root/drivers/mmc/host/sh_mmcif.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sh_mmcif_bitset
  2. sh_mmcif_bitclr
  3. sh_mmcif_dma_complete
  4. sh_mmcif_start_dma_rx
  5. sh_mmcif_start_dma_tx
  6. sh_mmcif_request_dma_pdata
  7. sh_mmcif_dma_slave_config
  8. sh_mmcif_request_dma
  9. sh_mmcif_release_dma
  10. sh_mmcif_clock_control
  11. sh_mmcif_sync_reset
  12. sh_mmcif_error_manage
  13. sh_mmcif_next_block
  14. sh_mmcif_single_read
  15. sh_mmcif_read_block
  16. sh_mmcif_multi_read
  17. sh_mmcif_mread_block
  18. sh_mmcif_single_write
  19. sh_mmcif_write_block
  20. sh_mmcif_multi_write
  21. sh_mmcif_mwrite_block
  22. sh_mmcif_get_response
  23. sh_mmcif_get_cmd12response
  24. sh_mmcif_set_cmd
  25. sh_mmcif_data_trans
  26. sh_mmcif_start_cmd
  27. sh_mmcif_stop_cmd
  28. sh_mmcif_request
  29. sh_mmcif_clk_setup
  30. sh_mmcif_set_ios
  31. sh_mmcif_end_cmd
  32. sh_mmcif_irqt
  33. sh_mmcif_intr
  34. sh_mmcif_timeout_work
  35. sh_mmcif_init_ocr
  36. sh_mmcif_probe
  37. sh_mmcif_remove
  38. sh_mmcif_suspend
  39. sh_mmcif_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * MMCIF eMMC driver.
   4  *
   5  * Copyright (C) 2010 Renesas Solutions Corp.
   6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7  */
   8 
   9 /*
  10  * The MMCIF driver is now processing MMC requests asynchronously, according
  11  * to the Linux MMC API requirement.
  12  *
  13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14  * data, and optional stop. To achieve asynchronous processing each of these
  15  * stages is split into two halves: a top and a bottom half. The top half
  16  * initialises the hardware, installs a timeout handler to handle completion
  17  * timeouts, and returns. In case of the command stage this immediately returns
  18  * control to the caller, leaving all further processing to run asynchronously.
  19  * All further request processing is performed by the bottom halves.
  20  *
  21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23  * request- and stage-specific handler methods.
  24  *
  25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26  * invocation, or a timeout work run. In case of an error or a successful
  27  * processing completion, the MMC core is informed and the request processing is
  28  * finished. In case processing has to continue, i.e., if data has to be read
  29  * from or written to the card, or if a stop command has to be sent, the next
  30  * top half is called, which performs the necessary hardware handling and
  31  * reschedules the timeout work. This returns the driver state machine into the
  32  * bottom half waiting state.
  33  */
  34 
  35 #include <linux/bitops.h>
  36 #include <linux/clk.h>
  37 #include <linux/completion.h>
  38 #include <linux/delay.h>
  39 #include <linux/dma-mapping.h>
  40 #include <linux/dmaengine.h>
  41 #include <linux/mmc/card.h>
  42 #include <linux/mmc/core.h>
  43 #include <linux/mmc/host.h>
  44 #include <linux/mmc/mmc.h>
  45 #include <linux/mmc/sdio.h>
  46 #include <linux/mmc/sh_mmcif.h>
  47 #include <linux/mmc/slot-gpio.h>
  48 #include <linux/mod_devicetable.h>
  49 #include <linux/mutex.h>
  50 #include <linux/of_device.h>
  51 #include <linux/pagemap.h>
  52 #include <linux/platform_device.h>
  53 #include <linux/pm_qos.h>
  54 #include <linux/pm_runtime.h>
  55 #include <linux/sh_dma.h>
  56 #include <linux/spinlock.h>
  57 #include <linux/module.h>
  58 
  59 #define DRIVER_NAME     "sh_mmcif"
  60 
  61 /* CE_CMD_SET */
  62 #define CMD_MASK                0x3f000000
  63 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
  64 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
  66 #define CMD_SET_RBSY            (1 << 21) /* R1b */
  67 #define CMD_SET_CCSEN           (1 << 20)
  68 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
  69 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
  70 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
  71 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
  72 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
  73 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
  74 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
  75 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
  76 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
  77 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
  79 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
  80 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
  81 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
  82 #define CMD_SET_CCSH            (1 << 5)
  83 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
  84 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
  85 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
  86 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
  87 
  88 /* CE_CMD_CTRL */
  89 #define CMD_CTRL_BREAK          (1 << 0)
  90 
  91 /* CE_BLOCK_SET */
  92 #define BLOCK_SIZE_MASK         0x0000ffff
  93 
  94 /* CE_INT */
  95 #define INT_CCSDE               (1 << 29)
  96 #define INT_CMD12DRE            (1 << 26)
  97 #define INT_CMD12RBE            (1 << 25)
  98 #define INT_CMD12CRE            (1 << 24)
  99 #define INT_DTRANE              (1 << 23)
 100 #define INT_BUFRE               (1 << 22)
 101 #define INT_BUFWEN              (1 << 21)
 102 #define INT_BUFREN              (1 << 20)
 103 #define INT_CCSRCV              (1 << 19)
 104 #define INT_RBSYE               (1 << 17)
 105 #define INT_CRSPE               (1 << 16)
 106 #define INT_CMDVIO              (1 << 15)
 107 #define INT_BUFVIO              (1 << 14)
 108 #define INT_WDATERR             (1 << 11)
 109 #define INT_RDATERR             (1 << 10)
 110 #define INT_RIDXERR             (1 << 9)
 111 #define INT_RSPERR              (1 << 8)
 112 #define INT_CCSTO               (1 << 5)
 113 #define INT_CRCSTO              (1 << 4)
 114 #define INT_WDATTO              (1 << 3)
 115 #define INT_RDATTO              (1 << 2)
 116 #define INT_RBSYTO              (1 << 1)
 117 #define INT_RSPTO               (1 << 0)
 118 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
 121                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122 
 123 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
 124                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126 
 127 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128 
 129 /* CE_INT_MASK */
 130 #define MASK_ALL                0x00000000
 131 #define MASK_MCCSDE             (1 << 29)
 132 #define MASK_MCMD12DRE          (1 << 26)
 133 #define MASK_MCMD12RBE          (1 << 25)
 134 #define MASK_MCMD12CRE          (1 << 24)
 135 #define MASK_MDTRANE            (1 << 23)
 136 #define MASK_MBUFRE             (1 << 22)
 137 #define MASK_MBUFWEN            (1 << 21)
 138 #define MASK_MBUFREN            (1 << 20)
 139 #define MASK_MCCSRCV            (1 << 19)
 140 #define MASK_MRBSYE             (1 << 17)
 141 #define MASK_MCRSPE             (1 << 16)
 142 #define MASK_MCMDVIO            (1 << 15)
 143 #define MASK_MBUFVIO            (1 << 14)
 144 #define MASK_MWDATERR           (1 << 11)
 145 #define MASK_MRDATERR           (1 << 10)
 146 #define MASK_MRIDXERR           (1 << 9)
 147 #define MASK_MRSPERR            (1 << 8)
 148 #define MASK_MCCSTO             (1 << 5)
 149 #define MASK_MCRCSTO            (1 << 4)
 150 #define MASK_MWDATTO            (1 << 3)
 151 #define MASK_MRDATTO            (1 << 2)
 152 #define MASK_MRBSYTO            (1 << 1)
 153 #define MASK_MRSPTO             (1 << 0)
 154 
