root/drivers/mmc/host/mmci.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mmci_card_busy
  2. mmci_reg_delay
  3. mmci_write_clkreg
  4. mmci_write_pwrreg
  5. mmci_write_datactrlreg
  6. mmci_set_clkreg
  7. mmci_dma_release
  8. mmci_dma_setup
  9. mmci_validate_data
  10. mmci_prep_data
  11. mmci_unprep_data
  12. mmci_get_next_data
  13. mmci_dma_start
  14. mmci_dma_finalize
  15. mmci_dma_error
  16. mmci_request_end
  17. mmci_set_mask1
  18. mmci_stop_data
  19. mmci_init_sg
  20. mmci_get_dctrl_cfg
  21. ux500v2_get_dctrl_cfg
  22. mmci_dmae_setup
  23. mmci_dmae_release
  24. mmci_dma_unmap
  25. mmci_dmae_error
  26. mmci_dmae_finalize
  27. _mmci_dmae_prep_data
  28. mmci_dmae_prep_data
  29. mmci_dmae_start
  30. mmci_dmae_get_next_data
  31. mmci_dmae_unprep_data
  32. mmci_variant_init
  33. ux500v2_variant_init
  34. mmci_pre_request
  35. mmci_post_request
  36. mmci_start_data
  37. mmci_start_command
  38. mmci_stop_command
  39. mmci_data_irq
  40. mmci_cmd_irq
  41. mmci_get_rx_fifocnt
  42. mmci_qcom_get_rx_fifocnt
  43. mmci_pio_read
  44. mmci_pio_write
  45. mmci_pio_irq
  46. mmci_irq
  47. mmci_request
  48. mmci_set_ios
  49. mmci_get_cd
  50. mmci_sig_volt_switch
  51. mmci_of_parse
  52. mmci_probe
  53. mmci_remove
  54. mmci_save
  55. mmci_restore
  56. mmci_runtime_suspend
  57. mmci_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4  *
   5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6  *  Copyright (C) 2010 ST-Ericsson SA
   7  */
   8 #include <linux/module.h>
   9 #include <linux/moduleparam.h>
  10 #include <linux/init.h>
  11 #include <linux/ioport.h>
  12 #include <linux/device.h>
  13 #include <linux/io.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/kernel.h>
  16 #include <linux/slab.h>
  17 #include <linux/delay.h>
  18 #include <linux/err.h>
  19 #include <linux/highmem.h>
  20 #include <linux/log2.h>
  21 #include <linux/mmc/mmc.h>
  22 #include <linux/mmc/pm.h>
  23 #include <linux/mmc/host.h>
  24 #include <linux/mmc/card.h>
  25 #include <linux/mmc/slot-gpio.h>
  26 #include <linux/amba/bus.h>
  27 #include <linux/clk.h>
  28 #include <linux/scatterlist.h>
  29 #include <linux/of.h>
  30 #include <linux/regulator/consumer.h>
  31 #include <linux/dmaengine.h>
  32 #include <linux/dma-mapping.h>
  33 #include <linux/amba/mmci.h>
  34 #include <linux/pm_runtime.h>
  35 #include <linux/types.h>
  36 #include <linux/pinctrl/consumer.h>
  37 #include <linux/reset.h>
  38 
  39 #include <asm/div64.h>
  40 #include <asm/io.h>
  41 
  42 #include "mmci.h"
  43 
  44 #define DRIVER_NAME "mmci-pl18x"
  45 
  46 static void mmci_variant_init(struct mmci_host *host);
  47 static void ux500v2_variant_init(struct mmci_host *host);
  48 
  49 static unsigned int fmax = 515633;
  50 
  51 static struct variant_data variant_arm = {
  52         .fifosize               = 16 * 4,
  53         .fifohalfsize           = 8 * 4,
  54         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  55         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  56         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  57         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  58         .datalength_bits        = 16,
  59         .datactrl_blocksz       = 11,
  60         .pwrreg_powerup         = MCI_PWR_UP,
  61         .f_max                  = 100000000,
  62         .reversed_irq_handling  = true,
  63         .mmcimask1              = true,
  64         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  65         .start_err              = MCI_STARTBITERR,
  66         .opendrain              = MCI_ROD,
  67         .init                   = mmci_variant_init,
  68 };
  69 
  70 static struct variant_data variant_arm_extended_fifo = {
  71         .fifosize               = 128 * 4,
  72         .fifohalfsize           = 64 * 4,
  73         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  74         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  75         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  76         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  77         .datalength_bits        = 16,
  78         .datactrl_blocksz       = 11,
  79         .pwrreg_powerup         = MCI_PWR_UP,
  80         .f_max                  = 100000000,
  81         .mmcimask1              = true,
  82         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  83         .start_err              = MCI_STARTBITERR,
  84         .opendrain              = MCI_ROD,
  85         .init                   = mmci_variant_init,
  86 };
  87 
  88 static struct variant_data variant_arm_extended_fifo_hwfc = {
  89         .fifosize               = 128 * 4,
  90         .fifohalfsize           = 64 * 4,
  91         .clkreg_enable          = MCI_ARM_HWFCEN,
  92         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  93         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  94         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  95         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  96         .datalength_bits        = 16,
  97         .datactrl_blocksz       = 11,
  98         .pwrreg_powerup         = MCI_PWR_UP,
  99         .f_max                  = 100000000,
 100         .mmcimask1              = true,
 101         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 102         .start_err              = MCI_STARTBITERR,
 103         .opendrain              = MCI_ROD,
 104         .init                   = mmci_variant_init,
 105 };
 106 
 107 static struct variant_data variant_u300 = {
 108         .fifosize               = 16 * 4,
 109         .fifohalfsize           = 8 * 4,
 110         .clkreg_enable          = MCI_ST_U300_HWFCEN,
 111         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 112         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 113         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 114         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 115         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 116         .datalength_bits        = 16,
 117         .datactrl_blocksz       = 11,
 118         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 119         .st_sdio                        = true,
 120         .pwrreg_powerup         = MCI_PWR_ON,
 121         .f_max                  = 100000000,
 122         .signal_direction       = true,
 123         .pwrreg_clkgate         = true,
 124         .pwrreg_nopower         = true,
 125         .mmcimask1              = true,
 126         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 127         .start_err              = MCI_STARTBITERR,
 128         .opendrain              = MCI_OD,
 129         .init                   = mmci_variant_init,
 130 };
 131 
 132 static struct variant_data variant_nomadik = {
 133         .fifosize               = 16 * 4,
 134         .fifohalfsize           = 8 * 4,
 135         .clkreg                 = MCI_CLK_ENABLE,
 136         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 137         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 138         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 139         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 140         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 141         .datalength_bits        = 24,
 142         .datactrl_blocksz       = 11,
 143         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 144         .st_sdio                = true,
 145         .st_clkdiv              = true,
 146         .pwrreg_powerup         = MCI_PWR_ON,
 147         .f_max                  = 100000000,
 148         .signal_direction       = true,
 149         .pwrreg_clkgate         = true,
 150         .pwrreg_nopower         = true,
 151         .mmcimask1              = true,
 152         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 153         .start_err              = MCI_STARTBITERR,
 154         .opendrain              = MCI_OD,
 155         .init                   = mmci_variant_init,
 156 };
 157 
 158 static struct variant_data variant_ux500 = {
 159         .fifosize               = 30 * 4,
 160         .fifohalfsize           = 8 * 4,
 161         .clkreg                 = MCI_CLK_ENABLE,
 162         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 163         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 164         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 165         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 166         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 167         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 168         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 169         .datalength_bits        = 24,
 170         .datactrl_blocksz       = 11,
 171         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 172         .st_sdio                = true,
 173         .st_clkdiv              = true,
 174         .pwrreg_powerup         = MCI_PWR_ON,
 175         .f_max                  = 100000000,
 176         .signal_direction       = true,
 177         .pwrreg_clkgate         = true,
 178         .busy_detect            = true,
 179         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 180         .busy_detect_flag       = MCI_ST_CARDBUSY,
 181         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 182         .pwrreg_nopower         = true,
 183         .mmcimask1              = true,
 184         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 185         .start_err              = MCI_STARTBITERR,
 186         .opendrain              = MCI_OD,
 187         .init                   = mmci_variant_init,
 188 };
 189 
 190 static struct variant_data variant_ux500v2 = {
 191         .fifosize               = 30 * 4,
 192         .fifohalfsize           = 8 * 4,
 193         .clkreg                 = MCI_CLK_ENABLE,
 194         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 195         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 196         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 197         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 198         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 199         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 200         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 201         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
 202         .datalength_bits        = 24,
 203         .datactrl_blocksz       = 11,
 204         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 205         .st_sdio                = true,
 206         .st_clkdiv              = true,
 207         .pwrreg_powerup         = MCI_PWR_ON,
