
 135 
 136         bridge = find_bridge(resource);
 137         if (!bridge) {
 138                 printk(KERN_ERR "Can't find bridge\n");
 139                 return;
 140         }
 141 
 142         if (!bridge->parent) {
 143                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
 144                 return;
 145         }
 146 
 147         if (!bridge->free_consistent) {
 148                 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
 149                        bridge->name);
 150                 return;
 151         }
 152 
 153         bridge->free_consistent(bridge->parent, size, vaddr, dma);
 154 }
 155 EXPORT_SYMBOL(vme_free_consistent);
 156 
 157 /**
 158  * vme_get_size - Helper function returning size of a VME window
 159  * @resource: Pointer to VME slave or master resource.
 160  *
 161  * Determine the size of the VME window provided. This is a helper
 162  * function, wrappering the call to vme_master_get or vme_slave_get
 163  * depending on the type of window resource handed to it.
 164  *
 165  * Return: Size of the window on success, zero on failure.
 166  */
 167 size_t vme_get_size(struct vme_resource *resource)
 168 {
 169         int enabled, retval;
 170         unsigned long long base, size;
 171         dma_addr_t buf_base;
 172         u32 aspace, cycle, dwidth;
 173 
 174         switch (resource->type) {
 175         case VME_MASTER:
 176                 retval = vme_master_get(resource, &enabled, &base, &size,
 177                         &aspace, &cycle, &dwidth);
 178                 if (retval)
 179                         return 0;
 180 
 181                 return size;
 182                 break;
 183         case VME_SLAVE:
 184                 retval = vme_slave_get(resource, &enabled, &base, &size,
 185                         &buf_base, &aspace, &cycle);
 186                 if (retval)
 187                         return 0;
 188 
 189                 return size;
 190                 break;
 191         case VME_DMA:
 192                 return 0;
 193                 break;
 194         default:
 195                 printk(KERN_ERR "Unknown resource type\n");
 196                 return 0;
 197                 break;
 198         }
 199 }
 200 EXPORT_SYMBOL(vme_get_size);
 201 
 202 int vme_check_window(u32 aspace, unsigned long long vme_base,
 203                      unsigned long long size)
 204 {
 205         int retval = 0;
 206 
 207         if (vme_base + size < size)
 208                 return -EINVAL;
 209 
 210         switch (aspace) {
 211         case VME_A16:
 212                 if (vme_base + size > VME_A16_MAX)
 213                         retval = -EFAULT;
 214                 break;
 215         case VME_A24:
 216                 if (vme_base + size > VME_A24_MAX)
 217                         retval = -EFAULT;
 218                 break;
 219         case VME_A32:
 220                 if (vme_base + size > VME_A32_MAX)
 221                         retval = -EFAULT;
 222                 break;
 223         case VME_A64:
 224                 /* The VME_A64_MAX limit is actually U64_MAX + 1 */
 225                 break;
 226         case VME_CRCSR:
 227                 if (vme_base + size > VME_CRCSR_MAX)
 228                         retval = -EFAULT;
 229                 break;
 230         case VME_USER1:
 231         case VME_USER2:
 232         case VME_USER3:
 233         case VME_USER4:
 234                 /* User Defined */
 235                 break;
 236         default:
 237                 printk(KERN_ERR "Invalid address space\n");
 238                 retval = -EINVAL;
 239                 break;
 240         }
 241 
 242         return retval;
 243 }
 244 EXPORT_SYMBOL(vme_check_window);
 245 
 246 static u32 vme_get_aspace(int am)
 247 {
 248         switch (am) {
 249         case 0x29:
 250         case 0x2D:
 251                 return VME_A16;
 252         case 0x38:
 253         case 0x39:
 254         case 0x3A:
 255         case 0x3B:
 256         case 0x3C:
 257         case 0x3D:
 258         case 0x3E:
 259         case 0x3F:
 260                 return VME_A24;
 261         case 0x8:
 262         case 0x9:
 263         case 0xA:
 264         case 0xB:
 265         case 0xC:
 266         case 0xD:
 267         case 0xE:
 268         case 0xF:
 269                 return VME_A32;
 270         case 0x0:
 271         case 0x1:
 272         case 0x3:
 273                 return VME_A64;
 274         }
 275 
 276         return 0;
 277 }
 278 
 279 /**
 280  * vme_slave_request - Request a VME slave window resource.
 281  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 282  * @address: Required VME address space.
 283  * @cycle: Required VME data transfer cycle type.
 284  *
 285  * Request use of a VME window resource capable of being set for the requested
 286  * address space and data transfer cycle.
 287  *
 288  * Return: Pointer to VME resource on success, NULL on failure.
 289  */
 290 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
 291         u32 cycle)
 292 {
 293         struct vme_bridge *bridge;
 294         struct list_head *slave_pos = NULL;
 295         struct vme_slave_resource *allocated_image = NULL;
 296         struct vme_slave_resource *slave_image = NULL;
 297         struct vme_resource *resource = NULL;
 298 
 299         bridge = vdev->bridge;
 300         if (!bridge) {
 301                 printk(KERN_ERR "Can't find VME bus\n");
 302                 goto err_bus;
 303         }
 304 
 305         /* Loop through slave resources */
 306         list_for_each(slave_pos, &bridge->slave_resources) {
 307                 slave_image = list_entry(slave_pos,
 308                         struct vme_slave_resource, list);
 309 
 310                 if (!slave_image) {
 311                         printk(KERN_ERR "Registered NULL Slave resource\n");
 312                         continue;
 313                 }
 314 
 315                 /* Find an unlocked and compatible image */
 316                 mutex_lock(&slave_image->mtx);
 317                 if (((slave_image->address_attr & address) == address) &&
 318                         ((slave_image->cycle_attr & cycle) == cycle) &&
 319                         (slave_image->locked == 0)) {
 320 
 321                         slave_image->locked = 1;
 322                         mutex_unlock(&slave_image->mtx);
 323                         allocated_image = slave_image;
 324                         break;
 325                 }
 326                 mutex_unlock(&slave_image->mtx);
 327         }
 328 
 329         /* No free image */
 330         if (!allocated_image)
 331                 goto err_image;
 332 
 333         resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 334         if (!resource)
 335                 goto err_alloc;
 336 
 337         resource->type = VME_SLAVE;
 338         resource->entry = &allocated_image->list;
 339 
 340         return resource;
 341 
 342 err_alloc:
 343         /* Unlock image */
 344         mutex_lock(&slave_image->mtx);
 345         slave_image->locked = 0;
 346         mutex_unlock(&slave_image->mtx);
 347 err_image:
 348 err_bus:
 349         return NULL;
 350 }
 351 EXPORT_SYMBOL(vme_slave_request);
 352 
 353 /**
 354  * vme_slave_set - Set VME slave window configuration.
 355  * @resource: Pointer to VME slave resource.
 356  * @enabled: State to which the window should be configured.
 357  * @vme_base: Base address for the window.
 358  * @size: Size of the VME window.
 359  * @buf_base: Based address of buffer used to provide VME slave window storage.
 360  * @aspace: VME address space for the VME window.
 361  * @cycle: VME data transfer cycle type for the VME window.
 362  *
 363  * Set configuration for provided VME slave window.
 364  *
 365  * Return: Zero on success, -EINVAL if operation is not supported on this
 366  *         device, if an invalid resource has been provided or invalid
 367  *         attributes are provided. Hardware specific errors may also be
 368  *         returned.