 155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157                                  MASK_MCRCSTO | MASK_MWDATTO | \
 158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159 
 160 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
 161                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
 162                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
 163                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
 164 
 165 /* CE_HOST_STS1 */
 166 #define STS1_CMDSEQ             (1 << 31)
 167 
 168 /* CE_HOST_STS2 */
 169 #define STS2_CRCSTE             (1 << 31)
 170 #define STS2_CRC16E             (1 << 30)
 171 #define STS2_AC12CRCE           (1 << 29)
 172 #define STS2_RSPCRC7E           (1 << 28)
 173 #define STS2_CRCSTEBE           (1 << 27)
 174 #define STS2_RDATEBE            (1 << 26)
 175 #define STS2_AC12REBE           (1 << 25)
 176 #define STS2_RSPEBE             (1 << 24)
 177 #define STS2_AC12IDXE           (1 << 23)
 178 #define STS2_RSPIDXE            (1 << 22)
 179 #define STS2_CCSTO              (1 << 15)
 180 #define STS2_RDATTO             (1 << 14)
 181 #define STS2_DATBSYTO           (1 << 13)
 182 #define STS2_CRCSTTO            (1 << 12)
 183 #define STS2_AC12BSYTO          (1 << 11)
 184 #define STS2_RSPBSYTO           (1 << 10)
 185 #define STS2_AC12RSPTO          (1 << 9)
 186 #define STS2_RSPTO              (1 << 8)
 187 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
 188                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
 190                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
 191                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
 192                                  STS2_AC12RSPTO | STS2_RSPTO)
 193 
 194 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
 195 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
 196 #define CLKDEV_INIT             400000   /* 400 KHz */
 197 
 198 enum sh_mmcif_state {
 199         STATE_IDLE,
 200         STATE_REQUEST,
 201         STATE_IOS,
 202         STATE_TIMEOUT,
 203 };
 204 
 205 enum sh_mmcif_wait_for {
 206         MMCIF_WAIT_FOR_REQUEST,
 207         MMCIF_WAIT_FOR_CMD,
 208         MMCIF_WAIT_FOR_MREAD,
 209         MMCIF_WAIT_FOR_MWRITE,
 210         MMCIF_WAIT_FOR_READ,
 211         MMCIF_WAIT_FOR_WRITE,
 212         MMCIF_WAIT_FOR_READ_END,
 213         MMCIF_WAIT_FOR_WRITE_END,
 214         MMCIF_WAIT_FOR_STOP,
 215 };
 216 
 217 /*
 218  * difference for each SoC
 219  */
 220 struct sh_mmcif_host {
 221         struct mmc_host *mmc;
 222         struct mmc_request *mrq;
 223         struct platform_device *pd;
 224         struct clk *clk;
 225         int bus_width;
 226         unsigned char timing;
 227         bool sd_error;
 228         bool dying;
 229         long timeout;
 230         void __iomem *addr;
 231         u32 *pio_ptr;
 232         spinlock_t lock;                /* protect sh_mmcif_host::state */
 233         enum sh_mmcif_state state;
 234         enum sh_mmcif_wait_for wait_for;
 235         struct delayed_work timeout_work;
 236         size_t blocksize;
 237         int sg_idx;
 238         int sg_blkidx;
 239         bool power;
 240         bool ccs_enable;                /* Command Completion Signal support */
 241         bool clk_ctrl2_enable;
 242         struct mutex thread_lock;
 243         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244 
 245         /* DMA support */
 246         struct dma_chan         *chan_rx;
 247         struct dma_chan         *chan_tx;
 248         struct completion       dma_complete;
 249         bool                    dma_active;
 250 };
 251 
 252 static const struct of_device_id sh_mmcif_of_match[] = {
 253         { .compatible = "renesas,sh-mmcif" },
 254         { }
 255 };
 256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257 
 258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259 
 260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261                                         unsigned int reg, u32 val)
 262 {
 263         writel(val | readl(host->addr + reg), host->addr + reg);
 264 }
 265 
 266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267                                         unsigned int reg, u32 val)
 268 {
 269         writel(~val & readl(host->addr + reg), host->addr + reg);
 270 }
 271 
 272 static void sh_mmcif_dma_complete(void *arg)
 273 {
 274         struct sh_mmcif_host *host = arg;
 275         struct mmc_request *mrq = host->mrq;
 276         struct device *dev = sh_mmcif_host_to_dev(host);
 277 
 278         dev_dbg(dev, "Command completed\n");
 279 
 280         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281                  dev_name(dev)))
 282                 return;
 283 
 284         complete(&host->dma_complete);
 285 }
 286 
 287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288 {
 289         struct mmc_data *data = host->mrq->data;
 290         struct scatterlist *sg = data->sg;
 291         struct dma_async_tx_descriptor *desc = NULL;
 292         struct dma_chan *chan = host->chan_rx;
 293         struct device *dev = sh_mmcif_host_to_dev(host);
 294         dma_cookie_t cookie = -EINVAL;
 295         int ret;
 296 
 297         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298                          DMA_FROM_DEVICE);
 299         if (ret > 0) {
 300                 host->dma_active = true;
 301                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303         }
 304 
 305         if (desc) {
 306                 desc->callback = sh_mmcif_dma_complete;
 307                 desc->callback_param = host;
 308                 cookie = dmaengine_submit(desc);
 309                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310                 dma_async_issue_pending(chan);
 311         }
 312         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313                 __func__, data->sg_len, ret, cookie);
 314 
 315         if (!desc) {
 316                 /* DMA failed, fall back to PIO */
 317                 if (ret >= 0)
 318                         ret = -EIO;
 319                 host->chan_rx = NULL;
 320                 host->dma_active = false;
 321                 dma_release_channel(chan);
 322                 /* Free the Tx channel too */
 323                 chan = host->chan_tx;
 324                 if (chan) {
 325                         host->chan_tx = NULL;
 326                         dma_release_channel(chan);
 327                 }
 328                 dev_warn(dev,
 329                          "DMA failed: %d, falling back to PIO\n", ret);
 330                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331         }
 332 
 333         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334                 desc, cookie, data->sg_len);
 335 }
 336 
 337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338 {
 339         struct mmc_data *data = host->mrq->data;
 340         struct scatterlist *sg = data->sg;
 341         struct dma_async_tx_descriptor *desc = NULL;
 342         struct dma_chan *chan = host->chan_tx;
 343         struct device *dev = sh_mmcif_host_to_dev(host);
 344         dma_cookie_t cookie = -EINVAL;
 345         int ret;
 346 
 347         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348                          DMA_TO_DEVICE);
 349         if (ret > 0) {
 350                 host->dma_active = true;
 351                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353         }
 354 
 355         if (desc) {
 356                 desc->callback = sh_mmcif_dma_complete;