 208         .f_max                  = 100000000,
 209         .signal_direction       = true,
 210         .pwrreg_clkgate         = true,
 211         .busy_detect            = true,
 212         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 213         .busy_detect_flag       = MCI_ST_CARDBUSY,
 214         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 215         .pwrreg_nopower         = true,
 216         .mmcimask1              = true,
 217         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 218         .start_err              = MCI_STARTBITERR,
 219         .opendrain              = MCI_OD,
 220         .init                   = ux500v2_variant_init,
 221 };
 222 
 223 static struct variant_data variant_stm32 = {
 224         .fifosize               = 32 * 4,
 225         .fifohalfsize           = 8 * 4,
 226         .clkreg                 = MCI_CLK_ENABLE,
 227         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 228         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 229         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 230         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 231         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 232         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 233         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 234         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 235         .datalength_bits        = 24,
 236         .datactrl_blocksz       = 11,
 237         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 238         .st_sdio                = true,
 239         .st_clkdiv              = true,
 240         .pwrreg_powerup         = MCI_PWR_ON,
 241         .f_max                  = 48000000,
 242         .pwrreg_clkgate         = true,
 243         .pwrreg_nopower         = true,
 244         .init                   = mmci_variant_init,
 245 };
 246 
 247 static struct variant_data variant_stm32_sdmmc = {
 248         .fifosize               = 16 * 4,
 249         .fifohalfsize           = 8 * 4,
 250         .f_max                  = 208000000,
 251         .stm32_clkdiv           = true,
 252         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 253         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 254         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 255         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 256         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 257         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 258         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 259         .datactrl_first         = true,
 260         .datacnt_useless        = true,
 261         .datalength_bits        = 25,
 262         .datactrl_blocksz       = 14,
 263         .stm32_idmabsize_mask   = GENMASK(12, 5),
 264         .init                   = sdmmc_variant_init,
 265 };
 266 
 267 static struct variant_data variant_qcom = {
 268         .fifosize               = 16 * 4,
 269         .fifohalfsize           = 8 * 4,
 270         .clkreg                 = MCI_CLK_ENABLE,
 271         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 272                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
 273         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 274         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 275         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 276         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 277         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 278         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 279         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
 280         .datalength_bits        = 24,
 281         .datactrl_blocksz       = 11,
 282         .pwrreg_powerup         = MCI_PWR_UP,
 283         .f_max                  = 208000000,
 284         .explicit_mclk_control  = true,
 285         .qcom_fifo              = true,
 286         .qcom_dml               = true,
 287         .mmcimask1              = true,
 288         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 289         .start_err              = MCI_STARTBITERR,
 290         .opendrain              = MCI_ROD,
 291         .init                   = qcom_variant_init,
 292 };
 293 
 294 /* Busy detection for the ST Micro variant */
 295 static int mmci_card_busy(struct mmc_host *mmc)
 296 {
 297         struct mmci_host *host = mmc_priv(mmc);
 298         unsigned long flags;
 299         int busy = 0;
 300 
 301         spin_lock_irqsave(&host->lock, flags);
 302         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 303                 busy = 1;
 304         spin_unlock_irqrestore(&host->lock, flags);
 305 
 306         return busy;
 307 }
 308 
 309 static void mmci_reg_delay(struct mmci_host *host)
 310 {
 311         /*
 312          * According to the spec, at least three feedback clock cycles
 313          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 314          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 315          * Worst delay time during card init is at 100 kHz => 30 us.
 316          * Worst delay time when up and running is at 25 MHz => 120 ns.
 317          */
 318         if (host->cclk < 25000000)
 319                 udelay(30);
 320         else
 321                 ndelay(120);
 322 }
 323 
 324 /*
 325  * This must be called with host->lock held
 326  */
 327 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 328 {
 329         if (host->clk_reg != clk) {
 330                 host->clk_reg = clk;
 331                 writel(clk, host->base + MMCICLOCK);
 332         }
 333 }
 334 
 335 /*
 336  * This must be called with host->lock held
 337  */
 338 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 339 {
 340         if (host->pwr_reg != pwr) {
 341                 host->pwr_reg = pwr;
 342                 writel(pwr, host->base + MMCIPOWER);
 343         }
 344 }
 345 
 346 /*
 347  * This must be called with host->lock held
 348  */
 349 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 350 {
 351         /* Keep busy mode in DPSM if enabled */
 352         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 353 
 354         if (host->datactrl_reg != datactrl) {
 355                 host->datactrl_reg = datactrl;
 356                 writel(datactrl, host->base + MMCIDATACTRL);
 357         }
 358 }
 359 
 360 /*
 361  * This must be called with host->lock held
 362  */
 363 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 364 {
 365         struct variant_data *variant = host->variant;
 366         u32 clk = variant->clkreg;
 367 
 368         /* Make sure cclk reflects the current calculated clock */
 369         host->cclk = 0;
 370 
 371         if (desired) {
 372                 if (variant->explicit_mclk_control) {
 373                         host->cclk = host->mclk;
 374                 } else if (desired >= host->mclk) {
 375                         clk = MCI_CLK_BYPASS;
 376                         if (variant->st_clkdiv)
 377                                 clk |= MCI_ST_UX500_NEG_EDGE;
 378                         host->cclk = host->mclk;
 379                 } else if (variant->st_clkdiv) {
 380                         /*
 381                          * DB8500 TRM says f = mclk / (clkdiv + 2)
 382                          * => clkdiv = (mclk / f) - 2
 383                          * Round the divider up so we don't exceed the max
 384                          * frequency
 385                          */
 386                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 387                         if (clk >= 256)
 388                                 clk = 255;
 389                         host->cclk = host->mclk / (clk + 2);
 390                 } else {
 391                         /*
 392                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 393                          * => clkdiv = mclk / (2 * f) - 1
 394                          */
 395                         clk = host->mclk / (2 * desired) - 1;
 396                         if (clk >= 256)
 397                                 clk = 255;
 398                         host->cclk = host->mclk / (2 * (clk + 1));
 399                 }
 400 
 401                 clk |= variant->clkreg_enable;
 402                 clk |= MCI_CLK_ENABLE;
 403                 /* This hasn't proven to be worthwhile */
 404                 /* clk |= MCI_CLK_PWRSAVE; */
 405         }
 406 
 407         /* Set actual clock for debug */
 408         host->mmc->actual_clock = host->cclk;
 409 
 410         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 411                 clk |= MCI_4BIT_BUS;
 412         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 413                 clk |= variant->clkreg_8bit_bus_enable;
 414 
 415         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 416             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 417                 clk |= variant->clkreg_neg_edge_enable;
 418 
 419         mmci_write_clkreg(host, clk);
 420 }
 421 
 422 void mmci_dma_release(struct mmci_host *host)
 423 {
 424         if (host->ops && host->ops->dma_release)
 425                 host->ops->dma_release(host);
 426 
 427         host->use_dma = false;
 428 }
 429 
 430 void mmci_dma_setup(struct mmci_host *host)
 431 {
 432         if (!host->ops || !host->ops->dma_setup)
 433                 return;
 434 
 435         if (host->ops->dma_setup(host))
 436                 return;
 437 
 438         /* initialize pre request cookie */
 439         host->next_cookie = 1;
 440 
 441         host->use_dma = true;
 442 }
 443 
 444 /*
 445  * Validate mmc prerequisites
 446  */
 447 static int mmci_validate_data(struct mmci_host *host,
 448                               struct mmc_data *data)
 449 {
 450         if (!data)
 451                 return 0;
 452 
 453         if (!is_power_of_2(data->blksz)) {
 454                 dev_err(mmc_dev(host->mmc),
 455                         "unsupported block size (%d bytes)\n", data->blksz);
 456                 return -EINVAL;
 457         }
 458 
 459         if (host->ops && host->ops->validate_data)
 460                 return host->ops->validate_data(host, data);
 461 
 462         return 0;
 463 }
 464 
 465 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 466 {
 467         int err;
 468 
 469         if (!host->ops || !host->ops->prep_data)
 470                 return 0;
 471 
 472         err = host->ops->prep_data(host, data, next);
 473 
 474         if (next && !err)
 475                 data->host_cookie = ++host->next_cookie < 0 ?