 369  */
 370 int vme_slave_set(struct vme_resource *resource, int enabled,
 371         unsigned long long vme_base, unsigned long long size,
 372         dma_addr_t buf_base, u32 aspace, u32 cycle)
 373 {
 374         struct vme_bridge *bridge = find_bridge(resource);
 375         struct vme_slave_resource *image;
 376         int retval;
 377 
 378         if (resource->type != VME_SLAVE) {
 379                 printk(KERN_ERR "Not a slave resource\n");
 380                 return -EINVAL;
 381         }
 382 
 383         image = list_entry(resource->entry, struct vme_slave_resource, list);
 384 
 385         if (!bridge->slave_set) {
 386                 printk(KERN_ERR "Function not supported\n");
 387                 return -ENOSYS;
 388         }
 389 
 390         if (!(((image->address_attr & aspace) == aspace) &&
 391                 ((image->cycle_attr & cycle) == cycle))) {
 392                 printk(KERN_ERR "Invalid attributes\n");
 393                 return -EINVAL;
 394         }
 395 
 396         retval = vme_check_window(aspace, vme_base, size);
 397         if (retval)
 398                 return retval;
 399 
 400         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
 401                 aspace, cycle);
 402 }
 403 EXPORT_SYMBOL(vme_slave_set);
 404 
 405 /**
 406  * vme_slave_get - Retrieve VME slave window configuration.
 407  * @resource: Pointer to VME slave resource.
 408  * @enabled: Pointer to variable for storing state.
 409  * @vme_base: Pointer to variable for storing window base address.
 410  * @size: Pointer to variable for storing window size.
 411  * @buf_base: Pointer to variable for storing slave buffer base address.
 412  * @aspace: Pointer to variable for storing VME address space.
 413  * @cycle: Pointer to variable for storing VME data transfer cycle type.
 414  *
 415  * Return configuration for provided VME slave window.
 416  *
 417  * Return: Zero on success, -EINVAL if operation is not supported on this
 418  *         device or if an invalid resource has been provided.
 419  */
 420 int vme_slave_get(struct vme_resource *resource, int *enabled,
 421         unsigned long long *vme_base, unsigned long long *size,
 422         dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
 423 {
 424         struct vme_bridge *bridge = find_bridge(resource);
 425         struct vme_slave_resource *image;
 426 
 427         if (resource->type != VME_SLAVE) {
 428                 printk(KERN_ERR "Not a slave resource\n");
 429                 return -EINVAL;
 430         }
 431 
 432         image = list_entry(resource->entry, struct vme_slave_resource, list);
 433 
 434         if (!bridge->slave_get) {
 435                 printk(KERN_ERR "vme_slave_get not supported\n");
 436                 return -EINVAL;
 437         }
 438 
 439         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
 440                 aspace, cycle);
 441 }
 442 EXPORT_SYMBOL(vme_slave_get);
 443 
 444 /**
 445  * vme_slave_free - Free VME slave window
 446  * @resource: Pointer to VME slave resource.
 447  *
 448  * Free the provided slave resource so that it may be reallocated.
 449  */
 450 void vme_slave_free(struct vme_resource *resource)
 451 {
 452         struct vme_slave_resource *slave_image;
 453 
 454         if (resource->type != VME_SLAVE) {
 455                 printk(KERN_ERR "Not a slave resource\n");
 456                 return;
 457         }
 458 
 459         slave_image = list_entry(resource->entry, struct vme_slave_resource,
 460                 list);
 461         if (!slave_image) {
 462                 printk(KERN_ERR "Can't find slave resource\n");
 463                 return;
 464         }
 465 
 466         /* Unlock image */
 467         mutex_lock(&slave_image->mtx);
 468         if (slave_image->locked == 0)
 469                 printk(KERN_ERR "Image is already free\n");
 470 
 471         slave_image->locked = 0;
 472         mutex_unlock(&slave_image->mtx);
 473 
 474         /* Free up resource memory */
 475         kfree(resource);
 476 }
 477 EXPORT_SYMBOL(vme_slave_free);
 478 
 479 /**
 480  * vme_master_request - Request a VME master window resource.
 481  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 482  * @address: Required VME address space.
 483  * @cycle: Required VME data transfer cycle type.
 484  * @dwidth: Required VME data transfer width.
 485  *
 486  * Request use of a VME window resource capable of being set for the requested
 487  * address space, data transfer cycle and width.
 488  *
 489  * Return: Pointer to VME resource on success, NULL on failure.
 490  */
 491 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
 492         u32 cycle, u32 dwidth)
 493 {
 494         struct vme_bridge *bridge;
 495         struct list_head *master_pos = NULL;
 496         struct vme_master_resource *allocated_image = NULL;
 497         struct vme_master_resource *master_image = NULL;
 498         struct vme_resource *resource = NULL;
 499 
 500         bridge = vdev->bridge;
 501         if (!bridge) {
 502                 printk(KERN_ERR "Can't find VME bus\n");
 503                 goto err_bus;
 504         }
 505 
 506         /* Loop through master resources */
 507         list_for_each(master_pos, &bridge->master_resources) {
 508                 master_image = list_entry(master_pos,
 509                         struct vme_master_resource, list);
 510 
 511                 if (!master_image) {
 512                         printk(KERN_WARNING "Registered NULL master resource\n");
 513                         continue;
 514                 }
 515 
 516                 /* Find an unlocked and compatible image */
 517                 spin_lock(&master_image->lock);
 518                 if (((master_image->address_attr & address) == address) &&
 519                         ((master_image->cycle_attr & cycle) == cycle) &&
 520                         ((master_image->width_attr & dwidth) == dwidth) &&
 521                         (master_image->locked == 0)) {
 522 
 523                         master_image->locked = 1;
 524                         spin_unlock(&master_image->lock);
 525                         allocated_image = master_image;
 526                         break;
 527                 }
 528                 spin_unlock(&master_image->lock);
 529         }
 530 
 531         /* Check to see if we found a resource */
 532         if (!allocated_image) {
 533                 printk(KERN_ERR "Can't find a suitable resource\n");
 534                 goto err_image;
 535         }
 536 
 537         resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 538         if (!resource)
 539                 goto err_alloc;
 540 
 541         resource->type = VME_MASTER;
 542         resource->entry = &allocated_image->list;
 543 
 544         return resource;
 545 
 546 err_alloc:
 547         /* Unlock image */
 548         spin_lock(&master_image->lock);
 549         master_image->locked = 0;
 550         spin_unlock(&master_image->lock);
 551 err_image:
 552 err_bus:
 553         return NULL;
 554 }
 555 EXPORT_SYMBOL(vme_master_request);
 556 
 557 /**
 558  * vme_master_set - Set VME master window configuration.
 559  * @resource: Pointer to VME master resource.
 560  * @enabled: State to which the window should be configured.
 561  * @vme_base: Base address for the window.
 562  * @size: Size of the VME window.
 563  * @aspace: VME address space for the VME window.
 564  * @cycle: VME data transfer cycle type for the VME window.
 565  * @dwidth: VME data transfer width for the VME window.
 566  *
 567  * Set configuration for provided VME master window.
 568  *
 569  * Return: Zero on success, -EINVAL if operation is not supported on this
 570  *         device, if an invalid resource has been provided or invalid
 571  *         attributes are provided. Hardware specific errors may also be
 572  *         returned.
 573  */
 574 int vme_master_set(struct vme_resource *resource, int enabled,
 575         unsigned long long vme_base, unsigned long long size, u32 aspace,
 576         u32 cycle, u32 dwidth)
 577 {
 578         struct vme_bridge *bridge = find_bridge(resource);
 579         struct vme_master_resource *image;
 580         int retval;
 581 
 582         if (resource->type != VME_MASTER) {
 583                 printk(KERN_ERR "Not a master resource\n");
 584                 return -EINVAL;
 585         }
 586 
 587         image = list_entry(resource->entry, struct vme_master_resource, list);
 588 
 589         if (!bridge->master_set) {
 590                 printk(KERN_WARNING "vme_master_set not supported\n");
 591                 return -EINVAL;
 592         }
 593 
 594         if (!(((image->address_attr & aspace) == aspace) &&
 595                 ((image->cycle_attr & cycle) == cycle) &&
 596                 ((image->width_attr & dwidth) == dwidth))) {
 597                 printk(KERN_WARNING "Invalid attributes\n");
 598                 return -EINVAL;
 599         }
 600 
 601         retval = vme_check_window(aspace, vme_base, size);
 602         if (retval)
 603                 return retval;
 604 
 605         return bridge->master_set(image, enabled, vme_base, size, aspace,
 606                 cycle, dwidth);
 607 }
 608 EXPORT_SYMBOL(vme_master_set);
 609 
 610 /**
 611  * vme_master_get - Retrieve VME master window configuration.