 357                 desc->callback_param = host;
 358                 cookie = dmaengine_submit(desc);
 359                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360                 dma_async_issue_pending(chan);
 361         }
 362         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363                 __func__, data->sg_len, ret, cookie);
 364 
 365         if (!desc) {
 366                 /* DMA failed, fall back to PIO */
 367                 if (ret >= 0)
 368                         ret = -EIO;
 369                 host->chan_tx = NULL;
 370                 host->dma_active = false;
 371                 dma_release_channel(chan);
 372                 /* Free the Rx channel too */
 373                 chan = host->chan_rx;
 374                 if (chan) {
 375                         host->chan_rx = NULL;
 376                         dma_release_channel(chan);
 377                 }
 378                 dev_warn(dev,
 379                          "DMA failed: %d, falling back to PIO\n", ret);
 380                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381         }
 382 
 383         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384                 desc, cookie);
 385 }
 386 
 387 static struct dma_chan *
 388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389 {
 390         dma_cap_mask_t mask;
 391 
 392         dma_cap_zero(mask);
 393         dma_cap_set(DMA_SLAVE, mask);
 394         if (slave_id <= 0)
 395                 return NULL;
 396 
 397         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398 }
 399 
 400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401                                      struct dma_chan *chan,
 402                                      enum dma_transfer_direction direction)
 403 {
 404         struct resource *res;
 405         struct dma_slave_config cfg = { 0, };
 406 
 407         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408         cfg.direction = direction;
 409 
 410         if (direction == DMA_DEV_TO_MEM) {
 411                 cfg.src_addr = res->start + MMCIF_CE_DATA;
 412                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413         } else {
 414                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416         }
 417 
 418         return dmaengine_slave_config(chan, &cfg);
 419 }
 420 
 421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422 {
 423         struct device *dev = sh_mmcif_host_to_dev(host);
 424         host->dma_active = false;
 425 
 426         /* We can only either use DMA for both Tx and Rx or not use it at all */
 427         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429 
 430                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431                                                         pdata->slave_id_tx);
 432                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433                                                         pdata->slave_id_rx);
 434         } else {
 435                 host->chan_tx = dma_request_slave_channel(dev, "tx");
 436                 host->chan_rx = dma_request_slave_channel(dev, "rx");
 437         }
 438         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 439                 host->chan_rx);
 440 
 441         if (!host->chan_tx || !host->chan_rx ||
 442             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 443             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 444                 goto error;
 445 
 446         return;
 447 
 448 error:
 449         if (host->chan_tx)
 450                 dma_release_channel(host->chan_tx);
 451         if (host->chan_rx)
 452                 dma_release_channel(host->chan_rx);
 453         host->chan_tx = host->chan_rx = NULL;
 454 }
 455 
 456 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 457 {
 458         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 459         /* Descriptors are freed automatically */
 460         if (host->chan_tx) {
 461                 struct dma_chan *chan = host->chan_tx;
 462                 host->chan_tx = NULL;
 463                 dma_release_channel(chan);
 464         }
 465         if (host->chan_rx) {
 466                 struct dma_chan *chan = host->chan_rx;
 467                 host->chan_rx = NULL;
 468                 dma_release_channel(chan);
 469         }
 470 
 471         host->dma_active = false;
 472 }
 473 
 474 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 475 {
 476         struct device *dev = sh_mmcif_host_to_dev(host);
 477         struct sh_mmcif_plat_data *p = dev->platform_data;
 478         bool sup_pclk = p ? p->sup_pclk : false;
 479         unsigned int current_clk = clk_get_rate(host->clk);
 480         unsigned int clkdiv;
 481 
 482         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 483         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 484 
 485         if (!clk)
 486                 return;
 487 
 488         if (host->clkdiv_map) {
 489                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
 490                 int i;
 491 
 492                 clkdiv = 0;
 493                 diff_min = ~0;
 494                 best_freq = 0;
 495                 for (i = 31; i >= 0; i--) {
 496                         if (!((1 << i) & host->clkdiv_map))
 497                                 continue;
 498 
 499                         /*
 500                          * clk = parent_freq / div
 501                          * -> parent_freq = clk x div
 502                          */
 503 
 504                         div = 1 << (i + 1);
 505                         freq = clk_round_rate(host->clk, clk * div);
 506                         myclk = freq / div;
 507                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
 508 
 509                         if (diff <= diff_min) {
 510                                 best_freq = freq;
 511                                 clkdiv = i;
 512                                 diff_min = diff;
 513                         }
 514                 }
 515 
 516                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 517                         (best_freq / (1 << (clkdiv + 1))), clk,
 518                         best_freq, clkdiv);
 519 
 520                 clk_set_rate(host->clk, best_freq);
 521                 clkdiv = clkdiv << 16;
 522         } else if (sup_pclk && clk == current_clk) {
 523                 clkdiv = CLK_SUP_PCLK;
 524         } else {
 525                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 526         }
 527 
 528         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 529         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 530 }
 531 
 532 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 533 {
 534         u32 tmp;
 535 
 536         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 537 
 538         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 539         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 540         if (host->ccs_enable)
 541                 tmp |= SCCSTO_29;
 542         if (host->clk_ctrl2_enable)
 543                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 544         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 545                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 546         /* byte swap on */
 547         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 548 }
 549 
 550 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 551 {
