root/drivers/mmc/host/mmc_spi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mmc_cs_off
  2. mmc_spi_readbytes
  3. mmc_spi_skip
  4. mmc_spi_wait_unbusy
  5. mmc_spi_readtoken
  6. maptype
  7. mmc_spi_response_get
  8. mmc_spi_command_send
  9. mmc_spi_setup_data_message
  10. mmc_spi_writeblock
  11. mmc_spi_readblock
  12. mmc_spi_data_do
  13. mmc_spi_request
  14. mmc_spi_initsequence
  15. mmc_powerstring
  16. mmc_spi_set_ios
  17. mmc_spi_detect_irq
  18. mmc_spi_probe
  19. mmc_spi_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Access SD/MMC cards through SPI master controllers
   4  *
   5  * (C) Copyright 2005, Intec Automation,
   6  *              Mike Lavender (mike@steroidmicros)
   7  * (C) Copyright 2006-2007, David Brownell
   8  * (C) Copyright 2007, Axis Communications,
   9  *              Hans-Peter Nilsson (hp@axis.com)
  10  * (C) Copyright 2007, ATRON electronic GmbH,
  11  *              Jan Nikitenko <jan.nikitenko@gmail.com>
  12  */
  13 #include <linux/sched.h>
  14 #include <linux/delay.h>
  15 #include <linux/slab.h>
  16 #include <linux/module.h>
  17 #include <linux/bio.h>
  18 #include <linux/dma-mapping.h>
  19 #include <linux/crc7.h>
  20 #include <linux/crc-itu-t.h>
  21 #include <linux/scatterlist.h>
  22 
  23 #include <linux/mmc/host.h>
  24 #include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  25 #include <linux/mmc/slot-gpio.h>
  26 
  27 #include <linux/spi/spi.h>
  28 #include <linux/spi/mmc_spi.h>
  29 
  30 #include <asm/unaligned.h>
  31 
  32 
  33 /* NOTES:
  34  *
  35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
  36  *   controller, although some of them do have hardware support for
  37  *   SPI protocol.  The main reason for such configs would be mmc-ish
  38  *   cards like DataFlash, which don't support that "native" protocol.
  39  *
  40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  41  *   switch between driver stacks, and in any case if "native" mode
  42  *   is available, it will be faster and hence preferable.
  43  *
  44  * - MMC depends on a different chipselect management policy than the
  45  *   SPI interface currently supports for shared bus segments:  it needs
  46  *   to issue multiple spi_message requests with the chipselect active,
  47  *   using the results of one message to decide the next one to issue.
  48  *
  49  *   Pending updates to the programming interface, this driver expects
  50  *   that it not share the bus with other drivers (precluding conflicts).
  51  *
  52  * - We tell the controller to keep the chipselect active from the
  53  *   beginning of an mmc_host_ops.request until the end.  So beware
  54  *   of SPI controller drivers that mis-handle the cs_change flag!
  55  *
  56  *   However, many cards seem OK with chipselect flapping up/down
  57  *   during that time ... at least on unshared bus segments.
  58  */
  59 
  60 
  61 /*
  62  * Local protocol constants, internal to data block protocols.
  63  */
  64 
  65 /* Response tokens used to ack each block written: */
  66 #define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  67 #define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  68 #define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  69 #define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  70 
  71 /* Read and write blocks start with these tokens and end with crc;
  72  * on error, read tokens act like a subset of R2_SPI_* values.
  73  */
  74 #define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  75 #define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  76 #define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  77 
  78 #define MMC_SPI_BLOCKSIZE       512
  79 
  80 
  81 /* These fixed timeouts come from the latest SD specs, which say to ignore
  82  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  83  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  84  * reads which takes nowhere near that long.  Older cards may be able to use
  85  * shorter timeouts ... but why bother?
  86  */
  87 #define r1b_timeout             (HZ * 3)
  88 
  89 /* One of the critical speed parameters is the amount of data which may
  90  * be transferred in one command. If this value is too low, the SD card
  91  * controller has to do multiple partial block writes (argggh!). With
  92  * today (2008) SD cards there is little speed gain if we transfer more
  93  * than 64 KBytes at a time. So use this value until there is any indication
  94  * that we should do more here.
  95  */
  96 #define MMC_SPI_BLOCKSATONCE    128
  97 
  98 /****************************************************************************/
  99 
 100 /*
 101  * Local Data Structures
 102  */
 103 
 104 /* "scratch" is per-{command,block} data exchanged with the card */
 105 struct scratch {
 106         u8                      status[29];
 107         u8                      data_token;
 108         __be16                  crc_val;
 109 };
 110 
 111 struct mmc_spi_host {
 112         struct mmc_host         *mmc;
 113         struct spi_device       *spi;
 114 
 115         unsigned char           power_mode;
 116         u16                     powerup_msecs;
 117 
 118         struct mmc_spi_platform_data    *pdata;
 119 
 120         /* for bulk data transfers */
 121         struct spi_transfer     token, t, crc, early_status;
 122         struct spi_message      m;
 123 
 124         /* for status readback */
 125         struct spi_transfer     status;
 126         struct spi_message      readback;
 127 
 128         /* underlying DMA-aware controller, or null */
 129         struct device           *dma_dev;
 130 
 131         /* buffer used for commands and for message "overhead" */
 132         struct scratch          *data;
 133         dma_addr_t              data_dma;
 134 
 135         /* Specs say to write ones most of the time, even when the card
 136          * has no need to read its input data; and many cards won't care.
 137          * This is our source of those ones.
 138          */
 139         void                    *ones;
 140         dma_addr_t              ones_dma;
 141 };
 142 
 143 
 144 /****************************************************************************/
 145 
 146 /*
 147  * MMC-over-SPI protocol glue, used by the MMC stack interface
 148  */
 149 
 150 static inline int mmc_cs_off(struct mmc_spi_host *host)
 151 {
 152         /* chipselect will always be inactive after setup() */
 153         return spi_setup(host->spi);
 154 }
 155 
 156 static int
 157 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 158 {
 159         int status;
 160 
 161         if (len > sizeof(*host->data)) {
 162                 WARN_ON(1);
 163                 return -EIO;
 164         }
 165 
 166         host->status.len = len;
 167 
 168         if (host->dma_dev)
 169                 dma_sync_single_for_device(host->dma_dev,
 170                                 host->data_dma, sizeof(*host->data),
 171                                 DMA_FROM_DEVICE);
 172 
 173         status = spi_sync_locked(host->spi, &host->readback);
 174 
 175         if (host->dma_dev)
 176                 dma_sync_single_for_cpu(host->dma_dev,
 177                                 host->data_dma, sizeof(*host->data),
 178                                 DMA_FROM_DEVICE);
 179 
 180         return status;
 181 }
 182 
 183 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 184                         unsigned n, u8 byte)
 185 {
 186         u8 *cp = host->data->status;
 187         unsigned long start = jiffies;
 188 
 189         while (1) {
 190                 int             status;
 191                 unsigned        i;
 192 
 193                 status = mmc_spi_readbytes(host, n);
 194                 if (status < 0)
 195                         return status;
 196 
 197                 for (i = 0; i < n; i++) {
 198                         if (cp[i] != byte)
 199                                 return cp[i];
 200                 }
 201 
 202                 if (time_is_before_jiffies(start + timeout))
 203                         break;
 204 
 205                 /* If we need long timeouts, we may release the CPU.