 612  * @resource: Pointer to VME master resource.
 613  * @enabled: Pointer to variable for storing state.
 614  * @vme_base: Pointer to variable for storing window base address.
 615  * @size: Pointer to variable for storing window size.
 616  * @aspace: Pointer to variable for storing VME address space.
 617  * @cycle: Pointer to variable for storing VME data transfer cycle type.
 618  * @dwidth: Pointer to variable for storing VME data transfer width.
 619  *
 620  * Return configuration for provided VME master window.
 621  *
 622  * Return: Zero on success, -EINVAL if operation is not supported on this
 623  *         device or if an invalid resource has been provided.
 624  */
 625 int vme_master_get(struct vme_resource *resource, int *enabled,
 626         unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
 627         u32 *cycle, u32 *dwidth)
 628 {
 629         struct vme_bridge *bridge = find_bridge(resource);
 630         struct vme_master_resource *image;
 631 
 632         if (resource->type != VME_MASTER) {
 633                 printk(KERN_ERR "Not a master resource\n");
 634                 return -EINVAL;
 635         }
 636 
 637         image = list_entry(resource->entry, struct vme_master_resource, list);
 638 
 639         if (!bridge->master_get) {
 640                 printk(KERN_WARNING "%s not supported\n", __func__);
 641                 return -EINVAL;
 642         }
 643 
 644         return bridge->master_get(image, enabled, vme_base, size, aspace,
 645                 cycle, dwidth);
 646 }
 647 EXPORT_SYMBOL(vme_master_get);
 648 
 649 /**
 650  * vme_master_write - Read data from VME space into a buffer.
 651  * @resource: Pointer to VME master resource.
 652  * @buf: Pointer to buffer where data should be transferred.
 653  * @count: Number of bytes to transfer.
 654  * @offset: Offset into VME master window at which to start transfer.
 655  *
 656  * Perform read of count bytes of data from location on VME bus which maps into
 657  * the VME master window at offset to buf.
 658  *
 659  * Return: Number of bytes read, -EINVAL if resource is not a VME master
 660  *         resource or read operation is not supported. -EFAULT returned if
 661  *         invalid offset is provided. Hardware specific errors may also be
 662  *         returned.
 663  */
 664 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
 665         loff_t offset)
 666 {
 667         struct vme_bridge *bridge = find_bridge(resource);
 668         struct vme_master_resource *image;
 669         size_t length;
 670 
 671         if (!bridge->master_read) {
 672                 printk(KERN_WARNING "Reading from resource not supported\n");
 673                 return -EINVAL;
 674         }
 675 
 676         if (resource->type != VME_MASTER) {
 677                 printk(KERN_ERR "Not a master resource\n");
 678                 return -EINVAL;
 679         }
 680 
 681         image = list_entry(resource->entry, struct vme_master_resource, list);
 682 
 683         length = vme_get_size(resource);
 684 
 685         if (offset > length) {
 686                 printk(KERN_WARNING "Invalid Offset\n");
 687                 return -EFAULT;
 688         }
 689 
 690         if ((offset + count) > length)
 691                 count = length - offset;
 692 
 693         return bridge->master_read(image, buf, count, offset);
 694 
 695 }
 696 EXPORT_SYMBOL(vme_master_read);
 697 
 698 /**
 699  * vme_master_write - Write data out to VME space from a buffer.
 700  * @resource: Pointer to VME master resource.
 701  * @buf: Pointer to buffer holding data to transfer.
 702  * @count: Number of bytes to transfer.
 703  * @offset: Offset into VME master window at which to start transfer.
 704  *
 705  * Perform write of count bytes of data from buf to location on VME bus which
 706  * maps into the VME master window at offset.
 707  *
 708  * Return: Number of bytes written, -EINVAL if resource is not a VME master
 709  *         resource or write operation is not supported. -EFAULT returned if
 710  *         invalid offset is provided. Hardware specific errors may also be
 711  *         returned.
 712  */
 713 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
 714         size_t count, loff_t offset)
 715 {
 716         struct vme_bridge *bridge = find_bridge(resource);
 717         struct vme_master_resource *image;
 718         size_t length;
 719 
 720         if (!bridge->master_write) {
 721                 printk(KERN_WARNING "Writing to resource not supported\n");
 722                 return -EINVAL;
 723         }
 724 
 725         if (resource->type != VME_MASTER) {
 726                 printk(KERN_ERR "Not a master resource\n");
 727                 return -EINVAL;
 728         }
 729 
 730         image = list_entry(resource->entry, struct vme_master_resource, list);
 731 
 732         length = vme_get_size(resource);
 733 
 734         if (offset > length) {
 735                 printk(KERN_WARNING "Invalid Offset\n");
 736                 return -EFAULT;
 737         }
 738 
 739         if ((offset + count) > length)
 740                 count = length - offset;
 741 
 742         return bridge->master_write(image, buf, count, offset);
 743 }
 744 EXPORT_SYMBOL(vme_master_write);
 745 
 746 /**
 747  * vme_master_rmw - Perform read-modify-write cycle.
 748  * @resource: Pointer to VME master resource.
 749  * @mask: Bits to be compared and swapped in operation.
 750  * @compare: Bits to be compared with data read from offset.
 751  * @swap: Bits to be swapped in data read from offset.
 752  * @offset: Offset into VME master window at which to perform operation.
 753  *
 754  * Perform read-modify-write cycle on provided location:
 755  * - Location on VME bus is read.
 756  * - Bits selected by mask are compared with compare.
 757  * - Where a selected bit matches that in compare and are selected in swap,
 758  * the bit is swapped.
 759  * - Result written back to location on VME bus.
 760  *
 761  * Return: Bytes written on success, -EINVAL if resource is not a VME master
 762  *         resource or RMW operation is not supported. Hardware specific
 763  *         errors may also be returned.
 764  */
 765 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
 766         unsigned int compare, unsigned int swap, loff_t offset)
 767 {
 768         struct vme_bridge *bridge = find_bridge(resource);
 769         struct vme_master_resource *image;
 770 
 771         if (!bridge->master_rmw) {
 772                 printk(KERN_WARNING "Writing to resource not supported\n");
 773                 return -EINVAL;
 774         }
 775 
 776         if (resource->type != VME_MASTER) {
 777                 printk(KERN_ERR "Not a master resource\n");
 778                 return -EINVAL;
 779         }
 780 
 781         image = list_entry(resource->entry, struct vme_master_resource, list);
 782 
 783         return bridge->master_rmw(image, mask, compare, swap, offset);
 784 }
 785 EXPORT_SYMBOL(vme_master_rmw);
 786 
 787 /**
 788  * vme_master_mmap - Mmap region of VME master window.
 789  * @resource: Pointer to VME master resource.
 790  * @vma: Pointer to definition of user mapping.
 791  *
 792  * Memory map a region of the VME master window into user space.
 793  *
 794  * Return: Zero on success, -EINVAL if resource is not a VME master
 795  *         resource or -EFAULT if map exceeds window size. Other generic mmap
 796  *         errors may also be returned.
 797  */
 798 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
 799 {
 800         struct vme_master_resource *image;
 801         phys_addr_t phys_addr;
 802         unsigned long vma_size;
 803 
 804         if (resource->type != VME_MASTER) {
 805                 pr_err("Not a master resource\n");
 806                 return -EINVAL;
 807         }
 808 
 809         image = list_entry(resource->entry, struct vme_master_resource, list);
 810         phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
 811         vma_size = vma->vm_end - vma->vm_start;
 812 
 813         if (phys_addr + vma_size > image->bus_resource.end + 1) {
 814                 pr_err("Map size cannot exceed the window size\n");
 815                 return -EFAULT;
 816         }
 817 
 818         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 819 
 820         return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
 821 }
 822 EXPORT_SYMBOL(vme_master_mmap);
 823 
 824 /**
 825  * vme_master_free - Free VME master window
 826  * @resource: Pointer to VME master resource.