 552         struct device *dev = sh_mmcif_host_to_dev(host);
 553         u32 state1, state2;
 554         int ret, timeout;
 555 
 556         host->sd_error = false;
 557 
 558         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 559         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 560         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 561         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 562 
 563         if (state1 & STS1_CMDSEQ) {
 564                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 565                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 566                 for (timeout = 10000; timeout; timeout--) {
 567                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 568                               & STS1_CMDSEQ))
 569                                 break;
 570                         mdelay(1);
 571                 }
 572                 if (!timeout) {
 573                         dev_err(dev,
 574                                 "Forced end of command sequence timeout err\n");
 575                         return -EIO;
 576                 }
 577                 sh_mmcif_sync_reset(host);
 578                 dev_dbg(dev, "Forced end of command sequence\n");
 579                 return -EIO;
 580         }
 581 
 582         if (state2 & STS2_CRC_ERR) {
 583                 dev_err(dev, " CRC error: state %u, wait %u\n",
 584                         host->state, host->wait_for);
 585                 ret = -EIO;
 586         } else if (state2 & STS2_TIMEOUT_ERR) {
 587                 dev_err(dev, " Timeout: state %u, wait %u\n",
 588                         host->state, host->wait_for);
 589                 ret = -ETIMEDOUT;
 590         } else {
 591                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 592                         host->state, host->wait_for);
 593                 ret = -EIO;
 594         }
 595         return ret;
 596 }
 597 
 598 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 599 {
 600         struct mmc_data *data = host->mrq->data;
 601 
 602         host->sg_blkidx += host->blocksize;
 603 
 604         /* data->sg->length must be a multiple of host->blocksize? */
 605         BUG_ON(host->sg_blkidx > data->sg->length);
 606 
 607         if (host->sg_blkidx == data->sg->length) {
 608                 host->sg_blkidx = 0;
 609                 if (++host->sg_idx < data->sg_len)
 610                         host->pio_ptr = sg_virt(++data->sg);
 611         } else {
 612                 host->pio_ptr = p;
 613         }
 614 
 615         return host->sg_idx != data->sg_len;
 616 }
 617 
 618 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 619                                  struct mmc_request *mrq)
 620 {
 621         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 622                            BLOCK_SIZE_MASK) + 3;
 623 
 624         host->wait_for = MMCIF_WAIT_FOR_READ;
 625 
 626         /* buf read enable */
 627         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 628 }
 629 
 630 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 631 {
 632         struct device *dev = sh_mmcif_host_to_dev(host);
 633         struct mmc_data *data = host->mrq->data;
 634         u32 *p = sg_virt(data->sg);
 635         int i;
 636 
 637         if (host->sd_error) {
 638                 data->error = sh_mmcif_error_manage(host);
 639                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 640                 return false;
 641         }
 642 
 643         for (i = 0; i < host->blocksize / 4; i++)
 644                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 645 
 646         /* buffer read end */
 647         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 648         host->wait_for = MMCIF_WAIT_FOR_READ_END;
 649 
 650         return true;
 651 }
 652 
 653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 654                                 struct mmc_request *mrq)
 655 {
 656         struct mmc_data *data = mrq->data;
 657 
 658         if (!data->sg_len || !data->sg->length)
 659                 return;
 660 
 661         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 662                 BLOCK_SIZE_MASK;
 663 
 664         host->wait_for = MMCIF_WAIT_FOR_MREAD;
 665         host->sg_idx = 0;
 666         host->sg_blkidx = 0;
 667         host->pio_ptr = sg_virt(data->sg);
 668 
 669         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 670 }
 671 
 672 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 673 {
 674         struct device *dev = sh_mmcif_host_to_dev(host);
 675         struct mmc_data *data = host->mrq->data;
 676         u32 *p = host->pio_ptr;
 677         int i;
 678 
 679         if (host->sd_error) {
 680                 data->error = sh_mmcif_error_manage(host);
 681                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 682                 return false;
 683         }
 684 
 685         BUG_ON(!data->sg->length);
 686 
 687         for (i = 0; i < host->blocksize / 4; i++)
 688                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 689 
 690         if (!sh_mmcif_next_block(host, p))
 691                 return false;
 692 
 693         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 694 
 695         return true;
 696 }
 697 
 698 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 699                                         struct mmc_request *mrq)
 700 {
 701         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 702                            BLOCK_SIZE_MASK) + 3;
 703 
 704         host->wait_for = MMCIF_WAIT_FOR_WRITE;
 705 
 706         /* buf write enable */
 707         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 708 }
 709 
 710 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 711 {
 712         struct device *dev = sh_mmcif_host_to_dev(host);
 713         struct mmc_data *data = host->mrq->data;
 714         u32 *p = sg_virt(data->sg);
 715         int i;
 716 
 717         if (host->sd_error) {
 718                 data->error = sh_mmcif_error_manage(host);
 719                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 720                 return false;
 721         }
 722 
 723         for (i = 0; i < host->blocksize / 4; i++)
 724                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 725 
 726         /* buffer write end */
 727         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 728         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 729 
 730         return true;
 731 }
 732 
 733 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 734                                 struct mmc_request *mrq)
 735 {
 736         struct mmc_data *data = mrq->data;
 737 
 738         if (!data->sg_len || !data->sg->length)
 739                 return;
 740 
 741         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 742                 BLOCK_SIZE_MASK;
 743 
 744         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 745         host->sg_idx = 0;
 746         host->sg_blkidx = 0;
 747         host->pio_ptr = sg_virt(data->sg);
 748 
 749         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 750 }
 751 
 752 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 753 {
 754         struct device *dev = sh_mmcif_host_to_dev(host);
 755         struct mmc_data *data = host->mrq->data;
 756         u32 *p = host->pio_ptr;
 757         int i;
 758 
 759         if (host->sd_error) {
 760                 data->error = sh_mmcif_error_manage(host);