 206                  * We use jiffies here because we want to have a relation
 207                  * between elapsed time and the blocking of the scheduler.
 208                  */
 209                 if (time_is_before_jiffies(start + 1))
 210                         schedule();
 211         }
 212         return -ETIMEDOUT;
 213 }
 214 
 215 static inline int
 216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 217 {
 218         return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 219 }
 220 
 221 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 222 {
 223         return mmc_spi_skip(host, timeout, 1, 0xff);
 224 }
 225 
 226 
 227 /*
 228  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 229  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 230  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 231  *
 232  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 233  * newer cards R7 (IF_COND).
 234  */
 235 
 236 static char *maptype(struct mmc_command *cmd)
 237 {
 238         switch (mmc_spi_resp_type(cmd)) {
 239         case MMC_RSP_SPI_R1:    return "R1";
 240         case MMC_RSP_SPI_R1B:   return "R1B";
 241         case MMC_RSP_SPI_R2:    return "R2/R5";
 242         case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 243         default:                return "?";
 244         }
 245 }
 246 
 247 /* return zero, else negative errno after setting cmd->error */
 248 static int mmc_spi_response_get(struct mmc_spi_host *host,
 249                 struct mmc_command *cmd, int cs_on)
 250 {
 251         u8      *cp = host->data->status;
 252         u8      *end = cp + host->t.len;
 253         int     value = 0;
 254         int     bitshift;
 255         u8      leftover = 0;
 256         unsigned short rotator;
 257         int     i;
 258         char    tag[32];
 259 
 260         snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 261                 cmd->opcode, maptype(cmd));
 262 
 263         /* Except for data block reads, the whole response will already
 264          * be stored in the scratch buffer.  It's somewhere after the
 265          * command and the first byte we read after it.  We ignore that
 266          * first byte.  After STOP_TRANSMISSION command it may include
 267          * two data bits, but otherwise it's all ones.
 268          */
 269         cp += 8;
 270         while (cp < end && *cp == 0xff)
 271                 cp++;
 272 
 273         /* Data block reads (R1 response types) may need more data... */
 274         if (cp == end) {
 275                 cp = host->data->status;
 276                 end = cp+1;
 277 
 278                 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 279                  * status byte ... and we already scanned 2 bytes.
 280                  *
 281                  * REVISIT block read paths use nasty byte-at-a-time I/O
 282                  * so it can always DMA directly into the target buffer.
 283                  * It'd probably be better to memcpy() the first chunk and
 284                  * avoid extra i/o calls...
 285                  *
 286                  * Note we check for more than 8 bytes, because in practice,
 287                  * some SD cards are slow...
 288                  */
 289                 for (i = 2; i < 16; i++) {
 290                         value = mmc_spi_readbytes(host, 1);
 291                         if (value < 0)
 292                                 goto done;
 293                         if (*cp != 0xff)
 294                                 goto checkstatus;
 295                 }
 296                 value = -ETIMEDOUT;
 297                 goto done;
 298         }
 299 
 300 checkstatus:
 301         bitshift = 0;
 302         if (*cp & 0x80) {
 303                 /* Houston, we have an ugly card with a bit-shifted response */
 304                 rotator = *cp++ << 8;
 305                 /* read the next byte */
 306                 if (cp == end) {
 307                         value = mmc_spi_readbytes(host, 1);
 308                         if (value < 0)
 309                                 goto done;
 310                         cp = host->data->status;
 311                         end = cp+1;
 312                 }
 313                 rotator |= *cp++;
 314                 while (rotator & 0x8000) {
 315                         bitshift++;
 316                         rotator <<= 1;
 317                 }
 318                 cmd->resp[0] = rotator >> 8;
 319                 leftover = rotator;
 320         } else {
 321                 cmd->resp[0] = *cp++;
 322         }
 323         cmd->error = 0;
 324 
 325         /* Status byte: the entire seven-bit R1 response.  */
 326         if (cmd->resp[0] != 0) {
 327                 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 328                                 & cmd->resp[0])
 329                         value = -EFAULT; /* Bad address */
 330                 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 331                         value = -ENOSYS; /* Function not implemented */
 332                 else if (R1_SPI_COM_CRC & cmd->resp[0])
 333                         value = -EILSEQ; /* Illegal byte sequence */
 334                 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 335                                 & cmd->resp[0])
 336                         value = -EIO;    /* I/O error */
 337                 /* else R1_SPI_IDLE, "it's resetting" */
 338         }
 339 
 340         switch (mmc_spi_resp_type(cmd)) {
 341 
 342         /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 343          * and less-common stuff like various erase operations.
 344          */
 345         case MMC_RSP_SPI_R1B:
 346                 /* maybe we read all the busy tokens already */
 347                 while (cp < end && *cp == 0)
 348                         cp++;
 349                 if (cp == end)
 350                         mmc_spi_wait_unbusy(host, r1b_timeout);
 351                 break;
 352 
 353         /* SPI R2 == R1 + second status byte; SEND_STATUS
 354          * SPI R5 == R1 + data byte; IO_RW_DIRECT
 355          */
 356         case MMC_RSP_SPI_R2:
 357                 /* read the next byte */
 358                 if (cp == end) {
 359                         value = mmc_spi_readbytes(host, 1);
 360                         if (value < 0)
 361                                 goto done;
 362                         cp = host->data->status;
 363                         end = cp+1;
 364                 }
 365                 if (bitshift) {
 366                         rotator = leftover << 8;
 367                         rotator |= *cp << bitshift;
 368                         cmd->resp[0] |= (rotator & 0xFF00);
 369                 } else {
 370                         cmd->resp[0] |= *cp << 8;
 371                 }
 372                 break;
 373 
 374         /* SPI R3, R4, or R7 == R1 + 4 bytes */
 375         case MMC_RSP_SPI_R3:
 376                 rotator = leftover << 8;
 377                 cmd->resp[1] = 0;
 378                 for (i = 0; i < 4; i++) {
 379                         cmd->resp[1] <<= 8;
 380                         /* read the next byte */
 381                         if (cp == end) {
 382                                 value = mmc_spi_readbytes(host, 1);
 383                                 if (value < 0)
 384                                         goto done;
 385                                 cp = host->data->status;
 386                                 end = cp+1;
 387                         }
 388                         if (bitshift) {
 389                                 rotator |= *cp++ << bitshift;
 390                                 cmd->resp[1] |= (rotator >> 8);
 391                                 rotator <<= 8;
 392                         } else {
 393                                 cmd->resp[1] |= *cp++;
 394                         }
 395                 }
 396                 break;
 397 
 398         /* SPI R1 == just one status byte */
 399         case MMC_RSP_SPI_R1:
 400                 break;
 401 
 402         default:
 403                 dev_dbg(&host->spi->dev, "bad response type %04x\n",
 404                         mmc_spi_resp_type(cmd));
 405                 if (value >= 0)
 406                         value = -EINVAL;
 407                 goto done;
 408         }
 409 
 410         if (value < 0)
 411                 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 412                         tag, cmd->resp[0], cmd->resp[1]);
 413 
 414         /* disable chipselect on errors and some success cases */
 415         if (value >= 0 && cs_on)
 416                 return value;
 417 done:
 418         if (value < 0)
 419                 cmd->error = value;
 420         mmc_cs_off(host);
 421         return value;
 422 }
 423 
 424 /* Issue command and read its response.
 425  * Returns zero on success, negative for error.
 426  *
 427  * On error, caller must cope with mmc core retry mechanism.  That
 428  * means immediate low-level resubmit, which affects the bus lock...
 429  */
 430 static int
 431 mmc_spi_command_send(struct mmc_spi_host *host,
 432                 struct mmc_request *mrq,
 433                 struct mmc_command *cmd, int cs_on)
 434 {
 435         struct scratch          *data = host->data;
 436         u8                      *cp = data->status;
 437         int                     status;
 438         struct spi_transfer     *t;
 439 
 440         /* We can handle most commands (except block reads) in one full
 441          * duplex I/O operation before either starting the next transfer
 442          * (data block or command) or else deselecting the card.
 443          *
 444          * First, write 7 bytes:
 445          *  - an all-ones byte to ensure the card is ready
 446          *  - opcode byte (plus start and transmission bits)
 447          *  - four bytes of big-endian argument
 448          *  - crc7 (plus end bit) ... always computed, it's cheap
 449          *
 450          * We init the whole buffer to all-ones, which is what we need
 451          * to write while we're reading (later) response data.
 452          */
 453         memset(cp, 0xff, sizeof(data->status));
 454 
 455         cp[1] = 0x40 | cmd->opcode;
 456         put_unaligned_be32(cmd->arg, cp + 2);
 457         cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
 458         cp += 7;
 459 
 460         /* Then, read up to 13 bytes (while writing all-ones):
 461          *  - N(CR) (== 1..8) bytes of all-ones
 462          *  - status byte (for all response types)
 463          *  - the rest of the response, either:
 464          *      + nothing, for R1 or R1B responses
 465          *      + second status byte, for R2 responses
 466          *      + four data bytes, for R3 and R7 responses
 467          *
 468          * Finally, read some more bytes ... in the nice cases we know in
 469          * advance how many, and reading 1 more is always OK:
 470          *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 471          *  - N(RC) (== 1..N) bytes of all-ones, before next command
 472          *  - N(WR) (== 1..N) bytes of all-ones, before data write
 473          *
 474          * So in those cases one full duplex I/O of at most 21 bytes will
 475          * handle the whole command, leaving the card ready to receive a
 476          * data block or new command.  We do that whenever we can, shaving
 477          * CPU and IRQ costs (especially when using DMA or FIFOs).
 478          *
 479          * There are two other cases, where it's not generally practical
 480          * to rely on a single I/O:
 481          *
 482          *  - R1B responses need at least N(EC) bytes of all-zeroes.
 483          *
 484          *    In this case we can *try* to fit it into one I/O, then
 485          *    maybe read more data later.
 486          *
 487          *  - Data block reads are more troublesome, since a variable
 488          *    number of padding bytes precede the token and data.
 489          *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 490          *      + N(AC) (== 1..many) bytes of all-ones
 491          *
 492          *    In this case we currently only have minimal speedups here:
 493          *    when N(CR) == 1 we can avoid I/O in response_get().
 494          */
 495         if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 496                 cp += 2;        /* min(N(CR)) + status */
 497                 /* R1 */
 498         } else {
 499                 cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 500                 if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 501                         cp++;
 502                 else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 503                         cp += 4;
 504                 else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 505                         cp = data->status + sizeof(data->status);
 506                 /* else:  R1 (most commands) */
 507         }
 508 
 509         dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 510                 cmd->opcode, maptype(cmd));
 511 
 512         /* send command, leaving chipselect active */
 513         spi_message_init(&host->m);
 514 
 515         t = &host->t;
 516         memset(t, 0, sizeof(*t));
 517         t->tx_buf = t->rx_buf = data->status;
 518         t->tx_dma = t->rx_dma = host->data_dma;
 519         t->len = cp - data->status;
 520         t->cs_change = 1;
 521         spi_message_add_tail(t, &host->m);
 522 
 523         if (host->dma_dev) {
 524                 host->m.is_dma_mapped = 1;
 525                 dma_sync_single_for_device(host->dma_dev,
 526                                 host->data_dma, sizeof(*host->data),
 527                                 DMA_BIDIRECTIONAL);
 528         }
 529         status = spi_sync_locked(host->spi, &host->m);
 530 
 531         if (host->dma_dev)
 532                 dma_sync_single_for_cpu(host->dma_dev,
 533                                 host->data_dma, sizeof(*host->data),
 534                                 DMA_BIDIRECTIONAL);
 535         if (status < 0) {
 536                 dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 537                 cmd->error = status;
 538                 return status;
 539         }
 540 
 541         /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 542         return mmc_spi_response_get(host, cmd, cs_on);
 543 }
 544 
 545 /* Build data message with up to four separate transfers.  For TX, we
 546  * start by writing the data token.  And in most cases, we finish with
 547  * a status transfer.
 548  *
 549  * We always provide TX data for data and CRC.  The MMC/SD protocol
 550  * requires us to write ones; but Linux defaults to writing zeroes;
 551  * so we explicitly initialize it to all ones on RX paths.
 552  *
 553  * We also handle DMA mapping, so the underlying SPI controller does
 554  * not need to (re)do it for each message.
 555  */
 556 static void
 557 mmc_spi_setup_data_message(
 558         struct mmc_spi_host     *host,
 559         int                     multiple,
 560         enum dma_data_direction direction)
 561 {
 562         struct spi_transfer     *t;
 563         struct scratch          *scratch = host->data;
 564         dma_addr_t              dma = host->data_dma;
 565 
 566         spi_message_init(&host->m);
 567         if (dma)
 568                 host->m.is_dma_mapped = 1;
 569 
 570         /* for reads, readblock() skips 0xff bytes before finding
 571          * the token; for writes, this transfer issues that token.