 827  *
 828  * Free the provided master resource so that it may be reallocated.
 829  */
 830 void vme_master_free(struct vme_resource *resource)
 831 {
 832         struct vme_master_resource *master_image;
 833 
 834         if (resource->type != VME_MASTER) {
 835                 printk(KERN_ERR "Not a master resource\n");
 836                 return;
 837         }
 838 
 839         master_image = list_entry(resource->entry, struct vme_master_resource,
 840                 list);
 841         if (!master_image) {
 842                 printk(KERN_ERR "Can't find master resource\n");
 843                 return;
 844         }
 845 
 846         /* Unlock image */
 847         spin_lock(&master_image->lock);
 848         if (master_image->locked == 0)
 849                 printk(KERN_ERR "Image is already free\n");
 850 
 851         master_image->locked = 0;
 852         spin_unlock(&master_image->lock);
 853 
 854         /* Free up resource memory */
 855         kfree(resource);
 856 }
 857 EXPORT_SYMBOL(vme_master_free);
 858 
 859 /**
 860  * vme_dma_request - Request a DMA controller.
 861  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
 862  * @route: Required src/destination combination.
 863  *
 864  * Request a VME DMA controller with capability to perform transfers bewteen
 865  * requested source/destination combination.
 866  *
 867  * Return: Pointer to VME DMA resource on success, NULL on failure.
 868  */
 869 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
 870 {
 871         struct vme_bridge *bridge;
 872         struct list_head *dma_pos = NULL;
 873         struct vme_dma_resource *allocated_ctrlr = NULL;
 874         struct vme_dma_resource *dma_ctrlr = NULL;
 875         struct vme_resource *resource = NULL;
 876 
 877         /* XXX Not checking resource attributes */
 878         printk(KERN_ERR "No VME resource Attribute tests done\n");
 879 
 880         bridge = vdev->bridge;
 881         if (!bridge) {
 882                 printk(KERN_ERR "Can't find VME bus\n");
 883                 goto err_bus;
 884         }
 885 
 886         /* Loop through DMA resources */
 887         list_for_each(dma_pos, &bridge->dma_resources) {
 888                 dma_ctrlr = list_entry(dma_pos,
 889                         struct vme_dma_resource, list);
 890                 if (!dma_ctrlr) {
 891                         printk(KERN_ERR "Registered NULL DMA resource\n");
 892                         continue;
 893                 }
 894 
 895                 /* Find an unlocked and compatible controller */
 896                 mutex_lock(&dma_ctrlr->mtx);
 897                 if (((dma_ctrlr->route_attr & route) == route) &&
 898                         (dma_ctrlr->locked == 0)) {
 899 
 900                         dma_ctrlr->locked = 1;
 901                         mutex_unlock(&dma_ctrlr->mtx);
 902                         allocated_ctrlr = dma_ctrlr;
 903                         break;
 904                 }
 905                 mutex_unlock(&dma_ctrlr->mtx);
 906         }
 907 
 908         /* Check to see if we found a resource */
 909         if (!allocated_ctrlr)
 910                 goto err_ctrlr;
 911 
 912         resource = kmalloc(sizeof(*resource), GFP_KERNEL);
 913         if (!resource)
 914                 goto err_alloc;
 915 
 916         resource->type = VME_DMA;
 917         resource->entry = &allocated_ctrlr->list;
 918 
 919         return resource;
 920 
 921 err_alloc:
 922         /* Unlock image */
 923         mutex_lock(&dma_ctrlr->mtx);
 924         dma_ctrlr->locked = 0;
 925         mutex_unlock(&dma_ctrlr->mtx);
 926 err_ctrlr:
 927 err_bus:
 928         return NULL;
 929 }
 930 EXPORT_SYMBOL(vme_dma_request);
 931 
 932 /**
 933  * vme_new_dma_list - Create new VME DMA list.
 934  * @resource: Pointer to VME DMA resource.
 935  *
 936  * Create a new VME DMA list. It is the responsibility of the user to free
 937  * the list once it is no longer required with vme_dma_list_free().
 938  *
 939  * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
 940  *         VME DMA resource.
 941  */
 942 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
 943 {
 944         struct vme_dma_list *dma_list;
 945 
 946         if (resource->type != VME_DMA) {
 947                 printk(KERN_ERR "Not a DMA resource\n");
 948                 return NULL;
 949         }
 950 
 951         dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
 952         if (!dma_list)
 953                 return NULL;
 954 
 955         INIT_LIST_HEAD(&dma_list->entries);
 956         dma_list->parent = list_entry(resource->entry,
 957                                       struct vme_dma_resource,
 958                                       list);
 959         mutex_init(&dma_list->mtx);
 960 
 961         return dma_list;
 962 }
 963 EXPORT_SYMBOL(vme_new_dma_list);
 964 
 965 /**
 966  * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
 967  * @pattern: Value to use used as pattern
 968  * @type: Type of pattern to be written.
 969  *
 970  * Create VME DMA list attribute for pattern generation. It is the
 971  * responsibility of the user to free used attributes using
 972  * vme_dma_free_attribute().
 973  *
 974  * Return: Pointer to VME DMA attribute, NULL on failure.
 975  */
 976 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
 977 {
 978         struct vme_dma_attr *attributes;
 979         struct vme_dma_pattern *pattern_attr;
 980 
 981         attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
 982         if (!attributes)
 983                 goto err_attr;
 984 
 985         pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
 986         if (!pattern_attr)
 987                 goto err_pat;
 988 
 989         attributes->type = VME_DMA_PATTERN;
 990         attributes->private = (void *)pattern_attr;
 991 
 992         pattern_attr->pattern = pattern;
 993         pattern_attr->type = type;
 994 
 995         return attributes;
 996 
 997 err_pat:
 998         kfree(attributes);
 999 err_attr:
1000         return NULL;
1001 }
1002 EXPORT_SYMBOL(vme_dma_pattern_attribute);
1003 
1004 /**
1005  * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
1006  * @address: PCI base address for DMA transfer.
1007  *
1008  * Create VME DMA list attribute pointing to a location on PCI for DMA
1009  * transfers. It is the responsibility of the user to free used attributes
1010  * using vme_dma_free_attribute().
1011  *
1012  * Return: Pointer to VME DMA attribute, NULL on failure.
1013  */
1014 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1015 {
1016         struct vme_dma_attr *attributes;
1017         struct vme_dma_pci *pci_attr;
1018 
1019         /* XXX Run some sanity checks here */
1020 
1021         attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1022         if (!attributes)
1023                 goto err_attr;
1024 
1025         pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1026         if (!pci_attr)
1027                 goto err_pci;
1028 
1029         attributes->type = VME_DMA_PCI;
1030         attributes->private = (void *)pci_attr;
1031 
1032         pci_attr->address = address;
1033 
1034         return attributes;
1035 
1036 err_pci:
1037         kfree(attributes);
1038 err_attr:
1039         return NULL;
1040 }
1041 EXPORT_SYMBOL(vme_dma_pci_attribute);
1042 
1043 /**
1044  * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1045  * @address: VME base address for DMA transfer.
1046  * @aspace: VME address space to use for DMA transfer.
1047  * @cycle: VME bus cycle to use for DMA transfer.
1048  * @dwidth: VME data width to use for DMA transfer.
1049  *
1050  * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1051  * transfers. It is the responsibility of the user to free used attributes
1052  * using vme_dma_free_attribute().
1053  *
1054  * Return: Pointer to VME DMA attribute, NULL on failure.