 761                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 762                 return false;
 763         }
 764 
 765         BUG_ON(!data->sg->length);
 766 
 767         for (i = 0; i < host->blocksize / 4; i++)
 768                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 769 
 770         if (!sh_mmcif_next_block(host, p))
 771                 return false;
 772 
 773         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 774 
 775         return true;
 776 }
 777 
 778 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 779                                                 struct mmc_command *cmd)
 780 {
 781         if (cmd->flags & MMC_RSP_136) {
 782                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 783                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 784                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 785                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 786         } else
 787                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 788 }
 789 
 790 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 791                                                 struct mmc_command *cmd)
 792 {
 793         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 794 }
 795 
 796 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 797                             struct mmc_request *mrq)
 798 {
 799         struct device *dev = sh_mmcif_host_to_dev(host);
 800         struct mmc_data *data = mrq->data;
 801         struct mmc_command *cmd = mrq->cmd;
 802         u32 opc = cmd->opcode;
 803         u32 tmp = 0;
 804 
 805         /* Response Type check */
 806         switch (mmc_resp_type(cmd)) {
 807         case MMC_RSP_NONE:
 808                 tmp |= CMD_SET_RTYP_NO;
 809                 break;
 810         case MMC_RSP_R1:
 811         case MMC_RSP_R3:
 812                 tmp |= CMD_SET_RTYP_6B;
 813                 break;
 814         case MMC_RSP_R1B:
 815                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 816                 break;
 817         case MMC_RSP_R2:
 818                 tmp |= CMD_SET_RTYP_17B;
 819                 break;
 820         default:
 821                 dev_err(dev, "Unsupported response type.\n");
 822                 break;
 823         }
 824 
 825         /* WDAT / DATW */
 826         if (data) {
 827                 tmp |= CMD_SET_WDAT;
 828                 switch (host->bus_width) {
 829                 case MMC_BUS_WIDTH_1:
 830                         tmp |= CMD_SET_DATW_1;
 831                         break;
 832                 case MMC_BUS_WIDTH_4:
 833                         tmp |= CMD_SET_DATW_4;
 834                         break;
 835                 case MMC_BUS_WIDTH_8:
 836                         tmp |= CMD_SET_DATW_8;
 837                         break;
 838                 default:
 839                         dev_err(dev, "Unsupported bus width.\n");
 840                         break;
 841                 }
 842                 switch (host->timing) {
 843                 case MMC_TIMING_MMC_DDR52:
 844                         /*
 845                          * MMC core will only set this timing, if the host
 846                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 847                          * capability. MMCIF implementations with this
 848                          * capability, e.g. sh73a0, will have to set it
 849                          * in their platform data.
 850                          */
 851                         tmp |= CMD_SET_DARS;
 852                         break;
 853                 }
 854         }
 855         /* DWEN */
 856         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 857                 tmp |= CMD_SET_DWEN;
 858         /* CMLTE/CMD12EN */
 859         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 860                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 861                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 862                                 data->blocks << 16);
 863         }
 864         /* RIDXC[1:0] check bits */
 865         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 866             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 867                 tmp |= CMD_SET_RIDXC_BITS;
 868         /* RCRC7C[1:0] check bits */
 869         if (opc == MMC_SEND_OP_COND)
 870                 tmp |= CMD_SET_CRC7C_BITS;
 871         /* RCRC7C[1:0] internal CRC7 */
 872         if (opc == MMC_ALL_SEND_CID ||
 873                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 874                 tmp |= CMD_SET_CRC7C_INTERNAL;
 875 
 876         return (opc << 24) | tmp;
 877 }
 878 
 879 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 880                                struct mmc_request *mrq, u32 opc)
 881 {
 882         struct device *dev = sh_mmcif_host_to_dev(host);
 883 
 884         switch (opc) {
 885         case MMC_READ_MULTIPLE_BLOCK:
 886                 sh_mmcif_multi_read(host, mrq);
 887                 return 0;
 888         case MMC_WRITE_MULTIPLE_BLOCK:
 889                 sh_mmcif_multi_write(host, mrq);
 890                 return 0;
 891         case MMC_WRITE_BLOCK:
 892                 sh_mmcif_single_write(host, mrq);
 893                 return 0;
 894         case MMC_READ_SINGLE_BLOCK:
 895         case MMC_SEND_EXT_CSD:
 896                 sh_mmcif_single_read(host, mrq);
 897                 return 0;
 898         default:
 899                 dev_err(dev, "Unsupported CMD%d\n", opc);
 900                 return -EINVAL;
 901         }
 902 }
 903 
 904 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 905                                struct mmc_request *mrq)
 906 {
 907         struct mmc_command *cmd = mrq->cmd;
 908         u32 opc;
 909         u32 mask = 0;
 910         unsigned long flags;
 911 
 912         if (cmd->flags & MMC_RSP_BUSY)
 913                 mask = MASK_START_CMD | MASK_MRBSYE;
 914         else
 915                 mask = MASK_START_CMD | MASK_MCRSPE;
 916 
 917         if (host->ccs_enable)
 918                 mask |= MASK_MCCSTO;
 919 
 920         if (mrq->data) {
 921                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 922                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 923                                 mrq->data->blksz);
 924         }
 925         opc = sh_mmcif_set_cmd(host, mrq);
 926 
 927         if (host->ccs_enable)
 928                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 929         else
 930                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 931         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 932         /* set arg */
 933         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 934         /* set cmd */
 935         spin_lock_irqsave(&host->lock, flags);
 936         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 937 
 938         host->wait_for = MMCIF_WAIT_FOR_CMD;
 939         schedule_delayed_work(&host->timeout_work, host->timeout);
 940         spin_unlock_irqrestore(&host->lock, flags);
 941 }
 942 
 943 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 944                               struct mmc_request *mrq)
 945 {
 946         struct device *dev = sh_mmcif_host_to_dev(host);
 947 
 948         switch (mrq->cmd->opcode) {
 949         case MMC_READ_MULTIPLE_BLOCK:
 950                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 951                 break;