 572          */
 573         if (direction == DMA_TO_DEVICE) {
 574                 t = &host->token;
 575                 memset(t, 0, sizeof(*t));
 576                 t->len = 1;
 577                 if (multiple)
 578                         scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 579                 else
 580                         scratch->data_token = SPI_TOKEN_SINGLE;
 581                 t->tx_buf = &scratch->data_token;
 582                 if (dma)
 583                         t->tx_dma = dma + offsetof(struct scratch, data_token);
 584                 spi_message_add_tail(t, &host->m);
 585         }
 586 
 587         /* Body of transfer is buffer, then CRC ...
 588          * either TX-only, or RX with TX-ones.
 589          */
 590         t = &host->t;
 591         memset(t, 0, sizeof(*t));
 592         t->tx_buf = host->ones;
 593         t->tx_dma = host->ones_dma;
 594         /* length and actual buffer info are written later */
 595         spi_message_add_tail(t, &host->m);
 596 
 597         t = &host->crc;
 598         memset(t, 0, sizeof(*t));
 599         t->len = 2;
 600         if (direction == DMA_TO_DEVICE) {
 601                 /* the actual CRC may get written later */
 602                 t->tx_buf = &scratch->crc_val;
 603                 if (dma)
 604                         t->tx_dma = dma + offsetof(struct scratch, crc_val);
 605         } else {
 606                 t->tx_buf = host->ones;
 607                 t->tx_dma = host->ones_dma;
 608                 t->rx_buf = &scratch->crc_val;
 609                 if (dma)
 610                         t->rx_dma = dma + offsetof(struct scratch, crc_val);
 611         }
 612         spi_message_add_tail(t, &host->m);
 613 
 614         /*
 615          * A single block read is followed by N(EC) [0+] all-ones bytes
 616          * before deselect ... don't bother.
 617          *
 618          * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 619          * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 620          * collect that single byte, so readblock() doesn't need to.
 621          *
 622          * For a write, the one-byte data response follows immediately, then
 623          * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 624          * Then single block reads may deselect, and multiblock ones issue
 625          * the next token (next data block, or STOP_TRAN).  We can try to
 626          * minimize I/O ops by using a single read to collect end-of-busy.
 627          */
 628         if (multiple || direction == DMA_TO_DEVICE) {
 629                 t = &host->early_status;
 630                 memset(t, 0, sizeof(*t));
 631                 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
 632                 t->tx_buf = host->ones;
 633                 t->tx_dma = host->ones_dma;
 634                 t->rx_buf = scratch->status;
 635                 if (dma)
 636                         t->rx_dma = dma + offsetof(struct scratch, status);
 637                 t->cs_change = 1;
 638                 spi_message_add_tail(t, &host->m);
 639         }
 640 }
 641 
 642 /*
 643  * Write one block:
 644  *  - caller handled preceding N(WR) [1+] all-ones bytes
 645  *  - data block
 646  *      + token
 647  *      + data bytes
 648  *      + crc16
 649  *  - an all-ones byte ... card writes a data-response byte
 650  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 651  *
 652  * Return negative errno, else success.
 653  */
 654 static int
 655 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 656         unsigned long timeout)
 657 {
 658         struct spi_device       *spi = host->spi;
 659         int                     status, i;
 660         struct scratch          *scratch = host->data;
 661         u32                     pattern;
 662 
 663         if (host->mmc->use_spi_crc)
 664                 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
 665         if (host->dma_dev)
 666                 dma_sync_single_for_device(host->dma_dev,
 667                                 host->data_dma, sizeof(*scratch),
 668                                 DMA_BIDIRECTIONAL);
 669 
 670         status = spi_sync_locked(spi, &host->m);
 671 
 672         if (status != 0) {
 673                 dev_dbg(&spi->dev, "write error (%d)\n", status);
 674                 return status;
 675         }
 676 
 677         if (host->dma_dev)
 678                 dma_sync_single_for_cpu(host->dma_dev,
 679                                 host->data_dma, sizeof(*scratch),
 680                                 DMA_BIDIRECTIONAL);
 681 
 682         /*
 683          * Get the transmission data-response reply.  It must follow
 684          * immediately after the data block we transferred.  This reply
 685          * doesn't necessarily tell whether the write operation succeeded;
 686          * it just says if the transmission was ok and whether *earlier*
 687          * writes succeeded; see the standard.
 688          *
 689          * In practice, there are (even modern SDHC-)cards which are late
 690          * in sending the response, and miss the time frame by a few bits,
 691          * so we have to cope with this situation and check the response
 692          * bit-by-bit. Arggh!!!
 693          */
 694         pattern = get_unaligned_be32(scratch->status);
 695 
 696         /* First 3 bit of pattern are undefined */
 697         pattern |= 0xE0000000;
 698 
 699         /* left-adjust to leading 0 bit */
 700         while (pattern & 0x80000000)
 701                 pattern <<= 1;
 702         /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 703         pattern >>= 27;
 704 
 705         switch (pattern) {
 706         case SPI_RESPONSE_ACCEPTED:
 707                 status = 0;
 708                 break;
 709         case SPI_RESPONSE_CRC_ERR:
 710                 /* host shall then issue MMC_STOP_TRANSMISSION */
 711                 status = -EILSEQ;
 712                 break;
 713         case SPI_RESPONSE_WRITE_ERR:
 714                 /* host shall then issue MMC_STOP_TRANSMISSION,
 715                  * and should MMC_SEND_STATUS to sort it out
 716                  */
 717                 status = -EIO;
 718                 break;
 719         default:
 720                 status = -EPROTO;
 721                 break;
 722         }
 723         if (status != 0) {
 724                 dev_dbg(&spi->dev, "write error %02x (%d)\n",
 725                         scratch->status[0], status);
 726                 return status;
 727         }
 728 
 729         t->tx_buf += t->len;
 730         if (host->dma_dev)
 731                 t->tx_dma += t->len;
 732 
 733         /* Return when not busy.  If we didn't collect that status yet,
 734          * we'll need some more I/O.
 735          */
 736         for (i = 4; i < sizeof(scratch->status); i++) {
 737                 /* card is non-busy if the most recent bit is 1 */
 738                 if (scratch->status[i] & 0x01)
 739                         return 0;
 740         }
 741         return mmc_spi_wait_unbusy(host, timeout);
 742 }
 743 
 744 /*
 745  * Read one block:
 746  *  - skip leading all-ones bytes ... either
 747  *      + N(AC) [1..f(clock,CSD)] usually, else
 748  *      + N(CX) [0..8] when reading CSD or CID
 749  *  - data block
 750  *      + token ... if error token, no data or crc
 751  *      + data bytes
 752  *      + crc16
 753  *
 754  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 755  * before dropping chipselect.
 756  *
 757  * For multiblock reads, caller either reads the next block or issues a
 758  * STOP_TRANSMISSION command.