 476                         1 : host->next_cookie;
 477 
 478         return err;
 479 }
 480 
 481 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 482                       int err)
 483 {
 484         if (host->ops && host->ops->unprep_data)
 485                 host->ops->unprep_data(host, data, err);
 486 
 487         data->host_cookie = 0;
 488 }
 489 
 490 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 491 {
 492         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 493 
 494         if (host->ops && host->ops->get_next_data)
 495                 host->ops->get_next_data(host, data);
 496 }
 497 
 498 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 499 {
 500         struct mmc_data *data = host->data;
 501         int ret;
 502 
 503         if (!host->use_dma)
 504                 return -EINVAL;
 505 
 506         ret = mmci_prep_data(host, data, false);
 507         if (ret)
 508                 return ret;
 509 
 510         if (!host->ops || !host->ops->dma_start)
 511                 return -EINVAL;
 512 
 513         /* Okay, go for it. */
 514         dev_vdbg(mmc_dev(host->mmc),
 515                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 516                  data->sg_len, data->blksz, data->blocks, data->flags);
 517 
 518         host->ops->dma_start(host, &datactrl);
 519 
 520         /* Trigger the DMA transfer */
 521         mmci_write_datactrlreg(host, datactrl);
 522 
 523         /*
 524          * Let the MMCI say when the data is ended and it's time
 525          * to fire next DMA request. When that happens, MMCI will
 526          * call mmci_data_end()
 527          */
 528         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 529                host->base + MMCIMASK0);
 530         return 0;
 531 }
 532 
 533 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 534 {
 535         if (!host->use_dma)
 536                 return;
 537 
 538         if (host->ops && host->ops->dma_finalize)
 539                 host->ops->dma_finalize(host, data);
 540 }
 541 
 542 void mmci_dma_error(struct mmci_host *host)
 543 {
 544         if (!host->use_dma)
 545                 return;
 546 
 547         if (host->ops && host->ops->dma_error)
 548                 host->ops->dma_error(host);
 549 }
 550 
 551 static void
 552 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 553 {
 554         writel(0, host->base + MMCICOMMAND);
 555 
 556         BUG_ON(host->data);
 557 
 558         host->mrq = NULL;
 559         host->cmd = NULL;
 560 
 561         mmc_request_done(host->mmc, mrq);
 562 }
 563 
 564 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 565 {
 566         void __iomem *base = host->base;
 567         struct variant_data *variant = host->variant;
 568 
 569         if (host->singleirq) {
 570                 unsigned int mask0 = readl(base + MMCIMASK0);
 571 
 572                 mask0 &= ~variant->irq_pio_mask;
 573                 mask0 |= mask;
 574 
 575                 writel(mask0, base + MMCIMASK0);
 576         }
 577 
 578         if (variant->mmcimask1)
 579                 writel(mask, base + MMCIMASK1);
 580 
 581         host->mask1_reg = mask;
 582 }
 583 
 584 static void mmci_stop_data(struct mmci_host *host)
 585 {
 586         mmci_write_datactrlreg(host, 0);
 587         mmci_set_mask1(host, 0);
 588         host->data = NULL;
 589 }
 590 
 591 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 592 {
 593         unsigned int flags = SG_MITER_ATOMIC;
 594 
 595         if (data->flags & MMC_DATA_READ)
 596                 flags |= SG_MITER_TO_SG;
 597         else
 598                 flags |= SG_MITER_FROM_SG;
 599 
 600         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 601 }
 602 
 603 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 604 {
 605         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 606 }
 607 
 608 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 609 {
 610         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 611 }
 612 
 613 /*
 614  * All the DMA operation mode stuff goes inside this ifdef.
 615  * This assumes that you have a generic DMA device interface,
 616  * no custom DMA interfaces are supported.
 617  */
 618 #ifdef CONFIG_DMA_ENGINE
 619 struct mmci_dmae_next {
 620         struct dma_async_tx_descriptor *desc;
 621         struct dma_chan *chan;
 622 };
 623 
 624 struct mmci_dmae_priv {
 625         struct dma_chan *cur;
 626         struct dma_chan *rx_channel;
 627         struct dma_chan *tx_channel;
 628         struct dma_async_tx_descriptor  *desc_current;
 629         struct mmci_dmae_next next_data;
 630 };
 631 
 632 int mmci_dmae_setup(struct mmci_host *host)
 633 {
 634         const char *rxname, *txname;
 635         struct mmci_dmae_priv *dmae;
 636 
 637         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 638         if (!dmae)
 639                 return -ENOMEM;
 640 
 641         host->dma_priv = dmae;
 642 
 643         dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 644                                                      "rx");
 645         dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 646                                                      "tx");
 647 
 648         /*
 649          * If only an RX channel is specified, the driver will
 650          * attempt to use it bidirectionally, however if it is
 651          * is specified but cannot be located, DMA will be disabled.
 652          */
 653         if (dmae->rx_channel && !dmae->tx_channel)
 654                 dmae->tx_channel = dmae->rx_channel;
 655 
 656         if (dmae->rx_channel)
 657                 rxname = dma_chan_name(dmae->rx_channel);
 658         else
 659                 rxname = "none";
 660 
 661         if (dmae->tx_channel)
 662                 txname = dma_chan_name(dmae->tx_channel);
 663         else
 664                 txname = "none";
 665 
 666         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 667                  rxname, txname);
 668 
 669         /*
 670          * Limit the maximum segment size in any SG entry according to
 671          * the parameters of the DMA engine device.
 672          */
 673         if (dmae->tx_channel) {
 674                 struct device *dev = dmae->tx_channel->device->dev;
 675                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
 676 
 677                 if (max_seg_size < host->mmc->max_seg_size)
 678                         host->mmc->max_seg_size = max_seg_size;
 679         }
 680         if (dmae->rx_channel) {
 681                 struct device *dev = dmae->rx_channel->device->dev;
 682                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
 683 
 684                 if (max_seg_size < host->mmc->max_seg_size)
 685                         host->mmc->max_seg_size = max_seg_size;
 686         }
 687 
 688         if (!dmae->tx_channel || !dmae->rx_channel) {
 689                 mmci_dmae_release(host);
 690                 return -EINVAL;
 691         }
 692 
 693         return 0;
 694 }
 695 
 696 /*
 697  * This is used in or so inline it
 698  * so it can be discarded.
 699  */
 700 void mmci_dmae_release(struct mmci_host *host)
 701 {
 702         struct mmci_dmae_priv *dmae = host->dma_priv;
 703 
 704         if (dmae->rx_channel)
 705                 dma_release_channel(dmae->rx_channel);
 706         if (dmae->tx_channel)
 707                 dma_release_channel(dmae->tx_channel);
 708         dmae->rx_channel = dmae->tx_channel = NULL;
 709 }
 710 
 711 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 712 {
 713         struct mmci_dmae_priv *dmae = host->dma_priv;
 714         struct dma_chan *chan;
 715 
 716         if (data->flags & MMC_DATA_READ)
 717                 chan = dmae->rx_channel;
 718         else
 719                 chan = dmae->tx_channel;
 720 
 721         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 722                      mmc_get_dma_dir(data));
 723 }
 724 
 725 void mmci_dmae_error(struct mmci_host *host)
 726 {
 727         struct mmci_dmae_priv *dmae = host->dma_priv;
 728 
 729         if (!dma_inprogress(host))
 730                 return;
 731 
 732         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 733         dmaengine_terminate_all(dmae->cur);
 734         host->dma_in_progress = false;
 735         dmae->cur = NULL;
 736         dmae->desc_current = NULL;
 737         host->data->host_cookie = 0;
 738 
 739         mmci_dma_unmap(host, host->data);
 740 }
 741 
 742 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 743 {
 744         struct mmci_dmae_priv *dmae = host->dma_priv;
 745         u32 status;
 746         int i;
 747 
 748         if (!dma_inprogress(host))
 749                 return;
 750 
 751         /* Wait up to 1ms for the DMA to complete */
 752         for (i = 0; ; i++) {
 753                 status = readl(host->base + MMCISTATUS);
 754                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 755                         break;
 756                 udelay(10);
 757         }
 758 
 759         /*
 760          * Check to see whether we still have some data left in the FIFO -
 761          * this catches DMA controllers which are unable to monitor the
 762          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 763          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 764          */
 765         if (status & MCI_RXDATAAVLBLMASK) {
 766                 mmci_dma_error(host);
 767                 if (!data->error)
 768                         data->error = -EIO;
 769         } else if (!data->host_cookie) {
 770                 mmci_dma_unmap(host, data);
 771         }
 772 
 773         /*
 774          * Use of DMA with scatter-gather is impossible.
 775          * Give up with DMA and switch back to PIO mode.