1055  */
1056 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1057         u32 aspace, u32 cycle, u32 dwidth)
1058 {
1059         struct vme_dma_attr *attributes;
1060         struct vme_dma_vme *vme_attr;
1061 
1062         attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1063         if (!attributes)
1064                 goto err_attr;
1065 
1066         vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1067         if (!vme_attr)
1068                 goto err_vme;
1069 
1070         attributes->type = VME_DMA_VME;
1071         attributes->private = (void *)vme_attr;
1072 
1073         vme_attr->address = address;
1074         vme_attr->aspace = aspace;
1075         vme_attr->cycle = cycle;
1076         vme_attr->dwidth = dwidth;
1077 
1078         return attributes;
1079 
1080 err_vme:
1081         kfree(attributes);
1082 err_attr:
1083         return NULL;
1084 }
1085 EXPORT_SYMBOL(vme_dma_vme_attribute);
1086 
1087 /**
1088  * vme_dma_free_attribute - Free DMA list attribute.
1089  * @attributes: Pointer to DMA list attribute.
1090  *
1091  * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1092  * once vme_dma_list_add() has returned.
1093  */
1094 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1095 {
1096         kfree(attributes->private);
1097         kfree(attributes);
1098 }
1099 EXPORT_SYMBOL(vme_dma_free_attribute);
1100 
1101 /**
1102  * vme_dma_list_add - Add enty to a VME DMA list.
1103  * @list: Pointer to VME list.
1104  * @src: Pointer to DMA list attribute to use as source.
1105  * @dest: Pointer to DMA list attribute to use as destination.
1106  * @count: Number of bytes to transfer.
1107  *
1108  * Add an entry to the provided VME DMA list. Entry requires pointers to source
1109  * and destination DMA attributes and a count.
1110  *
1111  * Please note, the attributes supported as source and destinations for
1112  * transfers are hardware dependent.
1113  *
1114  * Return: Zero on success, -EINVAL if operation is not supported on this
1115  *         device or if the link list has already been submitted for execution.
1116  *         Hardware specific errors also possible.
1117  */
1118 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1119         struct vme_dma_attr *dest, size_t count)
1120 {
1121         struct vme_bridge *bridge = list->parent->parent;
1122         int retval;
1123 
1124         if (!bridge->dma_list_add) {
1125                 printk(KERN_WARNING "Link List DMA generation not supported\n");
1126                 return -EINVAL;
1127         }
1128 
1129         if (!mutex_trylock(&list->mtx)) {
1130                 printk(KERN_ERR "Link List already submitted\n");
1131                 return -EINVAL;
1132         }
1133 
1134         retval = bridge->dma_list_add(list, src, dest, count);
1135 
1136         mutex_unlock(&list->mtx);
1137 
1138         return retval;
1139 }
1140 EXPORT_SYMBOL(vme_dma_list_add);
1141 
1142 /**
1143  * vme_dma_list_exec - Queue a VME DMA list for execution.
1144  * @list: Pointer to VME list.
1145  *
1146  * Queue the provided VME DMA list for execution. The call will return once the
1147  * list has been executed.
1148  *
1149  * Return: Zero on success, -EINVAL if operation is not supported on this
1150  *         device. Hardware specific errors also possible.
1151  */
1152 int vme_dma_list_exec(struct vme_dma_list *list)
1153 {
1154         struct vme_bridge *bridge = list->parent->parent;
1155         int retval;
1156 
1157         if (!bridge->dma_list_exec) {
1158                 printk(KERN_ERR "Link List DMA execution not supported\n");
1159                 return -EINVAL;
1160         }
1161 
1162         mutex_lock(&list->mtx);
1163 
1164         retval = bridge->dma_list_exec(list);
1165 
1166         mutex_unlock(&list->mtx);
1167 
1168         return retval;
1169 }
1170 EXPORT_SYMBOL(vme_dma_list_exec);
1171 
1172 /**
1173  * vme_dma_list_free - Free a VME DMA list.
1174  * @list: Pointer to VME list.
1175  *
1176  * Free the provided DMA list and all its entries.
1177  *
1178  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1179  *         is still in use. Hardware specific errors also possible.
1180  */
1181 int vme_dma_list_free(struct vme_dma_list *list)
1182 {
1183         struct vme_bridge *bridge = list->parent->parent;
1184         int retval;
1185 
1186         if (!bridge->dma_list_empty) {
1187                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1188                 return -EINVAL;
1189         }
1190 
1191         if (!mutex_trylock(&list->mtx)) {
1192                 printk(KERN_ERR "Link List in use\n");
1193                 return -EBUSY;
1194         }
1195 
1196         /*
1197          * Empty out all of the entries from the DMA list. We need to go to the
1198          * low level driver as DMA entries are driver specific.
1199          */
1200         retval = bridge->dma_list_empty(list);
1201         if (retval) {
1202                 printk(KERN_ERR "Unable to empty link-list entries\n");
1203                 mutex_unlock(&list->mtx);
1204                 return retval;
1205         }
1206         mutex_unlock(&list->mtx);
1207         kfree(list);
1208 
1209         return retval;
1210 }
1211 EXPORT_SYMBOL(vme_dma_list_free);
1212 
1213 /**
1214  * vme_dma_free - Free a VME DMA resource.
1215  * @resource: Pointer to VME DMA resource.
1216  *
1217  * Free the provided DMA resource so that it may be reallocated.
1218  *
1219  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1220  *         is still active.
1221  */
1222 int vme_dma_free(struct vme_resource *resource)
1223 {
1224         struct vme_dma_resource *ctrlr;
1225 
1226         if (resource->type != VME_DMA) {
1227                 printk(KERN_ERR "Not a DMA resource\n");
1228                 return -EINVAL;
1229         }
1230 
1231         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1232 
1233         if (!mutex_trylock(&ctrlr->mtx)) {
1234                 printk(KERN_ERR "Resource busy, can't free\n");
1235                 return -EBUSY;
1236         }
1237 
1238         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1239                 printk(KERN_WARNING "Resource still processing transfers\n");
1240                 mutex_unlock(&ctrlr->mtx);
1241                 return -EBUSY;
1242         }
1243 
1244         ctrlr->locked = 0;
1245 
1246         mutex_unlock(&ctrlr->mtx);
1247 
1248         kfree(resource);
1249 
1250         return 0;
1251 }
1252 EXPORT_SYMBOL(vme_dma_free);
1253 
1254 void vme_bus_error_handler(struct vme_bridge *bridge,
1255                            unsigned long long address, int am)
1256 {
1257         struct list_head *handler_pos = NULL;
1258         struct vme_error_handler *handler;
1259         int handler_triggered = 0;
1260         u32 aspace = vme_get_aspace(am);
1261 
1262         list_for_each(handler_pos, &bridge->vme_error_handlers) {
1263                 handler = list_entry(handler_pos, struct vme_error_handler,
1264                                      list);
1265                 if ((aspace == handler->aspace) &&
1266                     (address >= handler->start) &&
1267                     (address < handler->end)) {
1268                         if (!handler->num_errors)
1269                                 handler->first_error = address;
1270                         if (handler->num_errors != UINT_MAX)
1271                                 handler->num_errors++;
1272                         handler_triggered = 1;
1273                 }
1274         }
1275 
1276         if (!handler_triggered)
1277                 dev_err(bridge->parent,
1278                         "Unhandled VME access error at address 0x%llx\n",
1279                         address);
1280 }
1281 EXPORT_SYMBOL(vme_bus_error_handler);
1282 
1283 struct vme_error_handler *vme_register_error_handler(
1284         struct vme_bridge *bridge, u32 aspace,
1285         unsigned long long address, size_t len)
1286 {
1287         struct vme_error_handler *handler;
1288 
1289         handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1290         if (!handler)
1291                 return NULL;
1292 
1293         handler->aspace = aspace;
1294         handler->start = address;
1295         handler->end = address + len;
1296         handler->num_errors = 0;
1297         handler->first_error = 0;
1298         list_add_tail(&handler->list, &bridge->vme_error_handlers);
1299 
1300         return handler;
1301 }
1302 EXPORT_SYMBOL(vme_register_error_handler);
1303 
1304 void vme_unregister_error_handler(struct vme_error_handler *handler)
1305 {
1306         list_del(&handler->list);
1307         kfree(handler);
1308 }
1309 EXPORT_SYMBOL(vme_unregister_error_handler);
1310 
1311 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1312 {
1313         void (*call)(int, int, void *);
1314         void *priv_data;
1315 
1316         call = bridge->irq[level - 1].callback[statid].func;
1317         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1318         if (call)
1319                 call(level, statid, priv_data);
1320         else
1321                 printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1322                        level, statid);
1323 }
1324 EXPORT_SYMBOL(vme_irq_handler);
1325 
1326 /**
1327  * vme_irq_request - Request a specific VME interrupt.
1328  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1329  * @level: Interrupt priority being requested.
1330  * @statid: Interrupt vector being requested.
1331  * @callback: Pointer to callback function called when VME interrupt/vector
1332  *            received.
1333  * @priv_data: Generic pointer that will be passed to the callback function.
1334  *
1335  * Request callback to be attached as a handler for VME interrupts with provided
1336  * level and statid.
1337  *
1338  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1339  *         function is not supported, -EBUSY if the level/statid combination is
1340  *         already in use. Hardware specific errors also possible.
1341  */
1342 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1343         void (*callback)(int, int, void *),
1344         void *priv_data)
1345 {
1346         struct vme_bridge *bridge;
1347 
1348         bridge = vdev->bridge;
1349         if (!bridge) {
1350                 printk(KERN_ERR "Can't find VME bus\n");
1351                 return -EINVAL;
1352         }
1353 
1354         if ((level < 1) || (level > 7)) {
1355                 printk(KERN_ERR "Invalid interrupt level\n");
1356                 return -EINVAL;
1357         }
1358 
1359         if (!bridge->irq_set) {
1360                 printk(KERN_ERR "Configuring interrupts not supported\n");
1361                 return -EINVAL;
1362         }
1363 
1364         mutex_lock(&bridge->irq_mtx);
1365 
1366         if (bridge->irq[level - 1].callback[statid].func) {
1367                 mutex_unlock(&bridge->irq_mtx);
1368                 printk(KERN_WARNING "VME Interrupt already taken\n");
1369                 return -EBUSY;
1370         }
1371 
1372         bridge->irq[level - 1].count++;
1373         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1374         bridge->irq[level - 1].callback[statid].func = callback;
1375 
1376         /* Enable IRQ level */
1377         bridge->irq_set(bridge, level, 1, 1);
1378 
1379         mutex_unlock(&bridge->irq_mtx);
1380 
1381         return 0;
1382 }
1383 EXPORT_SYMBOL(vme_irq_request);
1384 
1385 /**
1386  * vme_irq_free - Free a VME interrupt.
1387  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1388  * @level: Interrupt priority of interrupt being freed.
1389  * @statid: Interrupt vector of interrupt being freed.
1390  *
1391  * Remove previously attached callback from VME interrupt priority/vector.
1392  */
1393 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1394 {
1395         struct vme_bridge *bridge;
1396 
1397         bridge = vdev->bridge;
1398         if (!bridge) {
1399                 printk(KERN_ERR "Can't find VME bus\n");
1400                 return;
1401         }
1402 
1403         if ((level < 1) || (level > 7)) {
1404                 printk(KERN_ERR "Invalid interrupt level\n");
1405                 return;
1406         }
1407 
1408         if (!bridge->irq_set) {
1409                 printk(KERN_ERR "Configuring interrupts not supported\n");
1410                 return;
1411         }
1412 
1413         mutex_lock(&bridge->irq_mtx);
1414 
1415         bridge->irq[level - 1].count--;
1416 
1417         /* Disable IRQ level if no more interrupts attached at this level*/
1418         if (bridge->irq[level - 1].count == 0)
1419                 bridge->irq_set(bridge, level, 0, 1);
1420 
1421         bridge->irq[level - 1].callback[statid].func = NULL;
1422         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1423 
1424         mutex_unlock(&bridge->irq_mtx);
1425 }
1426 EXPORT_SYMBOL(vme_irq_free);
1427 
1428 /**
1429  * vme_irq_generate - Generate VME interrupt.
1430  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1431  * @level: Interrupt priority at which to assert the interrupt.
1432  * @statid: Interrupt vector to associate with the interrupt.
1433  *
1434  * Generate a VME interrupt of the provided level and with the provided
1435  * statid.
1436  *
1437  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1438  *         function is not supported. Hardware specific errors also possible.
1439  */
1440 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1441 {
1442         struct vme_bridge *bridge;
1443 
1444         bridge = vdev->bridge;
1445         if (!bridge) {
1446                 printk(KERN_ERR "Can't find VME bus\n");
1447                 return -EINVAL;
1448         }
1449 
1450         if ((level < 1) || (level > 7)) {
1451                 printk(KERN_WARNING "Invalid interrupt level\n");
1452                 return -EINVAL;
1453         }
1454 
1455         if (!bridge->irq_generate) {
1456                 printk(KERN_WARNING "Interrupt generation not supported\n");
1457                 return -EINVAL;
1458         }
1459 
1460         return bridge->irq_generate(bridge, level, statid);
1461 }
1462 EXPORT_SYMBOL(vme_irq_generate);
1463 
1464 /**
1465  * vme_lm_request - Request a VME location monitor
1466  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1467  *
1468  * Allocate a location monitor resource to the driver. A location monitor
1469  * allows the driver to monitor accesses to a contiguous number of
1470  * addresses on the VME bus.
1471  *
1472  * Return: Pointer to a VME resource on success or NULL on failure.
1473  */
1474 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1475 {
1476         struct vme_bridge *bridge;
1477         struct list_head *lm_pos = NULL;
1478         struct vme_lm_resource *allocated_lm = NULL;
1479         struct vme_lm_resource *lm = NULL;
1480         struct vme_resource *resource = NULL;
1481 
1482         bridge = vdev->bridge;
1483         if (!bridge) {
1484                 printk(KERN_ERR "Can't find VME bus\n");
1485                 goto err_bus;
1486         }
1487 
1488         /* Loop through LM resources */
1489         list_for_each(lm_pos, &bridge->lm_resources) {
1490                 lm = list_entry(lm_pos,
1491                         struct vme_lm_resource, list);
1492                 if (!lm) {
1493                         printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1494                         continue;
1495                 }
1496 
1497                 /* Find an unlocked controller */
1498                 mutex_lock(&lm->mtx);
1499                 if (lm->locked == 0) {
1500                         lm->locked = 1;
1501                         mutex_unlock(&lm->mtx);
1502                         allocated_lm = lm;
1503                         break;
1504                 }
1505                 mutex_unlock(&lm->mtx);
1506         }
1507 
1508         /* Check to see if we found a resource */
1509         if (!allocated_lm)
1510                 goto err_lm;
1511 
1512         resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1513         if (!resource)
1514                 goto err_alloc;
1515 
1516         resource->type = VME_LM;
1517         resource->entry = &allocated_lm->list;
1518 
1519         return resource;
1520 
1521 err_alloc:
1522         /* Unlock image */
1523         mutex_lock(&lm->mtx);
1524         lm->locked = 0;
1525         mutex_unlock(&lm->mtx);
1526 err_lm:
1527 err_bus:
1528         return NULL;
1529 }
1530 EXPORT_SYMBOL(vme_lm_request);
1531 
1532 /**
1533  * vme_lm_count - Determine number of VME Addresses monitored
1534  * @resource: Pointer to VME location monitor resource.
1535  *
1536  * The number of contiguous addresses monitored is hardware dependent.
1537  * Return the number of contiguous addresses monitored by the
1538  * location monitor.
1539  *
1540  * Return: Count of addresses monitored or -EINVAL when provided with an
1541  *         invalid location monitor resource.
1542  */
1543 int vme_lm_count(struct vme_resource *resource)
1544 {
1545         struct vme_lm_resource *lm;
1546 
1547         if (resource->type != VME_LM) {
1548                 printk(KERN_ERR "Not a Location Monitor resource\n");
1549                 return -EINVAL;
1550         }
1551 
1552         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1553 
1554         return lm->monitors;
1555 }
1556 EXPORT_SYMBOL(vme_lm_count);
1557 
1558 /**
1559  * vme_lm_set - Configure location monitor
1560  * @resource: Pointer to VME location monitor resource.