 759  */
 760 static int
 761 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 762         unsigned long timeout)
 763 {
 764         struct spi_device       *spi = host->spi;
 765         int                     status;
 766         struct scratch          *scratch = host->data;
 767         unsigned int            bitshift;
 768         u8                      leftover;
 769 
 770         /* At least one SD card sends an all-zeroes byte when N(CX)
 771          * applies, before the all-ones bytes ... just cope with that.
 772          */
 773         status = mmc_spi_readbytes(host, 1);
 774         if (status < 0)
 775                 return status;
 776         status = scratch->status[0];
 777         if (status == 0xff || status == 0)
 778                 status = mmc_spi_readtoken(host, timeout);
 779 
 780         if (status < 0) {
 781                 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 782                 return status;
 783         }
 784 
 785         /* The token may be bit-shifted...
 786          * the first 0-bit precedes the data stream.
 787          */
 788         bitshift = 7;
 789         while (status & 0x80) {
 790                 status <<= 1;
 791                 bitshift--;
 792         }
 793         leftover = status << 1;
 794 
 795         if (host->dma_dev) {
 796                 dma_sync_single_for_device(host->dma_dev,
 797                                 host->data_dma, sizeof(*scratch),
 798                                 DMA_BIDIRECTIONAL);
 799                 dma_sync_single_for_device(host->dma_dev,
 800                                 t->rx_dma, t->len,
 801                                 DMA_FROM_DEVICE);
 802         }
 803 
 804         status = spi_sync_locked(spi, &host->m);
 805         if (status < 0) {
 806                 dev_dbg(&spi->dev, "read error %d\n", status);
 807                 return status;
 808         }
 809 
 810         if (host->dma_dev) {
 811                 dma_sync_single_for_cpu(host->dma_dev,
 812                                 host->data_dma, sizeof(*scratch),
 813                                 DMA_BIDIRECTIONAL);
 814                 dma_sync_single_for_cpu(host->dma_dev,
 815                                 t->rx_dma, t->len,
 816                                 DMA_FROM_DEVICE);
 817         }
 818 
 819         if (bitshift) {
 820                 /* Walk through the data and the crc and do
 821                  * all the magic to get byte-aligned data.
 822                  */
 823                 u8 *cp = t->rx_buf;
 824                 unsigned int len;
 825                 unsigned int bitright = 8 - bitshift;
 826                 u8 temp;
 827                 for (len = t->len; len; len--) {
 828                         temp = *cp;
 829                         *cp++ = leftover | (temp >> bitshift);
 830                         leftover = temp << bitright;
 831                 }
 832                 cp = (u8 *) &scratch->crc_val;
 833                 temp = *cp;
 834                 *cp++ = leftover | (temp >> bitshift);
 835                 leftover = temp << bitright;
 836                 temp = *cp;
 837                 *cp = leftover | (temp >> bitshift);
 838         }
 839 
 840         if (host->mmc->use_spi_crc) {
 841                 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 842 
 843                 be16_to_cpus(&scratch->crc_val);
 844                 if (scratch->crc_val != crc) {
 845                         dev_dbg(&spi->dev,
 846                                 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
 847                                 scratch->crc_val, crc, t->len);
 848                         return -EILSEQ;
 849                 }
 850         }
 851 
 852         t->rx_buf += t->len;
 853         if (host->dma_dev)
 854                 t->rx_dma += t->len;
 855 
 856         return 0;
 857 }
 858 
 859 /*
 860  * An MMC/SD data stage includes one or more blocks, optional CRCs,
 861  * and inline handshaking.  That handhaking makes it unlike most
 862  * other SPI protocol stacks.
 863  */
 864 static void
 865 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 866                 struct mmc_data *data, u32 blk_size)
 867 {
 868         struct spi_device       *spi = host->spi;
 869         struct device           *dma_dev = host->dma_dev;
 870         struct spi_transfer     *t;
 871         enum dma_data_direction direction;
 872         struct scatterlist      *sg;
 873         unsigned                n_sg;
 874         int                     multiple = (data->blocks > 1);
 875         u32                     clock_rate;
 876         unsigned long           timeout;
 877 
 878         direction = mmc_get_dma_dir(data);
 879         mmc_spi_setup_data_message(host, multiple, direction);
 880         t = &host->t;
 881 
 882         if (t->speed_hz)
 883                 clock_rate = t->speed_hz;
 884         else
 885                 clock_rate = spi->max_speed_hz;
 886 
 887         timeout = data->timeout_ns +
 888                   data->timeout_clks * 1000000 / clock_rate;
 889         timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 890 
 891         /* Handle scatterlist segments one at a time, with synch for
 892          * each 512-byte block
 893          */
 894         for_each_sg(data->sg, sg, data->sg_len, n_sg) {
 895                 int                     status = 0;
 896                 dma_addr_t              dma_addr = 0;
 897                 void                    *kmap_addr;
 898                 unsigned                length = sg->length;
 899                 enum dma_data_direction dir = direction;
 900 
 901                 /* set up dma mapping for controller drivers that might
 902                  * use DMA ... though they may fall back to PIO
 903                  */
 904                 if (dma_dev) {
 905                         /* never invalidate whole *shared* pages ... */
 906                         if ((sg->offset != 0 || length != PAGE_SIZE)
 907                                         && dir == DMA_FROM_DEVICE)
 908                                 dir = DMA_BIDIRECTIONAL;
 909 
 910                         dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 911                                                 PAGE_SIZE, dir);
 912                         if (dma_mapping_error(dma_dev, dma_addr)) {
 913                                 data->error = -EFAULT;
 914                                 break;
 915                         }
 916                         if (direction == DMA_TO_DEVICE)
 917                                 t->tx_dma = dma_addr + sg->offset;
 918                         else
 919                                 t->rx_dma = dma_addr + sg->offset;
 920                 }
 921 
 922                 /* allow pio too; we don't allow highmem */
 923                 kmap_addr = kmap(sg_page(sg));
 924                 if (direction == DMA_TO_DEVICE)
 925                         t->tx_buf = kmap_addr + sg->offset;
 926                 else
 927                         t->rx_buf = kmap_addr + sg->offset;
 928 
 929                 /* transfer each block, and update request status */
 930                 while (length) {
 931                         t->len = min(length, blk_size);
 932 
 933                         dev_dbg(&host->spi->dev,
 934                                 "    mmc_spi: %s block, %d bytes\n",
 935                                 (direction == DMA_TO_DEVICE) ? "write" : "read",
 936                                 t->len);
 937 
 938                         if (direction == DMA_TO_DEVICE)
 939                                 status = mmc_spi_writeblock(host, t, timeout);
 940                         else
 941                                 status = mmc_spi_readblock(host, t, timeout);
 942                         if (status < 0)
 943                                 break;
 944 
 945                         data->bytes_xfered += t->len;
 946                         length -= t->len;
 947 
 948                         if (!multiple)
 949                                 break;
 950                 }
 951 
 952                 /* discard mappings */
 953                 if (direction == DMA_FROM_DEVICE)
 954                         flush_kernel_dcache_page(sg_page(sg));
 955                 kunmap(sg_page(sg));
 956                 if (dma_dev)
 957                         dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 958 
 959                 if (status < 0) {
 960                         data->error = status;
 961                         dev_dbg(&spi->dev, "%s status %d\n",
 962                                 (direction == DMA_TO_DEVICE) ? "write" : "read",
 963                                 status);
 964                         break;
 965                 }
 966         }
 967 
 968         /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 969          * can be issued before multiblock writes.  Unlike its more widely
 970          * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 971          * that can affect the STOP_TRAN logic.   Complete (and current)
 972          * MMC specs should sort that out before Linux starts using CMD23.
 973          */
 974         if (direction == DMA_TO_DEVICE && multiple) {
 975                 struct scratch  *scratch = host->data;
 976                 int             tmp;
 977                 const unsigned  statlen = sizeof(scratch->status);
 978 
 979                 dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 980 
 981                 /* Tweak the per-block message we set up earlier by morphing
 982                  * it to hold single buffer with the token followed by some
 983                  * all-ones bytes ... skip N(BR) (0..1), scan the rest for
 984                  * "not busy any longer" status, and leave chip selected.
 985                  */
 986                 INIT_LIST_HEAD(&host->m.transfers);
 987                 list_add(&host->early_status.transfer_list,
 988                                 &host->m.transfers);
 989 
 990                 memset(scratch->status, 0xff, statlen);
 991                 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
 992 
 993                 host->early_status.tx_buf = host->early_status.rx_buf;
 994                 host->early_status.tx_dma = host->early_status.rx_dma;
 995                 host->early_status.len = statlen;
 996 
 997                 if (host->dma_dev)
 998                         dma_sync_single_for_device(host->dma_dev,
 999                                         host->data_dma, sizeof(*scratch),
1000                                         DMA_BIDIRECTIONAL);
1001 
1002                 tmp = spi_sync_locked(spi, &host->m);
1003 
1004                 if (host->dma_dev)
1005                         dma_sync_single_for_cpu(host->dma_dev,
1006                                         host->data_dma, sizeof(*scratch),
1007                                         DMA_BIDIRECTIONAL);
1008 
1009                 if (tmp < 0) {
1010                         if (!data->error)
1011                                 data->error = tmp;
1012                         return;
1013                 }
1014 
1015                 /* Ideally we collected "not busy" status with one I/O,
1016                  * avoiding wasteful byte-at-a-time scanning... but more
1017                  * I/O is often needed.
1018                  */
1019                 for (tmp = 2; tmp < statlen; tmp++) {
1020                         if (scratch->status[tmp] != 0)
1021                                 return;
1022                 }
1023                 tmp = mmc_spi_wait_unbusy(host, timeout);
1024                 if (tmp < 0 && !data->error)
1025                         data->error = tmp;
1026         }
1027 }
1028 
1029 /****************************************************************************/
1030 
1031 /*
1032  * MMC driver implementation -- the interface to the MMC stack
1033  */
1034 
1035 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036 {
1037         struct mmc_spi_host     *host = mmc_priv(mmc);
1038         int                     status = -EINVAL;
1039         int                     crc_retry = 5;
1040         struct mmc_command      stop;
1041 
1042 #ifdef DEBUG
1043         /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1044         {
1045                 struct mmc_command      *cmd;
1046                 int                     invalid = 0;
1047 
1048                 cmd = mrq->cmd;
1049                 if (!mmc_spi_resp_type(cmd)) {
1050                         dev_dbg(&host->spi->dev, "bogus command\n");
1051                         cmd->error = -EINVAL;
1052                         invalid = 1;
1053                 }
1054 
1055                 cmd = mrq->stop;
1056                 if (cmd && !mmc_spi_resp_type(cmd)) {
1057                         dev_dbg(&host->spi->dev, "bogus STOP command\n");
1058                         cmd->error = -EINVAL;
1059                         invalid = 1;
1060                 }
1061 
1062                 if (invalid) {
1063                         dump_stack();
1064                         mmc_request_done(host->mmc, mrq);
1065                         return;
1066                 }
1067         }
1068 #endif
1069 
1070         /* request exclusive bus access */
1071         spi_bus_lock(host->spi->master);
1072 
1073 crc_recover:
1074         /* issue command; then optionally data and stop */
1075         status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1076         if (status == 0 && mrq->data) {
1077                 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1078 
1079                 /*
1080                  * The SPI bus is not always reliable for large data transfers.
1081                  * If an occasional crc error is reported by the SD device with
1082                  * data read/write over SPI, it may be recovered by repeating
1083                  * the last SD command again. The retry count is set to 5 to
1084                  * ensure the driver passes stress tests.
1085                  */
1086                 if (mrq->data->error == -EILSEQ && crc_retry) {
1087                         stop.opcode = MMC_STOP_TRANSMISSION;
1088                         stop.arg = 0;
1089                         stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1090                         status = mmc_spi_command_send(host, mrq, &stop, 0);
1091                         crc_retry--;
1092                         mrq->data->error = 0;
1093                         goto crc_recover;
1094                 }
1095 
1096                 if (mrq->stop)
1097                         status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1098                 else
1099                         mmc_cs_off(host);
1100         }
1101 
1102         /* release the bus */
1103         spi_bus_unlock(host->spi->master);
1104 
1105         mmc_request_done(host->mmc, mrq);
1106 }
1107 
1108 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1109  *
1110  * NOTE that here we can't know that the card has just been powered up;
1111  * not all MMC/SD sockets support power switching.
1112  *
1113  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114  * this doesn't seem to do the right thing at all...
1115  */
1116 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1117 {
1118         /* Try to be very sure any previous command has completed;
1119          * wait till not-busy, skip debris from any old commands.
1120          */
1121         mmc_spi_wait_unbusy(host, r1b_timeout);
1122         mmc_spi_readbytes(host, 10);
1123 
1124         /*
1125          * Do a burst with chipselect active-high.  We need to do this to
1126          * meet the requirement of 74 clock cycles with both chipselect
1127          * and CMD (MOSI) high before CMD0 ... after the card has been
1128          * powered up to Vdd(min), and so is ready to take commands.
1129          *
1130          * Some cards are particularly needy of this (e.g. Viking "SD256")
1131          * while most others don't seem to care.
1132          *
1133          * Note that this is one of the places MMC/SD plays games with the
1134          * SPI protocol.  Another is that when chipselect is released while
1135          * the card returns BUSY status, the clock must issue several cycles
1136          * with chipselect high before the card will stop driving its output.
1137          *
1138          * SPI_CS_HIGH means "asserted" here. In some cases like when using
1139          * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1140          * inverted by gpiolib, so if we want to ascertain to drive it high
1141          * we should toggle the default with an XOR as we do here.
1142          */
1143         host->spi->mode ^= SPI_CS_HIGH;
1144         if (spi_setup(host->spi) != 0) {
1145                 /* Just warn; most cards work without it. */
1146                 dev_warn(&host->spi->dev,
1147                                 "can't change chip-select polarity\n");
1148                 host->spi->mode ^= SPI_CS_HIGH;
1149         } else {
1150                 mmc_spi_readbytes(host, 18);
1151 
1152                 host->spi->mode ^= SPI_CS_HIGH;
1153                 if (spi_setup(host->spi) != 0) {
1154                         /* Wot, we can't get the same setup we had before? */
1155                         dev_err(&host->spi->dev,
1156                                         "can't restore chip-select polarity\n");
1157                 }
1158         }
1159 }
1160 
1161 static char *mmc_powerstring(u8 power_mode)
1162 {
1163         switch (power_mode) {
1164         case MMC_POWER_OFF: return "off";
1165         case MMC_POWER_UP:  return "up";
1166         case MMC_POWER_ON:  return "on";
1167         }
1168         return "?";
1169 }
1170 
1171 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1172 {
1173         struct mmc_spi_host *host = mmc_priv(mmc);
1174 
1175         if (host->power_mode != ios->power_mode) {
1176                 int             canpower;
1177 
1178                 canpower = host->pdata && host->pdata->setpower;
1179 
1180                 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1181                                 mmc_powerstring(ios->power_mode),
1182                                 ios->vdd,
1183                                 canpower ? ", can switch" : "");
1184 
1185                 /* switch power on/off if possible, accounting for
1186                  * max 250msec powerup time if needed.
1187                  */
1188                 if (canpower) {
1189                         switch (ios->power_mode) {
1190                         case MMC_POWER_OFF:
1191                         case MMC_POWER_UP:
1192                                 host->pdata->setpower(&host->spi->dev,
1193                                                 ios->vdd);
1194                                 if (ios->power_mode == MMC_POWER_UP)
1195                                         msleep(host->powerup_msecs);
1196                         }
1197                 }
1198 
1199                 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1200                 if (ios->power_mode == MMC_POWER_ON)
1201                         mmc_spi_initsequence(host);
1202 
1203                 /* If powering down, ground all card inputs to avoid power
1204                  * delivery from data lines!  On a shared SPI bus, this
1205                  * will probably be temporary; 6.4.2 of the simplified SD
1206                  * spec says this must last at least 1msec.
1207                  *
1208                  *   - Clock low means CPOL 0, e.g. mode 0
1209                  *   - MOSI low comes from writing zero
1210                  *   - Chipselect is usually active low...
1211                  */
1212                 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1213                         int mres;
1214                         u8 nullbyte = 0;
1215 
1216                         host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1217                         mres = spi_setup(host->spi);
1218                         if (mres < 0)
1219                                 dev_dbg(&host->spi->dev,
1220                                         "switch to SPI mode 0 failed\n");
1221 
1222                         if (spi_write(host->spi, &nullbyte, 1) < 0)
1223                                 dev_dbg(&host->spi->dev,
1224                                         "put spi signals to low failed\n");
1225 
1226                         /*
1227                          * Now clock should be low due to spi mode 0;
1228                          * MOSI should be low because of written 0x00;
1229                          * chipselect should be low (it is active low)
1230                          * power supply is off, so now MMC is off too!
1231                          *
1232                          * FIXME no, chipselect can be high since the
1233                          * device is inactive and SPI_CS_HIGH is clear...
1234                          */
1235                         msleep(10);
1236                         if (mres == 0) {
1237                                 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1238                                 mres = spi_setup(host->spi);
1239                                 if (mres < 0)
1240                                         dev_dbg(&host->spi->dev,
1241                                                 "switch back to SPI mode 3 failed\n");
1242                         }
1243                 }
1244 
1245                 host->power_mode = ios->power_mode;
1246         }
1247 
1248         if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1249                 int             status;
1250 
1251                 host->spi->max_speed_hz = ios->clock;
1252                 status = spi_setup(host->spi);
1253                 dev_dbg(&host->spi->dev,
1254                         "mmc_spi:  clock to %d Hz, %d\n",
1255                         host->spi->max_speed_hz, status);
1256         }
1257 }
1258 
1259 static const struct mmc_host_ops mmc_spi_ops = {
1260         .request        = mmc_spi_request,
1261         .set_ios        = mmc_spi_set_ios,
1262         .get_ro         = mmc_gpio_get_ro,
1263         .get_cd         = mmc_gpio_get_cd,
1264 };
1265 
1266 
1267 /****************************************************************************/
1268 
1269 /*
1270  * SPI driver implementation
1271  */
1272 
1273 static irqreturn_t
1274 mmc_spi_detect_irq(int irq, void *mmc)
1275 {
1276         struct mmc_spi_host *host = mmc_priv(mmc);
1277         u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1278 
1279         mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1280         return IRQ_HANDLED;
1281 }
1282 
1283 static int mmc_spi_probe(struct spi_device *spi)
1284 {
1285         void                    *ones;
1286         struct mmc_host         *mmc;
1287         struct mmc_spi_host     *host;
1288         int                     status;
1289         bool                    has_ro = false;
1290 
1291         /* We rely on full duplex transfers, mostly to reduce
1292          * per-transfer overheads (by making fewer transfers).
1293          */
1294         if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1295                 return -EINVAL;
1296 
1297         /* MMC and SD specs only seem to care that sampling is on the
1298          * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1299          * should be legit.  We'll use mode 0 since the steady state is 0,
1300          * which is appropriate for hotplugging, unless the platform data
1301          * specify mode 3 (if hardware is not compatible to mode 0).
1302          */
1303         if (spi->mode != SPI_MODE_3)
1304                 spi->mode = SPI_MODE_0;
1305         spi->bits_per_word = 8;
1306 
1307         status = spi_setup(spi);
1308         if (status < 0) {
1309                 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1310                                 spi->mode, spi->max_speed_hz / 1000,
1311                                 status);
1312                 return status;
1313         }
1314 
1315         /* We need a supply of ones to transmit.  This is the only time
1316          * the CPU touches these, so cache coherency isn't a concern.
1317          *
1318          * NOTE if many systems use more than one MMC-over-SPI connector
1319          * it'd save some memory to share this.  That's evidently rare.
1320          */
1321         status = -ENOMEM;
1322         ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1323         if (!ones)
1324                 goto nomem;
1325         memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1326 
1327         mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1328         if (!mmc)
1329                 goto nomem;
1330 
1331         mmc->ops = &mmc_spi_ops;
1332         mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1333         mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1334         mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1335         mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1336 
1337         mmc->caps = MMC_CAP_SPI;
1338 
1339         /* SPI doesn't need the lowspeed device identification thing for
1340          * MMC or SD cards, since it never comes up in open drain mode.
1341          * That's good; some SPI masters can't handle very low speeds!
1342          *
1343          * However, low speed SDIO cards need not handle over 400 KHz;
1344          * that's the only reason not to use a few MHz for f_min (until
1345          * the upper layer reads the target frequency from the CSD).
1346          */
1347         mmc->f_min = 400000;
1348         mmc->f_max = spi->max_speed_hz;
1349 
1350         host = mmc_priv(mmc);
1351         host->mmc = mmc;
1352         host->spi = spi;
1353 
1354         host->ones = ones;
1355 
1356         /* Platform data is used to hook up things like card sensing
1357          * and power switching gpios.
1358          */
1359         host->pdata = mmc_spi_get_pdata(spi);
1360         if (host->pdata)
1361                 mmc->ocr_avail = host->pdata->ocr_mask;
1362         if (!mmc->ocr_avail) {
1363                 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1364                 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1365         }
1366         if (host->pdata && host->pdata->setpower) {
1367                 host->powerup_msecs = host->pdata->powerup_msecs;
1368                 if (!host->powerup_msecs || host->powerup_msecs > 250)
1369                         host->powerup_msecs = 250;
1370         }
1371 
1372         dev_set_drvdata(&spi->dev, mmc);
1373 
1374         /* preallocate dma buffers */
1375         host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1376         if (!host->data)
1377                 goto fail_nobuf1;
1378 
1379         if (spi->master->dev.parent->dma_mask) {
1380                 struct device   *dev = spi->master->dev.parent;
1381 
1382                 host->dma_dev = dev;
1383                 host->ones_dma = dma_map_single(dev, ones,
1384                                 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1385                 if (dma_mapping_error(dev, host->ones_dma))
1386                         goto fail_ones_dma;
1387                 host->data_dma = dma_map_single(dev, host->data,
1388                                 sizeof(*host->data), DMA_BIDIRECTIONAL);
1389                 if (dma_mapping_error(dev, host->data_dma))
1390                         goto fail_data_dma;
1391 
1392                 dma_sync_single_for_cpu(host->dma_dev,
1393                                 host->data_dma, sizeof(*host->data),
1394                                 DMA_BIDIRECTIONAL);
1395         }
1396 
1397         /* setup message for status/busy readback */
1398         spi_message_init(&host->readback);
1399         host->readback.is_dma_mapped = (host->dma_dev != NULL);
1400 
1401         spi_message_add_tail(&host->status, &host->readback);
1402         host->status.tx_buf = host->ones;
1403         host->status.tx_dma = host->ones_dma;
1404         host->status.rx_buf = &host->data->status;
1405         host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1406         host->status.cs_change = 1;
1407 
1408         /* register card detect irq */
1409         if (host->pdata && host->pdata->init) {
1410                 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1411                 if (status != 0)
1412                         goto fail_glue_init;
1413         }
1414 
1415         /* pass platform capabilities, if any */
1416         if (host->pdata) {
1417                 mmc->caps |= host->pdata->caps;
1418                 mmc->caps2 |= host->pdata->caps2;
1419         }
1420 
1421         status = mmc_add_host(mmc);
1422         if (status != 0)
1423                 goto fail_add_host;
1424 
1425         /*
1426          * Index 0 is card detect
1427          * Old boardfiles were specifying 1 ms as debounce
1428          */
1429         status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1, NULL);
1430         if (status == -EPROBE_DEFER)
1431                 goto fail_add_host;
1432         if (!status) {
1433                 /*
1434                  * The platform has a CD GPIO signal that may support
1435                  * interrupts, so let mmc_gpiod_request_cd_irq() decide
1436                  * if polling is needed or not.
1437                  */
1438                 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1439                 mmc_gpiod_request_cd_irq(mmc);
1440         }
1441         mmc_detect_change(mmc, 0);
1442 
1443         /* Index 1 is write protect/read only */
1444         status = mmc_gpiod_request_ro(mmc, NULL, 1, 0, NULL);
1445         if (status == -EPROBE_DEFER)
1446                 goto fail_add_host;
1447         if (!status)
1448                 has_ro = true;
1449 
1450         dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1451                         dev_name(&mmc->class_dev),
1452                         host->dma_dev ? "" : ", no DMA",
1453                         has_ro ? "" : ", no WP",
1454                         (host->pdata && host->pdata->setpower)
1455                                 ? "" : ", no poweroff",
1456                         (mmc->caps & MMC_CAP_NEEDS_POLL)
1457                                 ? ", cd polling" : "");
1458         return 0;
1459 
1460 fail_add_host:
1461         mmc_remove_host(mmc);
1462 fail_glue_init:
1463         if (host->dma_dev)
1464                 dma_unmap_single(host->dma_dev, host->data_dma,
1465                                 sizeof(*host->data), DMA_BIDIRECTIONAL);
1466 fail_data_dma:
1467         if (host->dma_dev)
1468                 dma_unmap_single(host->dma_dev, host->ones_dma,
1469                                 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1470 fail_ones_dma:
1471         kfree(host->data);
1472 
1473 fail_nobuf1:
1474         mmc_free_host(mmc);
1475         mmc_spi_put_pdata(spi);
1476 
1477 nomem:
1478         kfree(ones);
1479         return status;
1480 }
1481 
1482 
1483 static int mmc_spi_remove(struct spi_device *spi)
1484 {
1485         struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1486         struct mmc_spi_host     *host = mmc_priv(mmc);
1487 
1488         /* prevent new mmc_detect_change() calls */
1489         if (host->pdata && host->pdata->exit)
1490                 host->pdata->exit(&spi->dev, mmc);
1491 
1492         mmc_remove_host(mmc);
1493 
1494         if (host->dma_dev) {
1495                 dma_unmap_single(host->dma_dev, host->ones_dma,
1496                         MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1497                 dma_unmap_single(host->dma_dev, host->data_dma,
1498                         sizeof(*host->data), DMA_BIDIRECTIONAL);
1499         }
1500 
1501         kfree(host->data);
1502         kfree(host->ones);
1503 
1504         spi->max_speed_hz = mmc->f_max;
1505         mmc_free_host(mmc);
1506         mmc_spi_put_pdata(spi);
1507         return 0;
1508 }
1509 
1510 static const struct of_device_id mmc_spi_of_match_table[] = {
1511         { .compatible = "mmc-spi-slot", },
1512         {},
1513 };
1514 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1515 
1516 static struct spi_driver mmc_spi_driver = {
1517         .driver = {
1518                 .name =         "mmc_spi",
1519                 .of_match_table = mmc_spi_of_match_table,
1520         },
1521         .probe =        mmc_spi_probe,
1522         .remove =       mmc_spi_remove,
1523 };
1524 
1525 module_spi_driver(mmc_spi_driver);
1526 
1527 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1528 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1529 MODULE_LICENSE("GPL");
1530 MODULE_ALIAS("spi:mmc_spi");

/* [<][>][^][v][top][bottom][index][help] */