 776          */
 777         if (status & MCI_RXDATAAVLBLMASK) {
 778                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 779                 mmci_dma_release(host);
 780         }
 781 
 782         host->dma_in_progress = false;
 783         dmae->cur = NULL;
 784         dmae->desc_current = NULL;
 785 }
 786 
 787 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 788 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 789                                 struct dma_chan **dma_chan,
 790                                 struct dma_async_tx_descriptor **dma_desc)
 791 {
 792         struct mmci_dmae_priv *dmae = host->dma_priv;
 793         struct variant_data *variant = host->variant;
 794         struct dma_slave_config conf = {
 795                 .src_addr = host->phybase + MMCIFIFO,
 796                 .dst_addr = host->phybase + MMCIFIFO,
 797                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 798                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 799                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 800                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 801                 .device_fc = false,
 802         };
 803         struct dma_chan *chan;
 804         struct dma_device *device;
 805         struct dma_async_tx_descriptor *desc;
 806         int nr_sg;
 807         unsigned long flags = DMA_CTRL_ACK;
 808 
 809         if (data->flags & MMC_DATA_READ) {
 810                 conf.direction = DMA_DEV_TO_MEM;
 811                 chan = dmae->rx_channel;
 812         } else {
 813                 conf.direction = DMA_MEM_TO_DEV;
 814                 chan = dmae->tx_channel;
 815         }
 816 
 817         /* If there's no DMA channel, fall back to PIO */
 818         if (!chan)
 819                 return -EINVAL;
 820 
 821         /* If less than or equal to the fifo size, don't bother with DMA */
 822         if (data->blksz * data->blocks <= variant->fifosize)
 823                 return -EINVAL;
 824 
 825         device = chan->device;
 826         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 827                            mmc_get_dma_dir(data));
 828         if (nr_sg == 0)
 829                 return -EINVAL;
 830 
 831         if (host->variant->qcom_dml)
 832                 flags |= DMA_PREP_INTERRUPT;
 833 
 834         dmaengine_slave_config(chan, &conf);
 835         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 836                                             conf.direction, flags);
 837         if (!desc)
 838                 goto unmap_exit;
 839 
 840         *dma_chan = chan;
 841         *dma_desc = desc;
 842 
 843         return 0;
 844 
 845  unmap_exit:
 846         dma_unmap_sg(device->dev, data->sg, data->sg_len,
 847                      mmc_get_dma_dir(data));
 848         return -ENOMEM;
 849 }
 850 
 851 int mmci_dmae_prep_data(struct mmci_host *host,
 852                         struct mmc_data *data,
 853                         bool next)
 854 {
 855         struct mmci_dmae_priv *dmae = host->dma_priv;
 856         struct mmci_dmae_next *nd = &dmae->next_data;
 857 
 858         if (!host->use_dma)
 859                 return -EINVAL;
 860 
 861         if (next)
 862                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 863         /* Check if next job is already prepared. */
 864         if (dmae->cur && dmae->desc_current)
 865                 return 0;
 866 
 867         /* No job were prepared thus do it now. */
 868         return _mmci_dmae_prep_data(host, data, &dmae->cur,
 869                                     &dmae->desc_current);
 870 }
 871 
 872 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 873 {
 874         struct mmci_dmae_priv *dmae = host->dma_priv;
 875 
 876         host->dma_in_progress = true;
 877         dmaengine_submit(dmae->desc_current);
 878         dma_async_issue_pending(dmae->cur);
 879 
 880         *datactrl |= MCI_DPSM_DMAENABLE;
 881 
 882         return 0;
 883 }
 884 
 885 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 886 {
 887         struct mmci_dmae_priv *dmae = host->dma_priv;
 888         struct mmci_dmae_next *next = &dmae->next_data;
 889 
 890         if (!host->use_dma)
 891                 return;
 892 
 893         WARN_ON(!data->host_cookie && (next->desc || next->chan));
 894 
 895         dmae->desc_current = next->desc;
 896         dmae->cur = next->chan;
 897         next->desc = NULL;
 898         next->chan = NULL;
 899 }
 900 
 901 void mmci_dmae_unprep_data(struct mmci_host *host,
 902                            struct mmc_data *data, int err)
 903 
 904 {
 905         struct mmci_dmae_priv *dmae = host->dma_priv;
 906 
 907         if (!host->use_dma)
 908                 return;
 909 
 910         mmci_dma_unmap(host, data);
 911 
 912         if (err) {
 913                 struct mmci_dmae_next *next = &dmae->next_data;
 914                 struct dma_chan *chan;
 915                 if (data->flags & MMC_DATA_READ)
 916                         chan = dmae->rx_channel;
 917                 else
 918                         chan = dmae->tx_channel;
 919                 dmaengine_terminate_all(chan);
 920 
 921                 if (dmae->desc_current == next->desc)
 922                         dmae->desc_current = NULL;
 923 
 924                 if (dmae->cur == next->chan) {
 925                         host->dma_in_progress = false;
 926                         dmae->cur = NULL;
 927                 }
 928 
 929                 next->desc = NULL;
 930                 next->chan = NULL;
 931         }
 932 }
 933 
 934 static struct mmci_host_ops mmci_variant_ops = {
 935         .prep_data = mmci_dmae_prep_data,
 936         .unprep_data = mmci_dmae_unprep_data,
 937         .get_datactrl_cfg = mmci_get_dctrl_cfg,
 938         .get_next_data = mmci_dmae_get_next_data,
 939         .dma_setup = mmci_dmae_setup,
 940         .dma_release = mmci_dmae_release,
 941         .dma_start = mmci_dmae_start,
 942         .dma_finalize = mmci_dmae_finalize,
 943         .dma_error = mmci_dmae_error,
 944 };
 945 #else
 946 static struct mmci_host_ops mmci_variant_ops = {
 947         .get_datactrl_cfg = mmci_get_dctrl_cfg,
 948 };
 949 #endif
 950 
 951 void mmci_variant_init(struct mmci_host *host)
 952 {
 953         host->ops = &mmci_variant_ops;
 954 }
 955 
 956 void ux500v2_variant_init(struct mmci_host *host)
 957 {
 958         host->ops = &mmci_variant_ops;
 959         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
 960 }
 961 
 962 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 963 {
 964         struct mmci_host *host = mmc_priv(mmc);
 965         struct mmc_data *data = mrq->data;
 966 
 967         if (!data)
 968                 return;
 969 
 970         WARN_ON(data->host_cookie);
 971 
 972         if (mmci_validate_data(host, data))
 973                 return;
 974 
 975         mmci_prep_data(host, data, true);
 976 }
 977 
 978 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 979                               int err)
 980 {
 981         struct mmci_host *host = mmc_priv(mmc);
 982         struct mmc_data *data = mrq->data;
 983 
 984         if (!data || !data->host_cookie)
 985                 return;
 986 
 987         mmci_unprep_data(host, data, err);
 988 }
 989 
 990 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 991 {
 992         struct variant_data *variant = host->variant;
 993         unsigned int datactrl, timeout, irqmask;
 994         unsigned long long clks;
 995         void __iomem *base;
 996 
 997         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 998                 data->blksz, data->blocks, data->flags);
 999 
1000         host->data = data;
1001         host->size = data->blksz * data->blocks;
1002         data->bytes_xfered = 0;
1003 
1004         clks = (unsigned long long)data->timeout_ns * host->cclk;
1005         do_div(clks, NSEC_PER_SEC);
1006 
1007         timeout = data->timeout_clks + (unsigned int)clks;
1008 
1009         base = host->base;
1010         writel(timeout, base + MMCIDATATIMER);
1011         writel(host->size, base + MMCIDATALENGTH);
1012 
1013         datactrl = host->ops->get_datactrl_cfg(host);
1014         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015 
1016         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017                 u32 clk;
1018 
1019                 datactrl |= variant->datactrl_mask_sdio;
1020 
1021                 /*
1022                  * The ST Micro variant for SDIO small write transfers
1023                  * needs to have clock H/W flow control disabled,
1024                  * otherwise the transfer will not start. The threshold
1025                  * depends on the rate of MCLK.
1026                  */
1027                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028                     (host->size < 8 ||
1029                      (host->size <= 8 && host->mclk > 50000000)))
1030                         clk = host->clk_reg & ~variant->clkreg_enable;
1031                 else
1032                         clk = host->clk_reg | variant->clkreg_enable;
1033 
1034                 mmci_write_clkreg(host, clk);
1035         }
1036 
1037         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039                 datactrl |= variant->datactrl_mask_ddrmode;
1040 
1041         /*
1042          * Attempt to use DMA operation mode, if this
1043          * should fail, fall back to PIO mode
1044          */
1045         if (!mmci_dma_start(host, datactrl))
1046                 return;
1047 
1048         /* IRQ mode, map the SG list for CPU reading/writing */
1049         mmci_init_sg(host, data);
1050 
1051         if (data->flags & MMC_DATA_READ) {
1052                 irqmask = MCI_RXFIFOHALFFULLMASK;
1053 
1054                 /*
1055                  * If we have less than the fifo 'half-full' threshold to
1056                  * transfer, trigger a PIO interrupt as soon as any data
1057                  * is available.
1058                  */
1059                 if (host->size < variant->fifohalfsize)
1060                         irqmask |= MCI_RXDATAAVLBLMASK;
1061         } else {
1062                 /*
1063                  * We don't actually need to include "FIFO empty" here
1064                  * since its implicit in "FIFO half empty".