1561  * @lm_base: Base address to monitor.
1562  * @aspace: VME address space to monitor.
1563  * @cycle: VME bus cycle type to monitor.
1564  *
1565  * Set the base address, address space and cycle type of accesses to be
1566  * monitored by the location monitor.
1567  *
1568  * Return: Zero on success, -EINVAL when provided with an invalid location
1569  *         monitor resource or function is not supported. Hardware specific
1570  *         errors may also be returned.
1571  */
1572 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1573         u32 aspace, u32 cycle)
1574 {
1575         struct vme_bridge *bridge = find_bridge(resource);
1576         struct vme_lm_resource *lm;
1577 
1578         if (resource->type != VME_LM) {
1579                 printk(KERN_ERR "Not a Location Monitor resource\n");
1580                 return -EINVAL;
1581         }
1582 
1583         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1584 
1585         if (!bridge->lm_set) {
1586                 printk(KERN_ERR "vme_lm_set not supported\n");
1587                 return -EINVAL;
1588         }
1589 
1590         return bridge->lm_set(lm, lm_base, aspace, cycle);
1591 }
1592 EXPORT_SYMBOL(vme_lm_set);
1593 
1594 /**
1595  * vme_lm_get - Retrieve location monitor settings
1596  * @resource: Pointer to VME location monitor resource.
1597  * @lm_base: Pointer used to output the base address monitored.
1598  * @aspace: Pointer used to output the address space monitored.
1599  * @cycle: Pointer used to output the VME bus cycle type monitored.
1600  *
1601  * Retrieve the base address, address space and cycle type of accesses to
1602  * be monitored by the location monitor.
1603  *
1604  * Return: Zero on success, -EINVAL when provided with an invalid location
1605  *         monitor resource or function is not supported. Hardware specific
1606  *         errors may also be returned.
1607  */
1608 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1609         u32 *aspace, u32 *cycle)
1610 {
1611         struct vme_bridge *bridge = find_bridge(resource);
1612         struct vme_lm_resource *lm;
1613 
1614         if (resource->type != VME_LM) {
1615                 printk(KERN_ERR "Not a Location Monitor resource\n");
1616                 return -EINVAL;
1617         }
1618 
1619         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1620 
1621         if (!bridge->lm_get) {
1622                 printk(KERN_ERR "vme_lm_get not supported\n");
1623                 return -EINVAL;
1624         }
1625 
1626         return bridge->lm_get(lm, lm_base, aspace, cycle);
1627 }
1628 EXPORT_SYMBOL(vme_lm_get);
1629 
1630 /**
1631  * vme_lm_attach - Provide callback for location monitor address
1632  * @resource: Pointer to VME location monitor resource.
1633  * @monitor: Offset to which callback should be attached.
1634  * @callback: Pointer to callback function called when triggered.
1635  * @data: Generic pointer that will be passed to the callback function.
1636  *
1637  * Attach a callback to the specificed offset into the location monitors
1638  * monitored addresses. A generic pointer is provided to allow data to be
1639  * passed to the callback when called.
1640  *
1641  * Return: Zero on success, -EINVAL when provided with an invalid location
1642  *         monitor resource or function is not supported. Hardware specific
1643  *         errors may also be returned.
1644  */
1645 int vme_lm_attach(struct vme_resource *resource, int monitor,
1646         void (*callback)(void *), void *data)
1647 {
1648         struct vme_bridge *bridge = find_bridge(resource);
1649         struct vme_lm_resource *lm;
1650 
1651         if (resource->type != VME_LM) {
1652                 printk(KERN_ERR "Not a Location Monitor resource\n");
1653                 return -EINVAL;
1654         }
1655 
1656         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1657 
1658         if (!bridge->lm_attach) {
1659                 printk(KERN_ERR "vme_lm_attach not supported\n");
1660                 return -EINVAL;
1661         }
1662 
1663         return bridge->lm_attach(lm, monitor, callback, data);
1664 }
1665 EXPORT_SYMBOL(vme_lm_attach);
1666 
1667 /**
1668  * vme_lm_detach - Remove callback for location monitor address
1669  * @resource: Pointer to VME location monitor resource.
1670  * @monitor: Offset to which callback should be removed.
1671  *
1672  * Remove the callback associated with the specificed offset into the
1673  * location monitors monitored addresses.
1674  *
1675  * Return: Zero on success, -EINVAL when provided with an invalid location
1676  *         monitor resource or function is not supported. Hardware specific
1677  *         errors may also be returned.
1678  */
1679 int vme_lm_detach(struct vme_resource *resource, int monitor)
1680 {
1681         struct vme_bridge *bridge = find_bridge(resource);
1682         struct vme_lm_resource *lm;
1683 
1684         if (resource->type != VME_LM) {
1685                 printk(KERN_ERR "Not a Location Monitor resource\n");
1686                 return -EINVAL;
1687         }
1688 
1689         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1690 
1691         if (!bridge->lm_detach) {
1692                 printk(KERN_ERR "vme_lm_detach not supported\n");
1693                 return -EINVAL;
1694         }
1695 
1696         return bridge->lm_detach(lm, monitor);
1697 }
1698 EXPORT_SYMBOL(vme_lm_detach);
1699 
1700 /**
1701  * vme_lm_free - Free allocated VME location monitor
1702  * @resource: Pointer to VME location monitor resource.
1703  *
1704  * Free allocation of a VME location monitor.
1705  *
1706  * WARNING: This function currently expects that any callbacks that have
1707  *          been attached to the location monitor have been removed.
1708  *
1709  * Return: Zero on success, -EINVAL when provided with an invalid location
1710  *         monitor resource.
1711  */
1712 void vme_lm_free(struct vme_resource *resource)
1713 {
1714         struct vme_lm_resource *lm;
1715 
1716         if (resource->type != VME_LM) {
1717                 printk(KERN_ERR "Not a Location Monitor resource\n");
1718                 return;
1719         }
1720 
1721         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1722 
1723         mutex_lock(&lm->mtx);
1724 
1725         /* XXX
1726          * Check to see that there aren't any callbacks still attached, if
1727          * there are we should probably be detaching them!
1728          */
1729 
1730         lm->locked = 0;
1731 
1732         mutex_unlock(&lm->mtx);
1733 
1734         kfree(resource);
1735 }
1736 EXPORT_SYMBOL(vme_lm_free);
1737 
1738 /**
1739  * vme_slot_num - Retrieve slot ID
1740  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1741  *
1742  * Retrieve the slot ID associated with the provided VME device.
1743  *
1744  * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1745  *         or the function is not supported. Hardware specific errors may also
1746  *         be returned.
1747  */
1748 int vme_slot_num(struct vme_dev *vdev)
1749 {
1750         struct vme_bridge *bridge;
1751 
1752         bridge = vdev->bridge;
1753         if (!bridge) {
1754                 printk(KERN_ERR "Can't find VME bus\n");
1755                 return -EINVAL;
1756         }
1757 
1758         if (!bridge->slot_get) {
1759                 printk(KERN_WARNING "vme_slot_num not supported\n");
1760                 return -EINVAL;
1761         }
1762 
1763         return bridge->slot_get(bridge);
1764 }
1765 EXPORT_SYMBOL(vme_slot_num);
1766 
1767 /**
1768  * vme_bus_num - Retrieve bus number
1769  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1770  *
1771  * Retrieve the bus enumeration associated with the provided VME device.
1772  *
1773  * Return: The bus number on success, -EINVAL if VME bridge cannot be
1774  *         determined.
1775  */
1776 int vme_bus_num(struct vme_dev *vdev)
1777 {
1778         struct vme_bridge *bridge;
1779 
1780         bridge = vdev->bridge;
1781         if (!bridge) {
1782                 pr_err("Can't find VME bus\n");
1783                 return -EINVAL;
1784         }
1785 
1786         return bridge->num;
1787 }
1788 EXPORT_SYMBOL(vme_bus_num);
1789 
1790 /* - Bridge Registration --------------------------------------------------- */
1791 
1792 static void vme_dev_release(struct device *dev)
1793 {
1794         kfree(dev_to_vme_dev(dev));
1795 }
1796 
1797 /* Common bridge initialization */
1798 struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1799 {
1800         INIT_LIST_HEAD(&bridge->vme_error_handlers);
1801         INIT_LIST_HEAD(&bridge->master_resources);
1802         INIT_LIST_HEAD(&bridge->slave_resources);
1803         INIT_LIST_HEAD(&bridge->dma_resources);
1804         INIT_LIST_HEAD(&bridge->lm_resources);
1805         mutex_init(&bridge->irq_mtx);
1806 
1807         return bridge;
1808 }
1809 EXPORT_SYMBOL(vme_init_bridge);
1810 
1811 int vme_register_bridge(struct vme_bridge *bridge)
1812 {
1813         int i;
1814         int ret = -1;
1815 
1816         mutex_lock(&vme_buses_lock);
1817         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1818                 if ((vme_bus_numbers & (1 << i)) == 0) {
1819                         vme_bus_numbers |= (1 << i);
1820                         bridge->num = i;
1821                         INIT_LIST_HEAD(&bridge->devices);
1822                         list_add_tail(&bridge->bus_list, &vme_bus_list);
1823                         ret = 0;
1824                         break;
1825                 }
1826         }
1827         mutex_unlock(&vme_buses_lock);
1828 
1829         return ret;
1830 }
1831 EXPORT_SYMBOL(vme_register_bridge);
1832 
1833 void vme_unregister_bridge(struct vme_bridge *bridge)
1834 {
1835         struct vme_dev *vdev;
1836         struct vme_dev *tmp;
1837 
1838         mutex_lock(&vme_buses_lock);
1839         vme_bus_numbers &= ~(1 << bridge->num);
1840         list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1841                 list_del(&vdev->drv_list);
1842                 list_del(&vdev->bridge_list);
1843                 device_unregister(&vdev->dev);
1844         }
1845         list_del(&bridge->bus_list);
1846         mutex_unlock(&vme_buses_lock);
1847 }
1848 EXPORT_SYMBOL(vme_unregister_bridge);
1849 
1850 /* - Driver Registration --------------------------------------------------- */
1851 
1852 static int __vme_register_driver_bus(struct vme_driver *drv,
1853         struct vme_bridge *bridge, unsigned int ndevs)
1854 {
1855         int err;
1856         unsigned int i;
1857         struct vme_dev *vdev;
1858         struct vme_dev *tmp;
1859 
1860         for (i = 0; i < ndevs; i++) {
1861                 vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1862                 if (!vdev) {
1863                         err = -ENOMEM;
1864                         goto err_devalloc;
1865                 }
1866                 vdev->num = i;
1867                 vdev->bridge = bridge;
1868                 vdev->dev.platform_data = drv;
1869                 vdev->dev.release = vme_dev_release;
1870                 vdev->dev.parent = bridge->parent;
1871                 vdev->dev.bus = &vme_bus_type;
1872                 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1873                         vdev->num);
1874 
1875                 err = device_register(&vdev->dev);
1876                 if (err)
1877                         goto err_reg;
1878 
1879                 if (vdev->dev.platform_data) {
1880                         list_add_tail(&vdev->drv_list, &drv->devices);
1881                         list_add_tail(&vdev->bridge_list, &bridge->devices);
1882                 } else
1883                         device_unregister(&vdev->dev);
1884         }
1885         return 0;
1886 
1887 err_reg:
1888         put_device(&vdev->dev);
1889 err_devalloc:
1890         list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1891                 list_del(&vdev->drv_list);
1892                 list_del(&vdev->bridge_list);
1893                 device_unregister(&vdev->dev);
1894         }
1895         return err;
1896 }
1897 
1898 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1899 {
1900         struct vme_bridge *bridge;
1901         int err = 0;
1902 
1903         mutex_lock(&vme_buses_lock);
1904         list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1905                 /*
1906                  * This cannot cause trouble as we already have vme_buses_lock
1907                  * and if the bridge is removed, it will have to go through
1908                  * vme_unregister_bridge() to do it (which calls remove() on
1909                  * the bridge which in turn tries to acquire vme_buses_lock and
1910                  * will have to wait).
1911                  */
1912                 err = __vme_register_driver_bus(drv, bridge, ndevs);
1913                 if (err)
1914                         break;
1915         }
1916         mutex_unlock(&vme_buses_lock);
1917         return err;
1918 }
1919 
1920 /**
1921  * vme_register_driver - Register a VME driver
1922  * @drv: Pointer to VME driver structure to register.
1923  * @ndevs: Maximum number of devices to allow to be enumerated.
1924  *
1925  * Register a VME device driver with the VME subsystem.
1926  *
1927  * Return: Zero on success, error value on registration failure.
1928  */
1929 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1930 {
1931         int err;
1932 
1933         drv->driver.name = drv->name;
1934         drv->driver.bus = &vme_bus_type;
1935         INIT_LIST_HEAD(&drv->devices);
1936 
1937         err = driver_register(&drv->driver);
1938         if (err)
1939                 return err;
1940 
1941         err = __vme_register_driver(drv, ndevs);
1942         if (err)
1943                 driver_unregister(&drv->driver);
1944 
1945         return err;
1946 }
1947 EXPORT_SYMBOL(vme_register_driver);
1948 
1949 /**
1950  * vme_unregister_driver - Unregister a VME driver
1951  * @drv: Pointer to VME driver structure to unregister.
1952  *
1953  * Unregister a VME device driver from the VME subsystem.
1954  */
1955 void vme_unregister_driver(struct vme_driver *drv)
1956 {
1957         struct vme_dev *dev, *dev_tmp;
1958 
1959         mutex_lock(&vme_buses_lock);
1960         list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1961                 list_del(&dev->drv_list);
1962                 list_del(&dev->bridge_list);
1963                 device_unregister(&dev->dev);
1964         }
1965         mutex_unlock(&vme_buses_lock);
1966 
1967         driver_unregister(&drv->driver);
1968 }
1969 EXPORT_SYMBOL(vme_unregister_driver);
1970 
1971 /* - Bus Registration ------------------------------------------------------ */
1972 
1973 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1974 {
1975         struct vme_driver *vme_drv;
1976 
1977         vme_drv = container_of(drv, struct vme_driver, driver);
1978 
1979         if (dev->platform_data == vme_drv) {
1980                 struct vme_dev *vdev = dev_to_vme_dev(dev);
1981 
1982                 if (vme_drv->match && vme_drv->match(vdev))
1983                         return 1;
1984 
1985                 dev->platform_data = NULL;
1986         }
1987         return 0;
1988 }
1989 
1990 static int vme_bus_probe(struct device *dev)
1991 {
1992         struct vme_driver *driver;
1993         struct vme_dev *vdev = dev_to_vme_dev(dev);
1994 
1995         driver = dev->platform_data;
1996         if (driver->probe)
1997                 return driver->probe(vdev);
1998 
1999         return -ENODEV;
2000 }
2001 
2002 static int vme_bus_remove(struct device *dev)
2003 {
2004         struct vme_driver *driver;
2005         struct vme_dev *vdev = dev_to_vme_dev(dev);
2006 
2007         driver = dev->platform_data;
2008         if (driver->remove)
2009                 return driver->remove(vdev);
2010 
2011         return -ENODEV;
2012 }
2013 
2014 struct bus_type vme_bus_type = {
2015         .name = "vme",
2016         .match = vme_bus_match,
2017         .probe = vme_bus_probe,
2018         .remove = vme_bus_remove,
2019 };
2020 EXPORT_SYMBOL(vme_bus_type);
2021 
2022 static int __init vme_init(void)
2023 {
2024         return bus_register(&vme_bus_type);
2025 }
2026 subsys_initcall(vme_init);

/* [<][>][^][v][top][bottom][index][help] */