 952         case MMC_WRITE_MULTIPLE_BLOCK:
 953                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 954                 break;
 955         default:
 956                 dev_err(dev, "unsupported stop cmd\n");
 957                 mrq->stop->error = sh_mmcif_error_manage(host);
 958                 return;
 959         }
 960 
 961         host->wait_for = MMCIF_WAIT_FOR_STOP;
 962 }
 963 
 964 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 965 {
 966         struct sh_mmcif_host *host = mmc_priv(mmc);
 967         struct device *dev = sh_mmcif_host_to_dev(host);
 968         unsigned long flags;
 969 
 970         spin_lock_irqsave(&host->lock, flags);
 971         if (host->state != STATE_IDLE) {
 972                 dev_dbg(dev, "%s() rejected, state %u\n",
 973                         __func__, host->state);
 974                 spin_unlock_irqrestore(&host->lock, flags);
 975                 mrq->cmd->error = -EAGAIN;
 976                 mmc_request_done(mmc, mrq);
 977                 return;
 978         }
 979 
 980         host->state = STATE_REQUEST;
 981         spin_unlock_irqrestore(&host->lock, flags);
 982 
 983         host->mrq = mrq;
 984 
 985         sh_mmcif_start_cmd(host, mrq);
 986 }
 987 
 988 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 989 {
 990         struct device *dev = sh_mmcif_host_to_dev(host);
 991 
 992         if (host->mmc->f_max) {
 993                 unsigned int f_max, f_min = 0, f_min_old;
 994 
 995                 f_max = host->mmc->f_max;
 996                 for (f_min_old = f_max; f_min_old > 2;) {
 997                         f_min = clk_round_rate(host->clk, f_min_old / 2);
 998                         if (f_min == f_min_old)
 999                                 break;
1000                         f_min_old = f_min;
1001                 }
1002 
1003                 /*
1004                  * This driver assumes this SoC is R-Car Gen2 or later
1005                  */
1006                 host->clkdiv_map = 0x3ff;
1007 
1008                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010         } else {
1011                 unsigned int clk = clk_get_rate(host->clk);
1012 
1013                 host->mmc->f_max = clk / 2;
1014                 host->mmc->f_min = clk / 512;
1015         }
1016 
1017         dev_dbg(dev, "clk max/min = %d/%d\n",
1018                 host->mmc->f_max, host->mmc->f_min);
1019 }
1020 
1021 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022 {
1023         struct sh_mmcif_host *host = mmc_priv(mmc);
1024         struct device *dev = sh_mmcif_host_to_dev(host);
1025         unsigned long flags;
1026 
1027         spin_lock_irqsave(&host->lock, flags);
1028         if (host->state != STATE_IDLE) {
1029                 dev_dbg(dev, "%s() rejected, state %u\n",
1030                         __func__, host->state);
1031                 spin_unlock_irqrestore(&host->lock, flags);
1032                 return;
1033         }
1034 
1035         host->state = STATE_IOS;
1036         spin_unlock_irqrestore(&host->lock, flags);
1037 
1038         switch (ios->power_mode) {
1039         case MMC_POWER_UP:
1040                 if (!IS_ERR(mmc->supply.vmmc))
1041                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042                 if (!host->power) {
1043                         clk_prepare_enable(host->clk);
1044                         pm_runtime_get_sync(dev);
1045                         sh_mmcif_sync_reset(host);
1046                         sh_mmcif_request_dma(host);
1047                         host->power = true;
1048                 }
1049                 break;
1050         case MMC_POWER_OFF:
1051                 if (!IS_ERR(mmc->supply.vmmc))
1052                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053                 if (host->power) {
1054                         sh_mmcif_clock_control(host, 0);
1055                         sh_mmcif_release_dma(host);
1056                         pm_runtime_put(dev);
1057                         clk_disable_unprepare(host->clk);
1058                         host->power = false;
1059                 }
1060                 break;
1061         case MMC_POWER_ON:
1062                 sh_mmcif_clock_control(host, ios->clock);
1063                 break;
1064         }
1065 
1066         host->timing = ios->timing;
1067         host->bus_width = ios->bus_width;
1068         host->state = STATE_IDLE;
1069 }
1070 
1071 static const struct mmc_host_ops sh_mmcif_ops = {
1072         .request        = sh_mmcif_request,
1073         .set_ios        = sh_mmcif_set_ios,
1074         .get_cd         = mmc_gpio_get_cd,
1075 };
1076 
1077 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078 {
1079         struct mmc_command *cmd = host->mrq->cmd;
1080         struct mmc_data *data = host->mrq->data;
1081         struct device *dev = sh_mmcif_host_to_dev(host);
1082         long time;
1083 
1084         if (host->sd_error) {
1085                 switch (cmd->opcode) {
1086                 case MMC_ALL_SEND_CID:
1087                 case MMC_SELECT_CARD:
1088                 case MMC_APP_CMD:
1089                         cmd->error = -ETIMEDOUT;
1090                         break;
1091                 default:
1092                         cmd->error = sh_mmcif_error_manage(host);
1093                         break;
1094                 }
1095                 dev_dbg(dev, "CMD%d error %d\n",
1096                         cmd->opcode, cmd->error);
1097                 host->sd_error = false;
1098                 return false;
1099         }
1100         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101                 cmd->error = 0;
1102                 return false;
1103         }
1104 
1105         sh_mmcif_get_response(host, cmd);
1106 
1107         if (!data)
1108                 return false;
1109 
1110         /*
1111          * Completion can be signalled from DMA callback and error, so, have to
1112          * reset here, before setting .dma_active
1113          */
1114         init_completion(&host->dma_complete);
1115 
1116         if (data->flags & MMC_DATA_READ) {
1117                 if (host->chan_rx)
1118                         sh_mmcif_start_dma_rx(host);
1119         } else {
1120                 if (host->chan_tx)
1121                         sh_mmcif_start_dma_tx(host);
1122         }
1123 
1124         if (!host->dma_active) {
1125                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126                 return !data->error;
1127         }
1128 
1129         /* Running in the IRQ thread, can sleep */
1130         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131                                                          host->timeout);
1132 
1133         if (data->flags & MMC_DATA_READ)
1134                 dma_unmap_sg(host->chan_rx->device->dev,
1135                              data->sg, data->sg_len,
1136                              DMA_FROM_DEVICE);
1137         else
1138                 dma_unmap_sg(host->chan_tx->device->dev,
1139                              data->sg, data->sg_len,
1140                              DMA_TO_DEVICE);
1141 
1142         if (host->sd_error) {
1143                 dev_err(host->mmc->parent,
1144                         "Error IRQ while waiting for DMA completion!\n");
1145                 /* Woken up by an error IRQ: abort DMA */
1146                 data->error = sh_mmcif_error_manage(host);
1147         } else if (!time) {
1148                 dev_err(host->mmc->parent, "DMA timeout!\n");