1065                  */
1066                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067         }
1068 
1069         mmci_write_datactrlreg(host, datactrl);
1070         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071         mmci_set_mask1(host, irqmask);
1072 }
1073 
1074 static void
1075 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076 {
1077         void __iomem *base = host->base;
1078 
1079         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080             cmd->opcode, cmd->arg, cmd->flags);
1081 
1082         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083                 writel(0, base + MMCICOMMAND);
1084                 mmci_reg_delay(host);
1085         }
1086 
1087         if (host->variant->cmdreg_stop &&
1088             cmd->opcode == MMC_STOP_TRANSMISSION)
1089                 c |= host->variant->cmdreg_stop;
1090 
1091         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092         if (cmd->flags & MMC_RSP_PRESENT) {
1093                 if (cmd->flags & MMC_RSP_136)
1094                         c |= host->variant->cmdreg_lrsp_crc;
1095                 else if (cmd->flags & MMC_RSP_CRC)
1096                         c |= host->variant->cmdreg_srsp_crc;
1097                 else
1098                         c |= host->variant->cmdreg_srsp;
1099         }
1100         if (/*interrupt*/0)
1101                 c |= MCI_CPSM_INTERRUPT;
1102 
1103         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104                 c |= host->variant->data_cmd_enable;
1105 
1106         host->cmd = cmd;
1107 
1108         writel(cmd->arg, base + MMCIARGUMENT);
1109         writel(c, base + MMCICOMMAND);
1110 }
1111 
1112 static void mmci_stop_command(struct mmci_host *host)
1113 {
1114         host->stop_abort.error = 0;
1115         mmci_start_command(host, &host->stop_abort, 0);
1116 }
1117 
1118 static void
1119 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120               unsigned int status)
1121 {
1122         unsigned int status_err;
1123 
1124         /* Make sure we have data to handle */
1125         if (!data)
1126                 return;
1127 
1128         /* First check for errors */
1129         status_err = status & (host->variant->start_err |
1130                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132 
1133         if (status_err) {
1134                 u32 remain, success;
1135 
1136                 /* Terminate the DMA transfer */
1137                 mmci_dma_error(host);
1138 
1139                 /*
1140                  * Calculate how far we are into the transfer.  Note that
1141                  * the data counter gives the number of bytes transferred
1142                  * on the MMC bus, not on the host side.  On reads, this
1143                  * can be as much as a FIFO-worth of data ahead.  This
1144                  * matters for FIFO overruns only.
1145                  */
1146                 if (!host->variant->datacnt_useless) {
1147                         remain = readl(host->base + MMCIDATACNT);
1148                         success = data->blksz * data->blocks - remain;
1149                 } else {
1150                         success = 0;
1151                 }
1152 
1153                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154                         status_err, success);
1155                 if (status_err & MCI_DATACRCFAIL) {
1156                         /* Last block was not successful */
1157                         success -= 1;
1158                         data->error = -EILSEQ;
1159                 } else if (status_err & MCI_DATATIMEOUT) {
1160                         data->error = -ETIMEDOUT;
1161                 } else if (status_err & MCI_STARTBITERR) {
1162                         data->error = -ECOMM;
1163                 } else if (status_err & MCI_TXUNDERRUN) {
1164                         data->error = -EIO;
1165                 } else if (status_err & MCI_RXOVERRUN) {
1166                         if (success > host->variant->fifosize)
1167                                 success -= host->variant->fifosize;
1168                         else
1169                                 success = 0;
1170                         data->error = -EIO;
1171                 }
1172                 data->bytes_xfered = round_down(success, data->blksz);
1173         }
1174 
1175         if (status & MCI_DATABLOCKEND)
1176                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177 
1178         if (status & MCI_DATAEND || data->error) {
1179                 mmci_dma_finalize(host, data);
1180 
1181                 mmci_stop_data(host);
1182 
1183                 if (!data->error)
1184                         /* The error clause is handled above, success! */
1185                         data->bytes_xfered = data->blksz * data->blocks;
1186 
1187                 if (!data->stop) {
1188                         if (host->variant->cmdreg_stop && data->error)
1189                                 mmci_stop_command(host);
1190                         else
1191                                 mmci_request_end(host, data->mrq);
1192                 } else if (host->mrq->sbc && !data->error) {
1193                         mmci_request_end(host, data->mrq);
1194                 } else {
1195                         mmci_start_command(host, data->stop, 0);
1196                 }
1197         }
1198 }
1199 
1200 static void
1201 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202              unsigned int status)
1203 {
1204         void __iomem *base = host->base;
1205         bool sbc, busy_resp;
1206 
1207         if (!cmd)
1208                 return;
1209 
1210         sbc = (cmd == host->mrq->sbc);
1211         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212 
1213         /*
1214          * We need to be one of these interrupts to be considered worth
1215          * handling. Note that we tag on any latent IRQs postponed
1216          * due to waiting for busy status.
1217          */
1218         if (!((status|host->busy_status) &
1219               (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220                 return;
1221 
1222         /* Handle busy detection on DAT0 if the variant supports it. */
1223         if (busy_resp && host->variant->busy_detect) {
1224 
1225                 /*
1226                  * Before unmasking for the busy end IRQ, confirm that the
1227                  * command was sent successfully. To keep track of having a
1228                  * command in-progress, waiting for busy signaling to end,
1229                  * store the status in host->busy_status.
1230                  *
1231                  * Note that, the card may need a couple of clock cycles before
1232                  * it starts signaling busy on DAT0, hence re-read the
1233                  * MMCISTATUS register here, to allow the busy bit to be set.
1234                  * Potentially we may even need to poll the register for a
1235                  * while, to allow it to be set, but tests indicates that it
1236                  * isn't needed.
1237                  */
1238                 if (!host->busy_status &&
1239                     !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240                     (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241 
1242                         writel(readl(base + MMCIMASK0) |
1243                                host->variant->busy_detect_mask,
1244                                base + MMCIMASK0);
1245 
1246                         host->busy_status =
1247                                 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248                         return;
1249                 }
1250 
1251                 /*
1252                  * If there is a command in-progress that has been successfully
1253                  * sent, then bail out if busy status is set and wait for the
1254                  * busy end IRQ.
1255                  *
1256                  * Note that, the HW triggers an IRQ on both edges while
1257                  * monitoring DAT0 for busy completion, but there is only one
1258                  * status bit in MMCISTATUS for the busy state. Therefore
1259                  * both the start and the end interrupts needs to be cleared,
1260                  * one after the other. So, clear the busy start IRQ here.
1261                  */
1262                 if (host->busy_status &&
1263                     (status & host->variant->busy_detect_flag)) {
1264                         writel(host->variant->busy_detect_mask,
1265                                host->base + MMCICLEAR);
1266                         return;
1267                 }
1268 
1269                 /*
1270                  * If there is a command in-progress that has been successfully
1271                  * sent and the busy bit isn't set, it means we have received
1272                  * the busy end IRQ. Clear and mask the IRQ, then continue to
1273                  * process the command.
1274                  */
1275                 if (host->busy_status) {
1276 
1277                         writel(host->variant->busy_detect_mask,
1278                                host->base + MMCICLEAR);
1279 
1280                         writel(readl(base + MMCIMASK0) &
1281                                ~host->variant->busy_detect_mask,
1282                                base + MMCIMASK0);
1283                         host->busy_status = 0;
1284                 }
1285         }
1286 
1287         host->cmd = NULL;
1288 
1289         if (status & MCI_CMDTIMEOUT) {
1290                 cmd->error = -ETIMEDOUT;
1291         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292                 cmd->error = -EILSEQ;
1293         } else {
1294                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298         }
1299 
1300         if ((!sbc && !cmd->data) || cmd->error) {
1301                 if (host->data) {
1302                         /* Terminate the DMA transfer */
1303                         mmci_dma_error(host);
1304 
1305                         mmci_stop_data(host);
1306                         if (host->variant->cmdreg_stop && cmd->error) {
1307                                 mmci_stop_command(host);
1308                                 return;
1309                         }
1310                 }
1311                 mmci_request_end(host, host->mrq);
1312         } else if (sbc) {
1313                 mmci_start_command(host, host->mrq->cmd, 0);
1314         } else if (!host->variant->datactrl_first &&
1315                    !(cmd->data->flags & MMC_DATA_READ)) {
1316                 mmci_start_data(host, cmd->data);
1317         }
1318 }
1319 
1320 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321 {
1322         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323 }
1324 
1325 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326 {
1327         /*
1328          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329          * from the fifo range should be used
1330          */
1331         if (status & MCI_RXFIFOHALFFULL)
1332                 return host->variant->fifohalfsize;
1333         else if (status & MCI_RXDATAAVLBL)
1334                 return 4;
1335 
1336         return 0;
1337 }
1338 
1339 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340 {
1341         void __iomem *base = host->base;
1342         char *ptr = buffer;
1343         u32 status = readl(host->base + MMCISTATUS);
1344         int host_remain = host->size;
1345 
1346         do {
1347                 int count = host->get_rx_fifocnt(host, status, host_remain);
1348 
1349                 if (count > remain)
1350                         count = remain;
1351 
1352                 if (count <= 0)
1353                         break;
1354 
1355                 /*
1356                  * SDIO especially may want to send something that is
1357                  * not divisible by 4 (as opposed to card sectors
1358                  * etc). Therefore make sure to always read the last bytes
1359                  * while only doing full 32-bit reads towards the FIFO.
1360                  */
1361                 if (unlikely(count & 0x3)) {
1362                         if (count < 4) {
1363                                 unsigned char buf[4];
1364                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1365                                 memcpy(ptr, buf, count);
1366                         } else {
1367                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368                                 count &= ~0x3;
1369                         }
1370                 } else {
1371                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372                 }
1373 
1374                 ptr += count;
1375                 remain -= count;
1376                 host_remain -= count;
1377 
1378                 if (remain == 0)
1379                         break;
1380 
1381                 status = readl(base + MMCISTATUS);
1382         } while (status & MCI_RXDATAAVLBL);
1383 
1384         return ptr - buffer;
1385 }
1386 
1387 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388 {
1389         struct variant_data *variant = host->variant;
1390         void __iomem *base = host->base;
1391         char *ptr = buffer;
1392 
1393         do {
1394                 unsigned int count, maxcnt;
1395 
1396                 maxcnt = status & MCI_TXFIFOEMPTY ?
1397                          variant->fifosize : variant->fifohalfsize;
1398                 count = min(remain, maxcnt);
1399 
1400                 /*
1401                  * SDIO especially may want to send something that is
1402                  * not divisible by 4 (as opposed to card sectors
1403                  * etc), and the FIFO only accept full 32-bit writes.
1404                  * So compensate by adding +3 on the count, a single
1405                  * byte become a 32bit write, 7 bytes will be two
1406                  * 32bit writes etc.
1407                  */
1408                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409 
1410                 ptr += count;
1411                 remain -= count;
1412 
1413                 if (remain == 0)
1414                         break;
1415 
1416                 status = readl(base + MMCISTATUS);
1417         } while (status & MCI_TXFIFOHALFEMPTY);
1418 
1419         return ptr - buffer;
1420 }
1421 
1422 /*
1423  * PIO data transfer IRQ handler.
1424  */
1425 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426 {
1427         struct mmci_host *host = dev_id;
1428         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429         struct variant_data *variant = host->variant;
1430         void __iomem *base = host->base;
1431         u32 status;
1432 
1433         status = readl(base + MMCISTATUS);
1434 
1435         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436 
1437         do {
1438                 unsigned int remain, len;
1439                 char *buffer;
1440 
1441                 /*
1442                  * For write, we only need to test the half-empty flag
1443                  * here - if the FIFO is completely empty, then by
1444                  * definition it is more than half empty.
1445                  *
1446                  * For read, check for data available.
1447                  */
1448                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449                         break;
1450 
1451                 if (!sg_miter_next(sg_miter))
1452                         break;
1453 
1454                 buffer = sg_miter->addr;
1455                 remain = sg_miter->length;
1456 
1457                 len = 0;
1458                 if (status & MCI_RXACTIVE)
1459                         len = mmci_pio_read(host, buffer, remain);
1460                 if (status & MCI_TXACTIVE)
1461                         len = mmci_pio_write(host, buffer, remain, status);
1462 
1463                 sg_miter->consumed = len;
1464 
1465                 host->size -= len;
1466                 remain -= len;
1467 
1468                 if (remain)
1469                         break;
1470 
1471                 status = readl(base + MMCISTATUS);
1472         } while (1);
1473 
1474         sg_miter_stop(sg_miter);
1475 
1476         /*
1477          * If we have less than the fifo 'half-full' threshold to transfer,
1478          * trigger a PIO interrupt as soon as any data is available.
1479          */
1480         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482 
1483         /*
1484          * If we run out of data, disable the data IRQs; this
1485          * prevents a race where the FIFO becomes empty before
1486          * the chip itself has disabled the data path, and
1487          * stops us racing with our data end IRQ.
1488          */
1489         if (host->size == 0) {
1490                 mmci_set_mask1(host, 0);
1491                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492         }
1493 
1494         return IRQ_HANDLED;
1495 }
1496 
1497 /*
1498  * Handle completion of command and data transfers.
1499  */
1500 static irqreturn_t mmci_irq(int irq, void *dev_id)
1501 {
1502         struct mmci_host *host = dev_id;
1503         u32 status;
1504         int ret = 0;
1505 
1506         spin_lock(&host->lock);
1507 
1508         do {
1509                 status = readl(host->base + MMCISTATUS);
1510 
1511                 if (host->singleirq) {
1512                         if (status & host->mask1_reg)
1513                                 mmci_pio_irq(irq, dev_id);
1514 
1515                         status &= ~host->variant->irq_pio_mask;
1516                 }
1517 
1518                 /*
1519                  * Busy detection is managed by mmci_cmd_irq(), including to
1520                  * clear the corresponding IRQ.
1521                  */
1522                 status &= readl(host->base + MMCIMASK0);
1523                 if (host->variant->busy_detect)
1524                         writel(status & ~host->variant->busy_detect_mask,
1525                                host->base + MMCICLEAR);
1526                 else
1527                         writel(status, host->base + MMCICLEAR);
1528 
1529                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530 
1531                 if (host->variant->reversed_irq_handling) {
1532                         mmci_data_irq(host, host->data, status);
1533                         mmci_cmd_irq(host, host->cmd, status);
1534                 } else {
1535                         mmci_cmd_irq(host, host->cmd, status);
1536                         mmci_data_irq(host, host->data, status);
1537                 }
1538 
1539                 /*
1540                  * Busy detection has been handled by mmci_cmd_irq() above.
1541                  * Clear the status bit to prevent polling in IRQ context.
1542                  */
1543                 if (host->variant->busy_detect_flag)
1544                         status &= ~host->variant->busy_detect_flag;
1545 
1546                 ret = 1;
1547         } while (status);
1548 
1549         spin_unlock(&host->lock);
1550 
1551         return IRQ_RETVAL(ret);
1552 }
1553 
1554 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555 {
1556         struct mmci_host *host = mmc_priv(mmc);
1557         unsigned long flags;
1558 
1559         WARN_ON(host->mrq != NULL);
1560 
1561         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562         if (mrq->cmd->error) {
1563                 mmc_request_done(mmc, mrq);
1564                 return;
1565         }
1566 
1567         spin_lock_irqsave(&host->lock, flags);
1568 
1569         host->mrq = mrq;
1570 
1571         if (mrq->data)
1572                 mmci_get_next_data(host, mrq->data);
1573 
1574         if (mrq->data &&
1575             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576                 mmci_start_data(host, mrq->data);
1577 
1578         if (mrq->sbc)
1579                 mmci_start_command(host, mrq->sbc, 0);
1580         else
1581                 mmci_start_command(host, mrq->cmd, 0);
1582 
1583         spin_unlock_irqrestore(&host->lock, flags);
1584 }
1585 
1586 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587 {
1588         struct mmci_host *host = mmc_priv(mmc);
1589         struct variant_data *variant = host->variant;
1590         u32 pwr = 0;
1591         unsigned long flags;
1592         int ret;
1593 
1594         if (host->plat->ios_handler &&
1595                 host->plat->ios_handler(mmc_dev(mmc), ios))
1596                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597 
1598         switch (ios->power_mode) {
1599         case MMC_POWER_OFF:
1600                 if (!IS_ERR(mmc->supply.vmmc))
1601                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602 
1603                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604                         regulator_disable(mmc->supply.vqmmc);
1605                         host->vqmmc_enabled = false;
1606                 }
1607 
1608                 break;
1609         case MMC_POWER_UP:
1610                 if (!IS_ERR(mmc->supply.vmmc))
1611                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612 
1613                 /*
1614                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615                  * and instead uses MCI_PWR_ON so apply whatever value is
1616                  * configured in the variant data.
1617                  */
1618                 pwr |= variant->pwrreg_powerup;
1619 
1620                 break;
1621         case MMC_POWER_ON:
1622                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623                         ret = regulator_enable(mmc->supply.vqmmc);
1624                         if (ret < 0)
1625                                 dev_err(mmc_dev(mmc),
1626                                         "failed to enable vqmmc regulator\n");
1627                         else
1628                                 host->vqmmc_enabled = true;
1629                 }
1630 
1631                 pwr |= MCI_PWR_ON;
1632                 break;
1633         }
1634 
1635         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636                 /*
1637                  * The ST Micro variant has some additional bits
1638                  * indicating signal direction for the signals in
1639                  * the SD/MMC bus and feedback-clock usage.
1640                  */
1641                 pwr |= host->pwr_reg_add;
1642 
1643                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1644                         pwr &= ~MCI_ST_DATA74DIREN;
1645                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646                         pwr &= (~MCI_ST_DATA74DIREN &
1647                                 ~MCI_ST_DATA31DIREN &
1648                                 ~MCI_ST_DATA2DIREN);
1649         }
1650 
1651         if (variant->opendrain) {
1652                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653                         pwr |= variant->opendrain;
1654         } else {
1655                 /*
1656                  * If the variant cannot configure the pads by its own, then we
1657                  * expect the pinctrl to be able to do that for us
1658                  */
1659                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661                 else
1662                         pinctrl_select_state(host->pinctrl, host->pins_default);
1663         }
1664 
1665         /*
1666          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667          * gating the clock, the MCI_PWR_ON bit is cleared.