1149                 data->error = -ETIMEDOUT;
1150         } else if (time < 0) {
1151                 dev_err(host->mmc->parent,
1152                         "wait_for_completion_...() error %ld!\n", time);
1153                 data->error = time;
1154         }
1155         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157         host->dma_active = false;
1158 
1159         if (data->error) {
1160                 data->bytes_xfered = 0;
1161                 /* Abort DMA */
1162                 if (data->flags & MMC_DATA_READ)
1163                         dmaengine_terminate_all(host->chan_rx);
1164                 else
1165                         dmaengine_terminate_all(host->chan_tx);
1166         }
1167 
1168         return false;
1169 }
1170 
1171 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172 {
1173         struct sh_mmcif_host *host = dev_id;
1174         struct mmc_request *mrq;
1175         struct device *dev = sh_mmcif_host_to_dev(host);
1176         bool wait = false;
1177         unsigned long flags;
1178         int wait_work;
1179 
1180         spin_lock_irqsave(&host->lock, flags);
1181         wait_work = host->wait_for;
1182         spin_unlock_irqrestore(&host->lock, flags);
1183 
1184         cancel_delayed_work_sync(&host->timeout_work);
1185 
1186         mutex_lock(&host->thread_lock);
1187 
1188         mrq = host->mrq;
1189         if (!mrq) {
1190                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191                         host->state, host->wait_for);
1192                 mutex_unlock(&host->thread_lock);
1193                 return IRQ_HANDLED;
1194         }
1195 
1196         /*
1197          * All handlers return true, if processing continues, and false, if the
1198          * request has to be completed - successfully or not
1199          */
1200         switch (wait_work) {
1201         case MMCIF_WAIT_FOR_REQUEST:
1202                 /* We're too late, the timeout has already kicked in */
1203                 mutex_unlock(&host->thread_lock);
1204                 return IRQ_HANDLED;
1205         case MMCIF_WAIT_FOR_CMD:
1206                 /* Wait for data? */
1207                 wait = sh_mmcif_end_cmd(host);
1208                 break;
1209         case MMCIF_WAIT_FOR_MREAD:
1210                 /* Wait for more data? */
1211                 wait = sh_mmcif_mread_block(host);
1212                 break;
1213         case MMCIF_WAIT_FOR_READ:
1214                 /* Wait for data end? */
1215                 wait = sh_mmcif_read_block(host);
1216                 break;
1217         case MMCIF_WAIT_FOR_MWRITE:
1218                 /* Wait data to write? */
1219                 wait = sh_mmcif_mwrite_block(host);
1220                 break;
1221         case MMCIF_WAIT_FOR_WRITE:
1222                 /* Wait for data end? */
1223                 wait = sh_mmcif_write_block(host);
1224                 break;
1225         case MMCIF_WAIT_FOR_STOP:
1226                 if (host->sd_error) {
1227                         mrq->stop->error = sh_mmcif_error_manage(host);
1228                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229                         break;
1230                 }
1231                 sh_mmcif_get_cmd12response(host, mrq->stop);
1232                 mrq->stop->error = 0;
1233                 break;
1234         case MMCIF_WAIT_FOR_READ_END:
1235         case MMCIF_WAIT_FOR_WRITE_END:
1236                 if (host->sd_error) {
1237                         mrq->data->error = sh_mmcif_error_manage(host);
1238                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239                 }
1240                 break;
1241         default:
1242                 BUG();
1243         }
1244 
1245         if (wait) {
1246                 schedule_delayed_work(&host->timeout_work, host->timeout);
1247                 /* Wait for more data */
1248                 mutex_unlock(&host->thread_lock);
1249                 return IRQ_HANDLED;
1250         }
1251 
1252         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253                 struct mmc_data *data = mrq->data;
1254                 if (!mrq->cmd->error && data && !data->error)
1255                         data->bytes_xfered =
1256                                 data->blocks * data->blksz;
1257 
1258                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259                         sh_mmcif_stop_cmd(host, mrq);
1260                         if (!mrq->stop->error) {
1261                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1262                                 mutex_unlock(&host->thread_lock);
1263                                 return IRQ_HANDLED;
1264                         }
1265                 }
1266         }
1267 
1268         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269         host->state = STATE_IDLE;
1270         host->mrq = NULL;
1271         mmc_request_done(host->mmc, mrq);
1272 
1273         mutex_unlock(&host->thread_lock);
1274 
1275         return IRQ_HANDLED;
1276 }
1277 
1278 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279 {
1280         struct sh_mmcif_host *host = dev_id;
1281         struct device *dev = sh_mmcif_host_to_dev(host);
1282         u32 state, mask;
1283 
1284         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286         if (host->ccs_enable)
1287                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288         else
1289                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291 
1292         if (state & ~MASK_CLEAN)
1293                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294                         state);
1295 
1296         if (state & INT_ERR_STS || state & ~INT_ALL) {
1297                 host->sd_error = true;
1298                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1299         }
1300         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301                 if (!host->mrq)
1302                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303                 if (!host->dma_active)
1304                         return IRQ_WAKE_THREAD;
1305                 else if (host->sd_error)
1306                         sh_mmcif_dma_complete(host);
1307         } else {
1308                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309         }
1310 
1311         return IRQ_HANDLED;
1312 }
1313 
1314 static void sh_mmcif_timeout_work(struct work_struct *work)
1315 {
1316         struct delayed_work *d = to_delayed_work(work);
1317         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318         struct mmc_request *mrq = host->mrq;
1319         struct device *dev = sh_mmcif_host_to_dev(host);
1320         unsigned long flags;
1321 
1322         if (host->dying)
1323                 /* Don't run after mmc_remove_host() */
1324                 return;
1325 
1326         spin_lock_irqsave(&host->lock, flags);
1327         if (host->state == STATE_IDLE) {
1328                 spin_unlock_irqrestore(&host->lock, flags);
1329                 return;
1330         }
1331 
1332         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333                 host->wait_for, mrq->cmd->opcode);
1334 
1335         host->state = STATE_TIMEOUT;
1336         spin_unlock_irqrestore(&host->lock, flags);
1337 
1338         /*
1339          * Handle races with cancel_delayed_work(), unless
1340          * cancel_delayed_work_sync() is used
1341          */
1342         switch (host->wait_for) {
1343         case MMCIF_WAIT_FOR_CMD:
1344                 mrq->cmd->error = sh_mmcif_error_manage(host);
1345                 break;
1346         case MMCIF_WAIT_FOR_STOP:
1347                 mrq->stop->error = sh_mmcif_error_manage(host);
1348                 break;
1349         case MMCIF_WAIT_FOR_MREAD:
1350         case MMCIF_WAIT_FOR_MWRITE:
1351         case MMCIF_WAIT_FOR_READ:
1352         case MMCIF_WAIT_FOR_WRITE:
1353         case MMCIF_WAIT_FOR_READ_END:
1354         case MMCIF_WAIT_FOR_WRITE_END:
1355                 mrq->data->error = sh_mmcif_error_manage(host);
1356                 break;
1357         default:
1358                 BUG();
1359         }
1360 
1361         host->state = STATE_IDLE;
1362         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363         host->mrq = NULL;
1364         mmc_request_done(host->mmc, mrq);
1365 }
1366 
1367 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368 {
1369         struct device *dev = sh_mmcif_host_to_dev(host);
1370         struct sh_mmcif_plat_data *pd = dev->platform_data;
1371         struct mmc_host *mmc = host->mmc;
1372 
1373         mmc_regulator_get_supply(mmc);
1374 
1375         if (!pd)
1376                 return;
1377 
1378         if (!mmc->ocr_avail)
1379                 mmc->ocr_avail = pd->ocr;
1380         else if (pd->ocr)
1381                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382 }
1383 
1384 static int sh_mmcif_probe(struct platform_device *pdev)
1385 {
1386         int ret = 0, irq[2];
1387         struct mmc_host *mmc;
1388         struct sh_mmcif_host *host;
1389         struct device *dev = &pdev->dev;
1390         struct sh_mmcif_plat_data *pd = dev->platform_data;
1391         struct resource *res;
1392         void __iomem *reg;
1393         const char *name;
1394 
1395         irq[0] = platform_get_irq(pdev, 0);
1396         irq[1] = platform_get_irq_optional(pdev, 1);
1397         if (irq[0] < 0)
1398                 return -ENXIO;
1399 
1400         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401         reg = devm_ioremap_resource(dev, res);
1402         if (IS_ERR(reg))
1403                 return PTR_ERR(reg);
1404 
1405         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406         if (!mmc)
1407                 return -ENOMEM;
1408 
1409         ret = mmc_of_parse(mmc);
1410         if (ret < 0)
1411                 goto err_host;
1412 
1413         host            = mmc_priv(mmc);
1414         host->mmc       = mmc;
1415         host->addr      = reg;
1416         host->timeout   = msecs_to_jiffies(10000);
1417         host->ccs_enable = true;
1418         host->clk_ctrl2_enable = false;
1419 
1420         host->pd = pdev;
1421 
1422         spin_lock_init(&host->lock);
1423 
1424         mmc->ops = &sh_mmcif_ops;
1425         sh_mmcif_init_ocr(host);
1426 
1427         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429         mmc->max_busy_timeout = 10000;
1430 
1431         if (pd && pd->caps)
1432                 mmc->caps |= pd->caps;
1433         mmc->max_segs = 32;
1434         mmc->max_blk_size = 512;
1435         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437         mmc->max_seg_size = mmc->max_req_size;
1438 
1439         platform_set_drvdata(pdev, host);
1440 
1441         host->clk = devm_clk_get(dev, NULL);
1442         if (IS_ERR(host->clk)) {
1443                 ret = PTR_ERR(host->clk);
1444                 dev_err(dev, "cannot get clock: %d\n", ret);
1445                 goto err_host;
1446         }
1447 
1448         ret = clk_prepare_enable(host->clk);
1449         if (ret < 0)
1450                 goto err_host;
1451 
1452         sh_mmcif_clk_setup(host);
1453 
1454         pm_runtime_enable(dev);
1455         host->power = false;
1456 
1457         ret = pm_runtime_get_sync(dev);
1458         if (ret < 0)
1459                 goto err_clk;
1460 
1461         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462 
1463         sh_mmcif_sync_reset(host);
1464         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465 
1466         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468                                         sh_mmcif_irqt, 0, name, host);
1469         if (ret) {
1470                 dev_err(dev, "request_irq error (%s)\n", name);
1471                 goto err_clk;
1472         }
1473         if (irq[1] >= 0) {
1474                 ret = devm_request_threaded_irq(dev, irq[1],
1475                                                 sh_mmcif_intr, sh_mmcif_irqt,
1476                                                 0, "sh_mmc:int", host);
1477                 if (ret) {
1478                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479                         goto err_clk;
1480                 }
1481         }
1482 
1483         mutex_init(&host->thread_lock);
1484 
1485         ret = mmc_add_host(mmc);
1486         if (ret < 0)
1487                 goto err_clk;
1488 
1489         dev_pm_qos_expose_latency_limit(dev, 100);
1490 
1491         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493                  clk_get_rate(host->clk) / 1000000UL);
1494 
1495         pm_runtime_put(dev);
1496         clk_disable_unprepare(host->clk);
1497         return ret;
1498 
1499 err_clk:
1500         clk_disable_unprepare(host->clk);
1501         pm_runtime_put_sync(dev);
1502         pm_runtime_disable(dev);
1503 err_host:
1504         mmc_free_host(mmc);
1505         return ret;
1506 }
1507 
1508 static int sh_mmcif_remove(struct platform_device *pdev)
1509 {
1510         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1511 
1512         host->dying = true;
1513         clk_prepare_enable(host->clk);
1514         pm_runtime_get_sync(&pdev->dev);
1515 
1516         dev_pm_qos_hide_latency_limit(&pdev->dev);
1517 
1518         mmc_remove_host(host->mmc);
1519         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520 
1521         /*
1522          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523          * mmc_remove_host() call above. But swapping order doesn't help either
1524          * (a query on the linux-mmc mailing list didn't bring any replies).
1525          */
1526         cancel_delayed_work_sync(&host->timeout_work);
1527 
1528         clk_disable_unprepare(host->clk);
1529         mmc_free_host(host->mmc);
1530         pm_runtime_put_sync(&pdev->dev);
1531         pm_runtime_disable(&pdev->dev);
1532 
1533         return 0;
1534 }
1535 
1536 #ifdef CONFIG_PM_SLEEP
1537 static int sh_mmcif_suspend(struct device *dev)
1538 {
1539         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1540 
1541         pm_runtime_get_sync(dev);
1542         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543         pm_runtime_put(dev);
1544 
1545         return 0;
1546 }
1547 
1548 static int sh_mmcif_resume(struct device *dev)
1549 {
1550         return 0;
1551 }
1552 #endif
1553 
1554 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1556 };
1557 
1558 static struct platform_driver sh_mmcif_driver = {
1559         .probe          = sh_mmcif_probe,
1560         .remove         = sh_mmcif_remove,
1561         .driver         = {
1562                 .name   = DRIVER_NAME,
1563                 .pm     = &sh_mmcif_dev_pm_ops,
1564                 .of_match_table = sh_mmcif_of_match,
1565         },
1566 };
1567 
1568 module_platform_driver(sh_mmcif_driver);
1569 
1570 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571 MODULE_LICENSE("GPL v2");
1572 MODULE_ALIAS("platform:" DRIVER_NAME);
1573 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");

/* [<][>][^][v][top][bottom][index][help] */