1668          */
1669         if (!ios->clock && variant->pwrreg_clkgate)
1670                 pwr &= ~MCI_PWR_ON;
1671 
1672         if (host->variant->explicit_mclk_control &&
1673             ios->clock != host->clock_cache) {
1674                 ret = clk_set_rate(host->clk, ios->clock);
1675                 if (ret < 0)
1676                         dev_err(mmc_dev(host->mmc),
1677                                 "Error setting clock rate (%d)\n", ret);
1678                 else
1679                         host->mclk = clk_get_rate(host->clk);
1680         }
1681         host->clock_cache = ios->clock;
1682 
1683         spin_lock_irqsave(&host->lock, flags);
1684 
1685         if (host->ops && host->ops->set_clkreg)
1686                 host->ops->set_clkreg(host, ios->clock);
1687         else
1688                 mmci_set_clkreg(host, ios->clock);
1689 
1690         if (host->ops && host->ops->set_pwrreg)
1691                 host->ops->set_pwrreg(host, pwr);
1692         else
1693                 mmci_write_pwrreg(host, pwr);
1694 
1695         mmci_reg_delay(host);
1696 
1697         spin_unlock_irqrestore(&host->lock, flags);
1698 }
1699 
1700 static int mmci_get_cd(struct mmc_host *mmc)
1701 {
1702         struct mmci_host *host = mmc_priv(mmc);
1703         struct mmci_platform_data *plat = host->plat;
1704         unsigned int status = mmc_gpio_get_cd(mmc);
1705 
1706         if (status == -ENOSYS) {
1707                 if (!plat->status)
1708                         return 1; /* Assume always present */
1709 
1710                 status = plat->status(mmc_dev(host->mmc));
1711         }
1712         return status;
1713 }
1714 
1715 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716 {
1717         int ret = 0;
1718 
1719         if (!IS_ERR(mmc->supply.vqmmc)) {
1720 
1721                 switch (ios->signal_voltage) {
1722                 case MMC_SIGNAL_VOLTAGE_330:
1723                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1724                                                 2700000, 3600000);
1725                         break;
1726                 case MMC_SIGNAL_VOLTAGE_180:
1727                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1728                                                 1700000, 1950000);
1729                         break;
1730                 case MMC_SIGNAL_VOLTAGE_120:
1731                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1732                                                 1100000, 1300000);
1733                         break;
1734                 }
1735 
1736                 if (ret)
1737                         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738         }
1739 
1740         return ret;
1741 }
1742 
1743 static struct mmc_host_ops mmci_ops = {
1744         .request        = mmci_request,
1745         .pre_req        = mmci_pre_request,
1746         .post_req       = mmci_post_request,
1747         .set_ios        = mmci_set_ios,
1748         .get_ro         = mmc_gpio_get_ro,
1749         .get_cd         = mmci_get_cd,
1750         .start_signal_voltage_switch = mmci_sig_volt_switch,
1751 };
1752 
1753 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754 {
1755         struct mmci_host *host = mmc_priv(mmc);
1756         int ret = mmc_of_parse(mmc);
1757 
1758         if (ret)
1759                 return ret;
1760 
1761         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773         if (of_get_property(np, "st,sig-dir", NULL))
1774                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775         if (of_get_property(np, "st,neg-edge", NULL))
1776                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777         if (of_get_property(np, "st,use-ckin", NULL))
1778                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779 
1780         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784 
1785         return 0;
1786 }
1787 
1788 static int mmci_probe(struct amba_device *dev,
1789         const struct amba_id *id)
1790 {
1791         struct mmci_platform_data *plat = dev->dev.platform_data;
1792         struct device_node *np = dev->dev.of_node;
1793         struct variant_data *variant = id->data;
1794         struct mmci_host *host;
1795         struct mmc_host *mmc;
1796         int ret;
1797 
1798         /* Must have platform data or Device Tree. */
1799         if (!plat && !np) {
1800                 dev_err(&dev->dev, "No plat data or DT found\n");
1801                 return -EINVAL;
1802         }
1803 
1804         if (!plat) {
1805                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806                 if (!plat)
1807                         return -ENOMEM;
1808         }
1809 
1810         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811         if (!mmc)
1812                 return -ENOMEM;
1813 
1814         ret = mmci_of_parse(np, mmc);
1815         if (ret)
1816                 goto host_free;
1817 
1818         host = mmc_priv(mmc);
1819         host->mmc = mmc;
1820 
1821         /*
1822          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823          * pins can be set accordingly using pinctrl
1824          */
1825         if (!variant->opendrain) {
1826                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1827                 if (IS_ERR(host->pinctrl)) {
1828                         dev_err(&dev->dev, "failed to get pinctrl");
1829                         ret = PTR_ERR(host->pinctrl);
1830                         goto host_free;
1831                 }
1832 
1833                 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834                                                           PINCTRL_STATE_DEFAULT);
1835                 if (IS_ERR(host->pins_default)) {
1836                         dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837                         ret = PTR_ERR(host->pins_default);
1838                         goto host_free;
1839                 }
1840 
1841                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1843                 if (IS_ERR(host->pins_opendrain)) {
1844                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845                         ret = PTR_ERR(host->pins_opendrain);
1846                         goto host_free;
1847                 }
1848         }
1849 
1850         host->hw_designer = amba_manf(dev);
1851         host->hw_revision = amba_rev(dev);
1852         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854 
1855         host->clk = devm_clk_get(&dev->dev, NULL);
1856         if (IS_ERR(host->clk)) {
1857                 ret = PTR_ERR(host->clk);
1858                 goto host_free;
1859         }
1860 
1861         ret = clk_prepare_enable(host->clk);
1862         if (ret)
1863                 goto host_free;
1864 
1865         if (variant->qcom_fifo)
1866                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867         else
1868                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869 
1870         host->plat = plat;
1871         host->variant = variant;
1872         host->mclk = clk_get_rate(host->clk);
1873         /*
1874          * According to the spec, mclk is max 100 MHz,
1875          * so we try to adjust the clock down to this,
1876          * (if possible).
1877          */
1878         if (host->mclk > variant->f_max) {
1879                 ret = clk_set_rate(host->clk, variant->f_max);
1880                 if (ret < 0)
1881                         goto clk_disable;
1882                 host->mclk = clk_get_rate(host->clk);
1883                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884                         host->mclk);
1885         }
1886 
1887         host->phybase = dev->res.start;
1888         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889         if (IS_ERR(host->base)) {
1890                 ret = PTR_ERR(host->base);
1891                 goto clk_disable;
1892         }
1893 
1894         if (variant->init)
1895                 variant->init(host);
1896 
1897         /*
1898          * The ARM and ST versions of the block have slightly different
1899          * clock divider equations which means that the minimum divider
1900          * differs too.
1901          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902          */
1903         if (variant->st_clkdiv)
1904                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905         else if (variant->stm32_clkdiv)
1906                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907         else if (variant->explicit_mclk_control)
1908                 mmc->f_min = clk_round_rate(host->clk, 100000);
1909         else
1910                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911         /*
1912          * If no maximum operating frequency is supplied, fall back to use
1913          * the module parameter, which has a (low) default value in case it
1914          * is not specified. Either value must not exceed the clock rate into
1915          * the block, of course.
1916          */
1917         if (mmc->f_max)
1918                 mmc->f_max = variant->explicit_mclk_control ?
1919                                 min(variant->f_max, mmc->f_max) :
1920                                 min(host->mclk, mmc->f_max);
1921         else
1922                 mmc->f_max = variant->explicit_mclk_control ?
1923                                 fmax : min(host->mclk, fmax);
1924 
1925 
1926         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927 
1928         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929         if (IS_ERR(host->rst)) {
1930                 ret = PTR_ERR(host->rst);
1931                 goto clk_disable;
1932         }
1933 
1934         /* Get regulators and the supported OCR mask */
1935         ret = mmc_regulator_get_supply(mmc);
1936         if (ret)
1937                 goto clk_disable;
1938 
1939         if (!mmc->ocr_avail)
1940                 mmc->ocr_avail = plat->ocr_mask;
1941         else if (plat->ocr_mask)
1942                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943 
1944         /* We support these capabilities. */
1945         mmc->caps |= MMC_CAP_CMD23;
1946 
1947         /*
1948          * Enable busy detection.
1949          */
1950         if (variant->busy_detect) {
1951                 mmci_ops.card_busy = mmci_card_busy;
1952                 /*
1953                  * Not all variants have a flag to enable busy detection
1954                  * in the DPSM, but if they do, set it here.
1955                  */
1956                 if (variant->busy_dpsm_flag)
1957                         mmci_write_datactrlreg(host,
1958                                                host->variant->busy_dpsm_flag);
1959                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960                 mmc->max_busy_timeout = 0;
1961         }
1962 
1963         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965         host->stop_abort.arg = 0;
1966         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967 
1968         mmc->ops = &mmci_ops;
1969 
1970         /* We support these PM capabilities. */
1971         mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972 
1973         /*
1974          * We can do SGIO
1975          */
1976         mmc->max_segs = NR_SG;
1977 
1978         /*
1979          * Since only a certain number of bits are valid in the data length
1980          * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981          * single request.
1982          */
1983         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984 
1985         /*
1986          * Set the maximum segment size.  Since we aren't doing DMA
1987          * (yet) we are only limited by the data length register.
1988          */
1989         mmc->max_seg_size = mmc->max_req_size;
1990 
1991         /*
1992          * Block size can be up to 2048 bytes, but must be a power of two.
1993          */
1994         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995 
1996         /*
1997          * Limit the number of blocks transferred so that we don't overflow
1998          * the maximum request size.
1999          */
2000         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001 
2002         spin_lock_init(&host->lock);
2003 
2004         writel(0, host->base + MMCIMASK0);
2005 
2006         if (variant->mmcimask1)
2007                 writel(0, host->base + MMCIMASK1);
2008 
2009         writel(0xfff, host->base + MMCICLEAR);
2010 
2011         /*
2012          * If:
2013          * - not using DT but using a descriptor table, or
2014          * - using a table of descriptors ALONGSIDE DT, or
2015          * look up these descriptors named "cd" and "wp" right here, fail
2016          * silently of these do not exist
2017          */
2018         if (!np) {
2019                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020                 if (ret == -EPROBE_DEFER)
2021                         goto clk_disable;
2022 
2023                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024                 if (ret == -EPROBE_DEFER)
2025                         goto clk_disable;
2026         }
2027 
2028         ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029                         DRIVER_NAME " (cmd)", host);
2030         if (ret)
2031                 goto clk_disable;
2032 
2033         if (!dev->irq[1])
2034                 host->singleirq = true;
2035         else {
2036                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038                 if (ret)
2039                         goto clk_disable;
2040         }
2041 
2042         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043 
2044         amba_set_drvdata(dev, mmc);
2045 
2046         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048                  amba_rev(dev), (unsigned long long)dev->res.start,
2049                  dev->irq[0], dev->irq[1]);
2050 
2051         mmci_dma_setup(host);
2052 
2053         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054         pm_runtime_use_autosuspend(&dev->dev);
2055 
2056         mmc_add_host(mmc);
2057 
2058         pm_runtime_put(&dev->dev);
2059         return 0;
2060 
2061  clk_disable:
2062         clk_disable_unprepare(host->clk);
2063  host_free:
2064         mmc_free_host(mmc);
2065         return ret;
2066 }
2067 
2068 static int mmci_remove(struct amba_device *dev)
2069 {
2070         struct mmc_host *mmc = amba_get_drvdata(dev);
2071 
2072         if (mmc) {
2073                 struct mmci_host *host = mmc_priv(mmc);
2074                 struct variant_data *variant = host->variant;
2075 
2076                 /*
2077                  * Undo pm_runtime_put() in probe.  We use the _sync
2078                  * version here so that we can access the primecell.
2079                  */
2080                 pm_runtime_get_sync(&dev->dev);
2081 
2082                 mmc_remove_host(mmc);
2083 
2084                 writel(0, host->base + MMCIMASK0);
2085 
2086                 if (variant->mmcimask1)
2087                         writel(0, host->base + MMCIMASK1);
2088 
2089                 writel(0, host->base + MMCICOMMAND);
2090                 writel(0, host->base + MMCIDATACTRL);
2091 
2092                 mmci_dma_release(host);
2093                 clk_disable_unprepare(host->clk);
2094                 mmc_free_host(mmc);
2095         }
2096 
2097         return 0;
2098 }
2099 
2100 #ifdef CONFIG_PM
2101 static void mmci_save(struct mmci_host *host)
2102 {
2103         unsigned long flags;
2104 
2105         spin_lock_irqsave(&host->lock, flags);
2106 
2107         writel(0, host->base + MMCIMASK0);
2108         if (host->variant->pwrreg_nopower) {
2109                 writel(0, host->base + MMCIDATACTRL);
2110                 writel(0, host->base + MMCIPOWER);
2111                 writel(0, host->base + MMCICLOCK);
2112         }
2113         mmci_reg_delay(host);
2114 
2115         spin_unlock_irqrestore(&host->lock, flags);
2116 }
2117 
2118 static void mmci_restore(struct mmci_host *host)
2119 {
2120         unsigned long flags;
2121 
2122         spin_lock_irqsave(&host->lock, flags);
2123 
2124         if (host->variant->pwrreg_nopower) {
2125                 writel(host->clk_reg, host->base + MMCICLOCK);
2126                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127                 writel(host->pwr_reg, host->base + MMCIPOWER);
2128         }
2129         writel(MCI_IRQENABLE | host->variant->start_err,
2130                host->base + MMCIMASK0);
2131         mmci_reg_delay(host);
2132 
2133         spin_unlock_irqrestore(&host->lock, flags);
2134 }
2135 
2136 static int mmci_runtime_suspend(struct device *dev)
2137 {
2138         struct amba_device *adev = to_amba_device(dev);
2139         struct mmc_host *mmc = amba_get_drvdata(adev);
2140 
2141         if (mmc) {
2142                 struct mmci_host *host = mmc_priv(mmc);
2143                 pinctrl_pm_select_sleep_state(dev);
2144                 mmci_save(host);
2145                 clk_disable_unprepare(host->clk);
2146         }
2147 
2148         return 0;
2149 }
2150 
2151 static int mmci_runtime_resume(struct device *dev)
2152 {
2153         struct amba_device *adev = to_amba_device(dev);
2154         struct mmc_host *mmc = amba_get_drvdata(adev);
2155 
2156         if (mmc) {
2157                 struct mmci_host *host = mmc_priv(mmc);
2158                 clk_prepare_enable(host->clk);
2159                 mmci_restore(host);
2160                 pinctrl_pm_select_default_state(dev);
2161         }
2162 
2163         return 0;
2164 }
2165 #endif
2166 
2167 static const struct dev_pm_ops mmci_dev_pm_ops = {
2168         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169                                 pm_runtime_force_resume)
2170         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171 };
2172 
2173 static const struct amba_id mmci_ids[] = {
2174         {
2175                 .id     = 0x00041180,
2176                 .mask   = 0xff0fffff,
2177                 .data   = &variant_arm,
2178         },
2179         {
2180                 .id     = 0x01041180,
2181                 .mask   = 0xff0fffff,
2182                 .data   = &variant_arm_extended_fifo,
2183         },
2184         {
2185                 .id     = 0x02041180,
2186                 .mask   = 0xff0fffff,
2187                 .data   = &variant_arm_extended_fifo_hwfc,
2188         },
2189         {
2190                 .id     = 0x00041181,
2191                 .mask   = 0x000fffff,
2192                 .data   = &variant_arm,
2193         },
2194         /* ST Micro variants */
2195         {
2196                 .id     = 0x00180180,
2197                 .mask   = 0x00ffffff,
2198                 .data   = &variant_u300,
2199         },
2200         {
2201                 .id     = 0x10180180,
2202                 .mask   = 0xf0ffffff,
2203                 .data   = &variant_nomadik,
2204         },
2205         {
2206                 .id     = 0x00280180,
2207                 .mask   = 0x00ffffff,
2208                 .data   = &variant_nomadik,
2209         },
2210         {
2211                 .id     = 0x00480180,
2212                 .mask   = 0xf0ffffff,
2213                 .data   = &variant_ux500,
2214         },
2215         {
2216                 .id     = 0x10480180,
2217                 .mask   = 0xf0ffffff,
2218                 .data   = &variant_ux500v2,
2219         },
2220         {
2221                 .id     = 0x00880180,
2222                 .mask   = 0x00ffffff,
2223                 .data   = &variant_stm32,
2224         },
2225         {
2226                 .id     = 0x10153180,
2227                 .mask   = 0xf0ffffff,
2228                 .data   = &variant_stm32_sdmmc,
2229         },
2230         /* Qualcomm variants */
2231         {
2232                 .id     = 0x00051180,
2233                 .mask   = 0x000fffff,
2234                 .data   = &variant_qcom,
2235         },
2236         { 0, 0 },
2237 };
2238 
2239 MODULE_DEVICE_TABLE(amba, mmci_ids);
2240 
2241 static struct amba_driver mmci_driver = {
2242         .drv            = {
2243                 .name   = DRIVER_NAME,
2244                 .pm     = &mmci_dev_pm_ops,
2245         },
2246         .probe          = mmci_probe,
2247         .remove         = mmci_remove,
2248         .id_table       = mmci_ids,
2249 };
2250 
2251 module_amba_driver(mmci_driver);
2252 
2253 module_param(fmax, uint, 0444);
2254 
2255 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */