root/drivers/mmc/core/block.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mmc_blk_get
  2. mmc_get_devidx
  3. mmc_blk_put
  4. power_ro_lock_show
  5. power_ro_lock_store
  6. force_ro_show
  7. force_ro_store
  8. mmc_blk_open
  9. mmc_blk_release
  10. mmc_blk_getgeo
  11. mmc_blk_ioctl_copy_from_user
  12. mmc_blk_ioctl_copy_to_user
  13. ioctl_do_sanitize
  14. mmc_blk_in_tran_state
  15. card_busy_detect
  16. __mmc_blk_ioctl_cmd
  17. mmc_blk_ioctl_cmd
  18. mmc_blk_ioctl_multi_cmd
  19. mmc_blk_check_blkdev
  20. mmc_blk_ioctl
  21. mmc_blk_compat_ioctl
  22. mmc_blk_part_switch_pre
  23. mmc_blk_part_switch_post
  24. mmc_blk_part_switch
  25. mmc_sd_num_wr_blocks
  26. mmc_blk_clock_khz
  27. mmc_blk_data_timeout_ms
  28. mmc_blk_reset
  29. mmc_blk_reset_success
  30. mmc_blk_issue_drv_op
  31. mmc_blk_issue_discard_rq
  32. mmc_blk_issue_secdiscard_rq
  33. mmc_blk_issue_flush
  34. mmc_apply_rel_rw
  35. mmc_blk_eval_resp_error
  36. mmc_blk_data_prep
  37. mmc_blk_cqe_complete_rq
  38. mmc_blk_cqe_recovery
  39. mmc_blk_cqe_req_done
  40. mmc_blk_cqe_start_req
  41. mmc_blk_cqe_prep_dcmd
  42. mmc_blk_cqe_issue_flush
  43. mmc_blk_cqe_issue_rw_rq
  44. mmc_blk_rw_rq_prep
  45. mmc_blk_send_stop
  46. mmc_blk_fix_state
  47. mmc_blk_read_single
  48. mmc_blk_oor_valid
  49. mmc_blk_stop_err_bits
  50. mmc_blk_status_error
  51. mmc_blk_cmd_started
  52. mmc_blk_mq_rw_recovery
  53. mmc_blk_rq_error
  54. mmc_blk_card_busy
  55. mmc_blk_rw_reset_success
  56. mmc_blk_mq_complete_rq
  57. mmc_blk_urgent_bkops_needed
  58. mmc_blk_urgent_bkops
  59. mmc_blk_mq_complete
  60. mmc_blk_mq_poll_completion
  61. mmc_blk_mq_dec_in_flight
  62. mmc_blk_mq_post_req
  63. mmc_blk_mq_recovery
  64. mmc_blk_mq_complete_prev_req
  65. mmc_blk_mq_complete_work
  66. mmc_blk_mq_req_done
  67. mmc_blk_rw_wait_cond
  68. mmc_blk_rw_wait
  69. mmc_blk_mq_issue_rw_rq
  70. mmc_blk_wait_for_idle
  71. mmc_blk_mq_issue_rq
  72. mmc_blk_readonly
  73. mmc_blk_alloc_req
  74. mmc_blk_alloc
  75. mmc_blk_alloc_part
  76. mmc_rpmb_ioctl
  77. mmc_rpmb_ioctl_compat
  78. mmc_rpmb_chrdev_open
  79. mmc_rpmb_chrdev_release
  80. mmc_blk_rpmb_device_release
  81. mmc_blk_alloc_rpmb_part
  82. mmc_blk_remove_rpmb_part
  83. mmc_blk_alloc_parts
  84. mmc_blk_remove_req
  85. mmc_blk_remove_parts
  86. mmc_add_disk
  87. mmc_dbg_card_status_get
  88. mmc_ext_csd_open
  89. mmc_ext_csd_read
  90. mmc_ext_csd_release
  91. mmc_blk_add_debugfs
  92. mmc_blk_remove_debugfs
  93. mmc_blk_add_debugfs
  94. mmc_blk_remove_debugfs
  95. mmc_blk_probe
  96. mmc_blk_remove
  97. _mmc_blk_suspend
  98. mmc_blk_shutdown
  99. mmc_blk_suspend
  100. mmc_blk_resume
  101. mmc_blk_init
  102. mmc_blk_exit

   1 /*
   2  * Block driver for media (i.e., flash cards)
   3  *
   4  * Copyright 2002 Hewlett-Packard Company
   5  * Copyright 2005-2008 Pierre Ossman
   6  *
   7  * Use consistent with the GNU GPL is permitted,
   8  * provided that this copyright notice is
   9  * preserved in its entirety in all copies and derived works.
  10  *
  11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13  * FITNESS FOR ANY PARTICULAR PURPOSE.
  14  *
  15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16  *
  17  * Author:  Andrew Christian
  18  *          28 May 2002
  19  */
  20 #include <linux/moduleparam.h>
  21 #include <linux/module.h>
  22 #include <linux/init.h>
  23 
  24 #include <linux/kernel.h>
  25 #include <linux/fs.h>
  26 #include <linux/slab.h>
  27 #include <linux/errno.h>
  28 #include <linux/hdreg.h>
  29 #include <linux/kdev_t.h>
  30 #include <linux/blkdev.h>
  31 #include <linux/cdev.h>
  32 #include <linux/mutex.h>
  33 #include <linux/scatterlist.h>
  34 #include <linux/string_helpers.h>
  35 #include <linux/delay.h>
  36 #include <linux/capability.h>
  37 #include <linux/compat.h>
  38 #include <linux/pm_runtime.h>
  39 #include <linux/idr.h>
  40 #include <linux/debugfs.h>
  41 
  42 #include <linux/mmc/ioctl.h>
  43 #include <linux/mmc/card.h>
  44 #include <linux/mmc/host.h>
  45 #include <linux/mmc/mmc.h>
  46 #include <linux/mmc/sd.h>
  47 
  48 #include <linux/uaccess.h>
  49 
  50 #include "queue.h"
  51 #include "block.h"
  52 #include "core.h"
  53 #include "card.h"
  54 #include "host.h"
  55 #include "bus.h"
  56 #include "mmc_ops.h"
  57 #include "quirks.h"
  58 #include "sd_ops.h"
  59 
  60 MODULE_ALIAS("mmc:block");
  61 #ifdef MODULE_PARAM_PREFIX
  62 #undef MODULE_PARAM_PREFIX
  63 #endif
  64 #define MODULE_PARAM_PREFIX "mmcblk."
  65 
  66 /*
  67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
  68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  69  * second software timer to timeout the whole request, so 10 seconds should be
  70  * ample.
  71  */
  72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
  74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  76 
  77 #define mmc_req_rel_wr(req)     ((req->cmd_flags & REQ_FUA) && \
  78                                   (rq_data_dir(req) == WRITE))
  79 static DEFINE_MUTEX(block_mutex);
  80 
  81 /*
  82  * The defaults come from config options but can be overriden by module
  83  * or bootarg options.
  84  */
  85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  86 
  87 /*
  88  * We've only got one major, so number of mmcblk devices is
  89  * limited to (1 << 20) / number of minors per device.  It is also
  90  * limited by the MAX_DEVICES below.
  91  */
  92 static int max_devices;
  93 
  94 #define MAX_DEVICES 256
  95 
  96 static DEFINE_IDA(mmc_blk_ida);
  97 static DEFINE_IDA(mmc_rpmb_ida);
  98 
  99 /*
 100  * There is one mmc_blk_data per slot.
 101  */
 102 struct mmc_blk_data {
 103         struct device   *parent;
 104         struct gendisk  *disk;
 105         struct mmc_queue queue;
 106         struct list_head part;
 107         struct list_head rpmbs;
 108 
 109         unsigned int    flags;
 110 #define MMC_BLK_CMD23   (1 << 0)        /* Can do SET_BLOCK_COUNT for multiblock */
 111 #define MMC_BLK_REL_WR  (1 << 1)        /* MMC Reliable write support */
 112 
 113         unsigned int    usage;
 114         unsigned int    read_only;
 115         unsigned int    part_type;
 116         unsigned int    reset_done;
 117 #define MMC_BLK_READ            BIT(0)
 118 #define MMC_BLK_WRITE           BIT(1)
 119 #define MMC_BLK_DISCARD         BIT(2)
 120 #define MMC_BLK_SECDISCARD      BIT(3)
 121 #define MMC_BLK_CQE_RECOVERY    BIT(4)
 122 
 123         /*
 124          * Only set in main mmc_blk_data associated
 125          * with mmc_card with dev_set_drvdata, and keeps
 126          * track of the current selected device partition.
 127          */
 128         unsigned int    part_curr;
 129         struct device_attribute force_ro;
 130         struct device_attribute power_ro_lock;
 131         int     area_type;
 132 
 133         /* debugfs files (only in main mmc_blk_data) */
 134         struct dentry *status_dentry;
 135         struct dentry *ext_csd_dentry;
 136 };
 137 
 138 /* Device type for RPMB character devices */
 139 static dev_t mmc_rpmb_devt;
 140 
 141 /* Bus type for RPMB character devices */
 142 static struct bus_type mmc_rpmb_bus_type = {
 143         .name = "mmc_rpmb",
 144 };
 145 
 146 /**
 147  * struct mmc_rpmb_data - special RPMB device type for these areas
 148  * @dev: the device for the RPMB area
 149  * @chrdev: character device for the RPMB area
 150  * @id: unique device ID number
 151  * @part_index: partition index (0 on first)
 152  * @md: parent MMC block device
 153  * @node: list item, so we can put this device on a list
 154  */
 155 struct mmc_rpmb_data {
 156         struct device dev;
 157         struct cdev chrdev;
 158         int id;
 159         unsigned int part_index;
 160         struct mmc_blk_data *md;
 161         struct list_head node;
 162 };
 163 
 164 static DEFINE_MUTEX(open_lock);
 165 
 166 module_param(perdev_minors, int, 0444);
 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 168 
 169 static inline int mmc_blk_part_switch(struct mmc_card *card,
 170                                       unsigned int part_type);
 171 
 172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 173 {
 174         struct mmc_blk_data *md;
 175 
 176         mutex_lock(&open_lock);
 177         md = disk->private_data;
 178         if (md && md->usage == 0)
 179                 md = NULL;
 180         if (md)
 181                 md->usage++;
 182         mutex_unlock(&open_lock);
 183 
 184         return md;
 185 }
 186 
 187 static inline int mmc_get_devidx(struct gendisk *disk)
 188 {
 189         int devidx = disk->first_minor / perdev_minors;
 190         return devidx;
 191 }
 192 
 193 static void mmc_blk_put(struct mmc_blk_data *md)
 194 {
 195         mutex_lock(&open_lock);
 196         md->usage--;
 197         if (md->usage == 0) {
 198                 int devidx = mmc_get_devidx(md->disk);
 199                 blk_put_queue(md->queue.queue);
 200                 ida_simple_remove(&mmc_blk_ida, devidx);
 201                 put_disk(md->disk);
 202                 kfree(md);
 203         }
 204         mutex_unlock(&open_lock);
 205 }
 206 
 207 static ssize_t power_ro_lock_show(struct device *dev,
 208                 struct device_attribute *attr, char *buf)
 209 {
 210         int ret;
 211         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 212         struct mmc_card *card = md->queue.card;
 213         int locked = 0;
 214 
 215         if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 216                 locked = 2;
 217         else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 218                 locked = 1;
 219 
 220         ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 221 
 222         mmc_blk_put(md);
 223 
 224         return ret;
 225 }
 226 
 227 static ssize_t power_ro_lock_store(struct device *dev,
 228                 struct device_attribute *attr, const char *buf, size_t count)
 229 {
 230         int ret;
 231         struct mmc_blk_data *md, *part_md;
 232         struct mmc_queue *mq;
 233         struct request *req;
 234         unsigned long set;
 235 
 236         if (kstrtoul(buf, 0, &set))
 237                 return -EINVAL;
 238 
 239         if (set != 1)
 240                 return count;
 241 
 242         md = mmc_blk_get(dev_to_disk(dev));
 243         mq = &md->queue;
 244 
 245         /* Dispatch locking to the block layer */
 246         req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
 247         if (IS_ERR(req)) {
 248                 count = PTR_ERR(req);
 249                 goto out_put;
 250         }
 251         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 252         blk_execute_rq(mq->queue, NULL, req, 0);
 253         ret = req_to_mmc_queue_req(req)->drv_op_result;
 254         blk_put_request(req);
 255 
 256         if (!ret) {
 257                 pr_info("%s: Locking boot partition ro until next power on\n",
 258                         md->disk->disk_name);
 259                 set_disk_ro(md->disk, 1);
 260 
 261                 list_for_each_entry(part_md, &md->part, part)
 262                         if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 263                                 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 264                                 set_disk_ro(part_md->disk, 1);
 265                         }
 266         }
 267 out_put:
 268         mmc_blk_put(md);
 269         return count;
 270 }
 271 
 272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 273                              char *buf)
 274 {
 275         int ret;
 276         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 277 
 278         ret = snprintf(buf, PAGE_SIZE, "%d\n",
 279                        get_disk_ro(dev_to_disk(dev)) ^
 280                        md->read_only);
 281         mmc_blk_put(md);
 282         return ret;
 283 }
 284 
 285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 286                               const char *buf, size_t count)
 287 {
 288         int ret;
 289         char *end;
 290         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 291         unsigned long set = simple_strtoul(buf, &end, 0);
 292         if (end == buf) {
 293                 ret = -EINVAL;
 294                 goto out;
 295         }
 296 
 297         set_disk_ro(dev_to_disk(dev), set || md->read_only);
 298         ret = count;
 299 out:
 300         mmc_blk_put(md);
 301         return ret;
 302 }
 303 
 304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 305 {
 306         struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 307         int ret = -ENXIO;
 308 
 309         mutex_lock(&block_mutex);
 310         if (md) {
 311                 if (md->usage == 2)
 312                         check_disk_change(bdev);
 313                 ret = 0;
 314 
 315                 if ((mode & FMODE_WRITE) && md->read_only) {
 316                         mmc_blk_put(md);
 317                         ret = -EROFS;
 318                 }
 319         }
 320         mutex_unlock(&block_mutex);
 321 
 322         return ret;
 323 }
 324 
 325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 326 {
 327         struct mmc_blk_data *md = disk->private_data;
 328 
 329         mutex_lock(&block_mutex);
 330         mmc_blk_put(md);
 331         mutex_unlock(&block_mutex);
 332 }
 333 
 334 static int
 335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 336 {
 337         geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 338         geo->heads = 4;
 339         geo->sectors = 16;
 340         return 0;
 341 }
 342 
 343 struct mmc_blk_ioc_data {
 344         struct mmc_ioc_cmd ic;
 345         unsigned char *buf;
 346         u64 buf_bytes;
 347         struct mmc_rpmb_data *rpmb;
 348 };
 349 
 350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 351         struct mmc_ioc_cmd __user *user)
 352 {
 353         struct mmc_blk_ioc_data *idata;
 354         int err;
 355 
 356         idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 357         if (!idata) {
 358                 err = -ENOMEM;
 359                 goto out;
 360         }
 361 
 362         if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 363                 err = -EFAULT;
 364                 goto idata_err;
 365         }
 366 
 367         idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 368         if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 369                 err = -EOVERFLOW;
 370                 goto idata_err;
 371         }
 372 
 373         if (!idata->buf_bytes) {
 374                 idata->buf = NULL;
 375                 return idata;
 376         }
 377 
 378         idata->buf = memdup_user((void __user *)(unsigned long)
 379                                  idata->ic.data_ptr, idata->buf_bytes);
 380         if (IS_ERR(idata->buf)) {
 381                 err = PTR_ERR(idata->buf);
 382                 goto idata_err;
 383         }
 384 
 385         return idata;
 386 
 387 idata_err:
 388         kfree(idata);
 389 out:
 390         return ERR_PTR(err);
 391 }
 392 
 393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 394                                       struct mmc_blk_ioc_data *idata)
 395 {
 396         struct mmc_ioc_cmd *ic = &idata->ic;
 397 
 398         if (copy_to_user(&(ic_ptr->response), ic->response,
 399                          sizeof(ic->response)))
 400                 return -EFAULT;
 401 
 402         if (!idata->ic.write_flag) {
 403                 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 404                                  idata->buf, idata->buf_bytes))
 405                         return -EFAULT;
 406         }
 407 
 408         return 0;
 409 }
 410 
 411 static int ioctl_do_sanitize(struct mmc_card *card)
 412 {
 413         int err;
 414 
 415         if (!mmc_can_sanitize(card)) {
 416                         pr_warn("%s: %s - SANITIZE is not supported\n",
 417                                 mmc_hostname(card->host), __func__);
 418                         err = -EOPNOTSUPP;
 419                         goto out;
 420         }
 421 
 422         pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
 423                 mmc_hostname(card->host), __func__);
 424 
 425         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 426                                         EXT_CSD_SANITIZE_START, 1,
 427                                         MMC_SANITIZE_REQ_TIMEOUT);
 428 
 429         if (err)
 430                 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
 431                        mmc_hostname(card->host), __func__, err);
 432 
 433         pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
 434                                              __func__);
 435 out:
 436         return err;
 437 }
 438 
 439 static inline bool mmc_blk_in_tran_state(u32 status)
 440 {
 441         /*
 442          * Some cards mishandle the status bits, so make sure to check both the
 443          * busy indication and the card state.
 444          */
 445         return status & R1_READY_FOR_DATA &&
 446                (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
 447 }
 448 
 449 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 450                             u32 *resp_errs)
 451 {
 452         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 453         int err = 0;
 454         u32 status;
 455 
 456         do {
 457                 bool done = time_after(jiffies, timeout);
 458 
 459                 err = __mmc_send_status(card, &status, 5);
 460                 if (err) {
 461                         dev_err(mmc_dev(card->host),
 462                                 "error %d requesting status\n", err);
 463                         return err;
 464                 }
 465 
 466                 /* Accumulate any response error bits seen */
 467                 if (resp_errs)
 468                         *resp_errs |= status;
 469 
 470                 /*
 471                  * Timeout if the device never becomes ready for data and never
 472                  * leaves the program state.
 473                  */
 474                 if (done) {
 475                         dev_err(mmc_dev(card->host),
 476                                 "Card stuck in wrong state! %s status: %#x\n",
 477                                  __func__, status);
 478                         return -ETIMEDOUT;
 479                 }
 480 
 481                 /*
 482                  * Some cards mishandle the status bits,
 483                  * so make sure to check both the busy
 484                  * indication and the card state.
 485                  */
 486         } while (!mmc_blk_in_tran_state(status));
 487 
 488         return err;
 489 }
 490 
 491 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 492                                struct mmc_blk_ioc_data *idata)
 493 {
 494         struct mmc_command cmd = {}, sbc = {};
 495         struct mmc_data data = {};
 496         struct mmc_request mrq = {};
 497         struct scatterlist sg;
 498         int err;
 499         unsigned int target_part;
 500 
 501         if (!card || !md || !idata)
 502                 return -EINVAL;
 503 
 504         /*
 505          * The RPMB accesses comes in from the character device, so we
 506          * need to target these explicitly. Else we just target the
 507          * partition type for the block device the ioctl() was issued
 508          * on.
 509          */
 510         if (idata->rpmb) {
 511                 /* Support multiple RPMB partitions */
 512                 target_part = idata->rpmb->part_index;
 513                 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 514         } else {
 515                 target_part = md->part_type;
 516         }
 517 
 518         cmd.opcode = idata->ic.opcode;
 519         cmd.arg = idata->ic.arg;
 520         cmd.flags = idata->ic.flags;
 521 
 522         if (idata->buf_bytes) {
 523                 data.sg = &sg;
 524                 data.sg_len = 1;
 525                 data.blksz = idata->ic.blksz;
 526                 data.blocks = idata->ic.blocks;
 527 
 528                 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 529 
 530                 if (idata->ic.write_flag)
 531                         data.flags = MMC_DATA_WRITE;
 532                 else
 533                         data.flags = MMC_DATA_READ;
 534 
 535                 /* data.flags must already be set before doing this. */
 536                 mmc_set_data_timeout(&data, card);
 537 
 538                 /* Allow overriding the timeout_ns for empirical tuning. */
 539                 if (idata->ic.data_timeout_ns)
 540                         data.timeout_ns = idata->ic.data_timeout_ns;
 541 
 542                 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 543                         /*
 544                          * Pretend this is a data transfer and rely on the
 545                          * host driver to compute timeout.  When all host
 546                          * drivers support cmd.cmd_timeout for R1B, this
 547                          * can be changed to:
 548                          *
 549                          *     mrq.data = NULL;
 550                          *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 551                          */
 552                         data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 553                 }
 554 
 555                 mrq.data = &data;
 556         }
 557 
 558         mrq.cmd = &cmd;
 559 
 560         err = mmc_blk_part_switch(card, target_part);
 561         if (err)
 562                 return err;
 563 
 564         if (idata->ic.is_acmd) {
 565                 err = mmc_app_cmd(card->host, card);
 566                 if (err)
 567                         return err;
 568         }
 569 
 570         if (idata->rpmb) {
 571                 sbc.opcode = MMC_SET_BLOCK_COUNT;
 572                 /*
 573                  * We don't do any blockcount validation because the max size
 574                  * may be increased by a future standard. We just copy the
 575                  * 'Reliable Write' bit here.
 576                  */
 577                 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 578                 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 579                 mrq.sbc = &sbc;
 580         }
 581 
 582         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 583             (cmd.opcode == MMC_SWITCH)) {
 584                 err = ioctl_do_sanitize(card);
 585 
 586                 if (err)
 587                         pr_err("%s: ioctl_do_sanitize() failed. err = %d",
 588                                __func__, err);
 589 
 590                 return err;
 591         }
 592 
 593         mmc_wait_for_req(card->host, &mrq);
 594 
 595         if (cmd.error) {
 596                 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 597                                                 __func__, cmd.error);
 598                 return cmd.error;
 599         }
 600         if (data.error) {
 601                 dev_err(mmc_dev(card->host), "%s: data error %d\n",
 602                                                 __func__, data.error);
 603                 return data.error;
 604         }
 605 
 606         /*
 607          * Make sure the cache of the PARTITION_CONFIG register and
 608          * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 609          * changed it successfully.
 610          */
 611         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 612             (cmd.opcode == MMC_SWITCH)) {
 613                 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 614                 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 615 
 616                 /*
 617                  * Update cache so the next mmc_blk_part_switch call operates
 618                  * on up-to-date data.
 619                  */
 620                 card->ext_csd.part_config = value;
 621                 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 622         }
 623 
 624         /*
 625          * According to the SD specs, some commands require a delay after
 626          * issuing the command.
 627          */
 628         if (idata->ic.postsleep_min_us)
 629                 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 630 
 631         memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
 632 
 633         if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
 634                 /*
 635                  * Ensure RPMB/R1B command has completed by polling CMD13
 636                  * "Send Status".
 637                  */
 638                 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
 639         }
 640 
 641         return err;
 642 }
 643 
 644 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 645                              struct mmc_ioc_cmd __user *ic_ptr,
 646                              struct mmc_rpmb_data *rpmb)
 647 {
 648         struct mmc_blk_ioc_data *idata;
 649         struct mmc_blk_ioc_data *idatas[1];
 650         struct mmc_queue *mq;
 651         struct mmc_card *card;
 652         int err = 0, ioc_err = 0;
 653         struct request *req;
 654 
 655         idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 656         if (IS_ERR(idata))
 657                 return PTR_ERR(idata);
 658         /* This will be NULL on non-RPMB ioctl():s */
 659         idata->rpmb = rpmb;
 660 
 661         card = md->queue.card;
 662         if (IS_ERR(card)) {
 663                 err = PTR_ERR(card);
 664                 goto cmd_done;
 665         }
 666 
 667         /*
 668          * Dispatch the ioctl() into the block request queue.
 669          */
 670         mq = &md->queue;
 671         req = blk_get_request(mq->queue,
 672                 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 673         if (IS_ERR(req)) {
 674                 err = PTR_ERR(req);
 675                 goto cmd_done;
 676         }
 677         idatas[0] = idata;
 678         req_to_mmc_queue_req(req)->drv_op =
 679                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 680         req_to_mmc_queue_req(req)->drv_op_data = idatas;
 681         req_to_mmc_queue_req(req)->ioc_count = 1;
 682         blk_execute_rq(mq->queue, NULL, req, 0);
 683         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 684         err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 685         blk_put_request(req);
 686 
 687 cmd_done:
 688         kfree(idata->buf);
 689         kfree(idata);
 690         return ioc_err ? ioc_err : err;
 691 }
 692 
 693 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 694                                    struct mmc_ioc_multi_cmd __user *user,
 695                                    struct mmc_rpmb_data *rpmb)
 696 {
 697         struct mmc_blk_ioc_data **idata = NULL;
 698         struct mmc_ioc_cmd __user *cmds = user->cmds;
 699         struct mmc_card *card;
 700         struct mmc_queue *mq;
 701         int i, err = 0, ioc_err = 0;
 702         __u64 num_of_cmds;
 703         struct request *req;
 704 
 705         if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 706                            sizeof(num_of_cmds)))
 707                 return -EFAULT;
 708 
 709         if (!num_of_cmds)
 710                 return 0;
 711 
 712         if (num_of_cmds > MMC_IOC_MAX_CMDS)
 713                 return -EINVAL;
 714 
 715         idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 716         if (!idata)
 717                 return -ENOMEM;
 718 
 719         for (i = 0; i < num_of_cmds; i++) {
 720                 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 721                 if (IS_ERR(idata[i])) {
 722                         err = PTR_ERR(idata[i]);
 723                         num_of_cmds = i;
 724                         goto cmd_err;
 725                 }
 726                 /* This will be NULL on non-RPMB ioctl():s */
 727                 idata[i]->rpmb = rpmb;
 728         }
 729 
 730         card = md->queue.card;
 731         if (IS_ERR(card)) {
 732                 err = PTR_ERR(card);
 733                 goto cmd_err;
 734         }
 735 
 736 
 737         /*
 738          * Dispatch the ioctl()s into the block request queue.
 739          */
 740         mq = &md->queue;
 741         req = blk_get_request(mq->queue,
 742                 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 743         if (IS_ERR(req)) {
 744                 err = PTR_ERR(req);
 745                 goto cmd_err;
 746         }
 747         req_to_mmc_queue_req(req)->drv_op =
 748                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 749         req_to_mmc_queue_req(req)->drv_op_data = idata;
 750         req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 751         blk_execute_rq(mq->queue, NULL, req, 0);
 752         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 753 
 754         /* copy to user if data and response */
 755         for (i = 0; i < num_of_cmds && !err; i++)
 756                 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 757 
 758         blk_put_request(req);
 759 
 760 cmd_err:
 761         for (i = 0; i < num_of_cmds; i++) {
 762                 kfree(idata[i]->buf);
 763                 kfree(idata[i]);
 764         }
 765         kfree(idata);
 766         return ioc_err ? ioc_err : err;
 767 }
 768 
 769 static int mmc_blk_check_blkdev(struct block_device *bdev)
 770 {
 771         /*
 772          * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 773          * whole block device, not on a partition.  This prevents overspray
 774          * between sibling partitions.
 775          */
 776         if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 777                 return -EPERM;
 778         return 0;
 779 }
 780 
 781 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 782         unsigned int cmd, unsigned long arg)
 783 {
 784         struct mmc_blk_data *md;
 785         int ret;
 786 
 787         switch (cmd) {
 788         case MMC_IOC_CMD:
 789                 ret = mmc_blk_check_blkdev(bdev);
 790                 if (ret)
 791                         return ret;
 792                 md = mmc_blk_get(bdev->bd_disk);
 793                 if (!md)
 794                         return -EINVAL;
 795                 ret = mmc_blk_ioctl_cmd(md,
 796                                         (struct mmc_ioc_cmd __user *)arg,
 797                                         NULL);
 798                 mmc_blk_put(md);
 799                 return ret;
 800         case MMC_IOC_MULTI_CMD:
 801                 ret = mmc_blk_check_blkdev(bdev);
 802                 if (ret)
 803                         return ret;
 804                 md = mmc_blk_get(bdev->bd_disk);
 805                 if (!md)
 806                         return -EINVAL;
 807                 ret = mmc_blk_ioctl_multi_cmd(md,
 808                                         (struct mmc_ioc_multi_cmd __user *)arg,
 809                                         NULL);
 810                 mmc_blk_put(md);
 811                 return ret;
 812         default:
 813                 return -EINVAL;
 814         }
 815 }
 816 
 817 #ifdef CONFIG_COMPAT
 818 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 819         unsigned int cmd, unsigned long arg)
 820 {
 821         return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 822 }
 823 #endif
 824 
 825 static const struct block_device_operations mmc_bdops = {
 826         .open                   = mmc_blk_open,
 827         .release                = mmc_blk_release,
 828         .getgeo                 = mmc_blk_getgeo,
 829         .owner                  = THIS_MODULE,
 830         .ioctl                  = mmc_blk_ioctl,
 831 #ifdef CONFIG_COMPAT
 832         .compat_ioctl           = mmc_blk_compat_ioctl,
 833 #endif
 834 };
 835 
 836 static int mmc_blk_part_switch_pre(struct mmc_card *card,
 837                                    unsigned int part_type)
 838 {
 839         int ret = 0;
 840 
 841         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 842                 if (card->ext_csd.cmdq_en) {
 843                         ret = mmc_cmdq_disable(card);
 844                         if (ret)
 845                                 return ret;
 846                 }
 847                 mmc_retune_pause(card->host);
 848         }
 849 
 850         return ret;
 851 }
 852 
 853 static int mmc_blk_part_switch_post(struct mmc_card *card,
 854                                     unsigned int part_type)
 855 {
 856         int ret = 0;
 857 
 858         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 859                 mmc_retune_unpause(card->host);
 860                 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 861                         ret = mmc_cmdq_enable(card);
 862         }
 863 
 864         return ret;
 865 }
 866 
 867 static inline int mmc_blk_part_switch(struct mmc_card *card,
 868                                       unsigned int part_type)
 869 {
 870         int ret = 0;
 871         struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 872 
 873         if (main_md->part_curr == part_type)
 874                 return 0;
 875 
 876         if (mmc_card_mmc(card)) {
 877                 u8 part_config = card->ext_csd.part_config;
 878 
 879                 ret = mmc_blk_part_switch_pre(card, part_type);
 880                 if (ret)
 881                         return ret;
 882 
 883                 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 884                 part_config |= part_type;
 885 
 886                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 887                                  EXT_CSD_PART_CONFIG, part_config,
 888                                  card->ext_csd.part_time);
 889                 if (ret) {
 890                         mmc_blk_part_switch_post(card, part_type);
 891                         return ret;
 892                 }
 893 
 894                 card->ext_csd.part_config = part_config;
 895 
 896                 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 897         }
 898 
 899         main_md->part_curr = part_type;
 900         return ret;
 901 }
 902 
 903 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 904 {
 905         int err;
 906         u32 result;
 907         __be32 *blocks;
 908 
 909         struct mmc_request mrq = {};
 910         struct mmc_command cmd = {};
 911         struct mmc_data data = {};
 912 
 913         struct scatterlist sg;
 914 
 915         cmd.opcode = MMC_APP_CMD;
 916         cmd.arg = card->rca << 16;
 917         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 918 
 919         err = mmc_wait_for_cmd(card->host, &cmd, 0);
 920         if (err)
 921                 return err;
 922         if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 923                 return -EIO;
 924 
 925         memset(&cmd, 0, sizeof(struct mmc_command));
 926 
 927         cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 928         cmd.arg = 0;
 929         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 930 
 931         data.blksz = 4;
 932         data.blocks = 1;
 933         data.flags = MMC_DATA_READ;
 934         data.sg = &sg;
 935         data.sg_len = 1;
 936         mmc_set_data_timeout(&data, card);
 937 
 938         mrq.cmd = &cmd;
 939         mrq.data = &data;
 940 
 941         blocks = kmalloc(4, GFP_KERNEL);
 942         if (!blocks)
 943                 return -ENOMEM;
 944 
 945         sg_init_one(&sg, blocks, 4);
 946 
 947         mmc_wait_for_req(card->host, &mrq);
 948 
 949         result = ntohl(*blocks);
 950         kfree(blocks);
 951 
 952         if (cmd.error || data.error)
 953                 return -EIO;
 954 
 955         *written_blocks = result;
 956 
 957         return 0;
 958 }
 959 
 960 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 961 {
 962         if (host->actual_clock)
 963                 return host->actual_clock / 1000;
 964 
 965         /* Clock may be subject to a divisor, fudge it by a factor of 2. */
 966         if (host->ios.clock)
 967                 return host->ios.clock / 2000;
 968 
 969         /* How can there be no clock */
 970         WARN_ON_ONCE(1);
 971         return 100; /* 100 kHz is minimum possible value */
 972 }
 973 
 974 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 975                                             struct mmc_data *data)
 976 {
 977         unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 978         unsigned int khz;
 979 
 980         if (data->timeout_clks) {
 981                 khz = mmc_blk_clock_khz(host);
 982                 ms += DIV_ROUND_UP(data->timeout_clks, khz);
 983         }
 984 
 985         return ms;
 986 }
 987 
 988 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 989                          int type)
 990 {
 991         int err;
 992 
 993         if (md->reset_done & type)
 994                 return -EEXIST;
 995 
 996         md->reset_done |= type;
 997         err = mmc_hw_reset(host);
 998         /* Ensure we switch back to the correct partition */
 999         if (err != -EOPNOTSUPP) {
1000                 struct mmc_blk_data *main_md =
1001                         dev_get_drvdata(&host->card->dev);
1002                 int part_err;
1003 
1004                 main_md->part_curr = main_md->part_type;
1005                 part_err = mmc_blk_part_switch(host->card, md->part_type);
1006                 if (part_err) {
1007                         /*
1008                          * We have failed to get back into the correct
1009                          * partition, so we need to abort the whole request.
1010                          */
1011                         return -ENODEV;
1012                 }
1013         }
1014         return err;
1015 }
1016 
1017 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1018 {
1019         md->reset_done &= ~type;
1020 }
1021 
1022 /*
1023  * The non-block commands come back from the block layer after it queued it and
1024  * processed it with all other requests and then they get issued in this
1025  * function.
1026  */
1027 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1028 {
1029         struct mmc_queue_req *mq_rq;
1030         struct mmc_card *card = mq->card;
1031         struct mmc_blk_data *md = mq->blkdata;
1032         struct mmc_blk_ioc_data **idata;
1033         bool rpmb_ioctl;
1034         u8 **ext_csd;
1035         u32 status;
1036         int ret;
1037         int i;
1038 
1039         mq_rq = req_to_mmc_queue_req(req);
1040         rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1041 
1042         switch (mq_rq->drv_op) {
1043         case MMC_DRV_OP_IOCTL:
1044         case MMC_DRV_OP_IOCTL_RPMB:
1045                 idata = mq_rq->drv_op_data;
1046                 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1047                         ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1048                         if (ret)
1049                                 break;
1050                 }
1051                 /* Always switch back to main area after RPMB access */
1052                 if (rpmb_ioctl)
1053                         mmc_blk_part_switch(card, 0);
1054                 break;
1055         case MMC_DRV_OP_BOOT_WP:
1056                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1057                                  card->ext_csd.boot_ro_lock |
1058                                  EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1059                                  card->ext_csd.part_time);
1060                 if (ret)
1061                         pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1062                                md->disk->disk_name, ret);
1063                 else
1064                         card->ext_csd.boot_ro_lock |=
1065                                 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1066                 break;
1067         case MMC_DRV_OP_GET_CARD_STATUS:
1068                 ret = mmc_send_status(card, &status);
1069                 if (!ret)
1070                         ret = status;
1071                 break;
1072         case MMC_DRV_OP_GET_EXT_CSD:
1073                 ext_csd = mq_rq->drv_op_data;
1074                 ret = mmc_get_ext_csd(card, ext_csd);
1075                 break;
1076         default:
1077                 pr_err("%s: unknown driver specific operation\n",
1078                        md->disk->disk_name);
1079                 ret = -EINVAL;
1080                 break;
1081         }
1082         mq_rq->drv_op_result = ret;
1083         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1084 }
1085 
1086 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1087 {
1088         struct mmc_blk_data *md = mq->blkdata;
1089         struct mmc_card *card = md->queue.card;
1090         unsigned int from, nr;
1091         int err = 0, type = MMC_BLK_DISCARD;
1092         blk_status_t status = BLK_STS_OK;
1093 
1094         if (!mmc_can_erase(card)) {
1095                 status = BLK_STS_NOTSUPP;
1096                 goto fail;
1097         }
1098 
1099         from = blk_rq_pos(req);
1100         nr = blk_rq_sectors(req);
1101 
1102         do {
1103                 err = 0;
1104                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1105                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1106                                          INAND_CMD38_ARG_EXT_CSD,
1107                                          card->erase_arg == MMC_TRIM_ARG ?
1108                                          INAND_CMD38_ARG_TRIM :
1109                                          INAND_CMD38_ARG_ERASE,
1110                                          0);
1111                 }
1112                 if (!err)
1113                         err = mmc_erase(card, from, nr, card->erase_arg);
1114         } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1115         if (err)
1116                 status = BLK_STS_IOERR;
1117         else
1118                 mmc_blk_reset_success(md, type);
1119 fail:
1120         blk_mq_end_request(req, status);
1121 }
1122 
1123 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1124                                        struct request *req)
1125 {
1126         struct mmc_blk_data *md = mq->blkdata;
1127         struct mmc_card *card = md->queue.card;
1128         unsigned int from, nr, arg;
1129         int err = 0, type = MMC_BLK_SECDISCARD;
1130         blk_status_t status = BLK_STS_OK;
1131 
1132         if (!(mmc_can_secure_erase_trim(card))) {
1133                 status = BLK_STS_NOTSUPP;
1134                 goto out;
1135         }
1136 
1137         from = blk_rq_pos(req);
1138         nr = blk_rq_sectors(req);
1139 
1140         if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1141                 arg = MMC_SECURE_TRIM1_ARG;
1142         else
1143                 arg = MMC_SECURE_ERASE_ARG;
1144 
1145 retry:
1146         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1147                 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1148                                  INAND_CMD38_ARG_EXT_CSD,
1149                                  arg == MMC_SECURE_TRIM1_ARG ?
1150                                  INAND_CMD38_ARG_SECTRIM1 :
1151                                  INAND_CMD38_ARG_SECERASE,
1152                                  0);
1153                 if (err)
1154                         goto out_retry;
1155         }
1156 
1157         err = mmc_erase(card, from, nr, arg);
1158         if (err == -EIO)
1159                 goto out_retry;
1160         if (err) {
1161                 status = BLK_STS_IOERR;
1162                 goto out;
1163         }
1164 
1165         if (arg == MMC_SECURE_TRIM1_ARG) {
1166                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1167                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1168                                          INAND_CMD38_ARG_EXT_CSD,
1169                                          INAND_CMD38_ARG_SECTRIM2,
1170                                          0);
1171                         if (err)
1172                                 goto out_retry;
1173                 }
1174 
1175                 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1176                 if (err == -EIO)
1177                         goto out_retry;
1178                 if (err) {
1179                         status = BLK_STS_IOERR;
1180                         goto out;
1181                 }
1182         }
1183 
1184 out_retry:
1185         if (err && !mmc_blk_reset(md, card->host, type))
1186                 goto retry;
1187         if (!err)
1188                 mmc_blk_reset_success(md, type);
1189 out:
1190         blk_mq_end_request(req, status);
1191 }
1192 
1193 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1194 {
1195         struct mmc_blk_data *md = mq->blkdata;
1196         struct mmc_card *card = md->queue.card;
1197         int ret = 0;
1198 
1199         ret = mmc_flush_cache(card);
1200         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1201 }
1202 
1203 /*
1204  * Reformat current write as a reliable write, supporting
1205  * both legacy and the enhanced reliable write MMC cards.
1206  * In each transfer we'll handle only as much as a single
1207  * reliable write can handle, thus finish the request in
1208  * partial completions.
1209  */
1210 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1211                                     struct mmc_card *card,
1212                                     struct request *req)
1213 {
1214         if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1215                 /* Legacy mode imposes restrictions on transfers. */
1216                 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1217                         brq->data.blocks = 1;
1218 
1219                 if (brq->data.blocks > card->ext_csd.rel_sectors)
1220                         brq->data.blocks = card->ext_csd.rel_sectors;
1221                 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1222                         brq->data.blocks = 1;
1223         }
1224 }
1225 
1226 #define CMD_ERRORS_EXCL_OOR                                             \
1227         (R1_ADDRESS_ERROR |     /* Misaligned address */                \
1228          R1_BLOCK_LEN_ERROR |   /* Transferred block length incorrect */\
1229          R1_WP_VIOLATION |      /* Tried to write to protected block */ \
1230          R1_CARD_ECC_FAILED |   /* Card ECC failed */                   \
1231          R1_CC_ERROR |          /* Card controller error */             \
1232          R1_ERROR)              /* General/unknown error */
1233 
1234 #define CMD_ERRORS                                                      \
1235         (CMD_ERRORS_EXCL_OOR |                                          \
1236          R1_OUT_OF_RANGE)       /* Command argument out of range */     \
1237 
1238 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1239 {
1240         u32 val;
1241 
1242         /*
1243          * Per the SD specification(physical layer version 4.10)[1],
1244          * section 4.3.3, it explicitly states that "When the last
1245          * block of user area is read using CMD18, the host should
1246          * ignore OUT_OF_RANGE error that may occur even the sequence
1247          * is correct". And JESD84-B51 for eMMC also has a similar
1248          * statement on section 6.8.3.
1249          *
1250          * Multiple block read/write could be done by either predefined
1251          * method, namely CMD23, or open-ending mode. For open-ending mode,
1252          * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1253          *
1254          * However the spec[1] doesn't tell us whether we should also
1255          * ignore that for predefined method. But per the spec[1], section
1256          * 4.15 Set Block Count Command, it says"If illegal block count
1257          * is set, out of range error will be indicated during read/write
1258          * operation (For example, data transfer is stopped at user area
1259          * boundary)." In another word, we could expect a out of range error
1260          * in the response for the following CMD18/25. And if argument of
1261          * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1262          * we could also expect to get a -ETIMEDOUT or any error number from
1263          * the host drivers due to missing data response(for write)/data(for
1264          * read), as the cards will stop the data transfer by itself per the
1265          * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1266          */
1267 
1268         if (!brq->stop.error) {
1269                 bool oor_with_open_end;
1270                 /* If there is no error yet, check R1 response */
1271 
1272                 val = brq->stop.resp[0] & CMD_ERRORS;
1273                 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1274 
1275                 if (val && !oor_with_open_end)
1276                         brq->stop.error = -EIO;
1277         }
1278 }
1279 
1280 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1281                               int disable_multi, bool *do_rel_wr_p,
1282                               bool *do_data_tag_p)
1283 {
1284         struct mmc_blk_data *md = mq->blkdata;
1285         struct mmc_card *card = md->queue.card;
1286         struct mmc_blk_request *brq = &mqrq->brq;
1287         struct request *req = mmc_queue_req_to_req(mqrq);
1288         bool do_rel_wr, do_data_tag;
1289 
1290         /*
1291          * Reliable writes are used to implement Forced Unit Access and
1292          * are supported only on MMCs.
1293          */
1294         do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1295                     rq_data_dir(req) == WRITE &&
1296                     (md->flags & MMC_BLK_REL_WR);
1297 
1298         memset(brq, 0, sizeof(struct mmc_blk_request));
1299 
1300         brq->mrq.data = &brq->data;
1301         brq->mrq.tag = req->tag;
1302 
1303         brq->stop.opcode = MMC_STOP_TRANSMISSION;
1304         brq->stop.arg = 0;
1305 
1306         if (rq_data_dir(req) == READ) {
1307                 brq->data.flags = MMC_DATA_READ;
1308                 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1309         } else {
1310                 brq->data.flags = MMC_DATA_WRITE;
1311                 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1312         }
1313 
1314         brq->data.blksz = 512;
1315         brq->data.blocks = blk_rq_sectors(req);
1316         brq->data.blk_addr = blk_rq_pos(req);
1317 
1318         /*
1319          * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1320          * The eMMC will give "high" priority tasks priority over "simple"
1321          * priority tasks. Here we always set "simple" priority by not setting
1322          * MMC_DATA_PRIO.
1323          */
1324 
1325         /*
1326          * The block layer doesn't support all sector count
1327          * restrictions, so we need to be prepared for too big
1328          * requests.
1329          */
1330         if (brq->data.blocks > card->host->max_blk_count)
1331                 brq->data.blocks = card->host->max_blk_count;
1332 
1333         if (brq->data.blocks > 1) {
1334                 /*
1335                  * Some SD cards in SPI mode return a CRC error or even lock up
1336                  * completely when trying to read the last block using a
1337                  * multiblock read command.
1338                  */
1339                 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1340                     (blk_rq_pos(req) + blk_rq_sectors(req) ==
1341                      get_capacity(md->disk)))
1342                         brq->data.blocks--;
1343 
1344                 /*
1345                  * After a read error, we redo the request one sector
1346                  * at a time in order to accurately determine which
1347                  * sectors can be read successfully.
1348                  */
1349                 if (disable_multi)
1350                         brq->data.blocks = 1;
1351 
1352                 /*
1353                  * Some controllers have HW issues while operating
1354                  * in multiple I/O mode
1355                  */
1356                 if (card->host->ops->multi_io_quirk)
1357                         brq->data.blocks = card->host->ops->multi_io_quirk(card,
1358                                                 (rq_data_dir(req) == READ) ?
1359                                                 MMC_DATA_READ : MMC_DATA_WRITE,
1360                                                 brq->data.blocks);
1361         }
1362 
1363         if (do_rel_wr) {
1364                 mmc_apply_rel_rw(brq, card, req);
1365                 brq->data.flags |= MMC_DATA_REL_WR;
1366         }
1367 
1368         /*
1369          * Data tag is used only during writing meta data to speed
1370          * up write and any subsequent read of this meta data
1371          */
1372         do_data_tag = card->ext_csd.data_tag_unit_size &&
1373                       (req->cmd_flags & REQ_META) &&
1374                       (rq_data_dir(req) == WRITE) &&
1375                       ((brq->data.blocks * brq->data.blksz) >=
1376                        card->ext_csd.data_tag_unit_size);
1377 
1378         if (do_data_tag)
1379                 brq->data.flags |= MMC_DATA_DAT_TAG;
1380 
1381         mmc_set_data_timeout(&brq->data, card);
1382 
1383         brq->data.sg = mqrq->sg;
1384         brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1385 
1386         /*
1387          * Adjust the sg list so it is the same size as the
1388          * request.
1389          */
1390         if (brq->data.blocks != blk_rq_sectors(req)) {
1391                 int i, data_size = brq->data.blocks << 9;
1392                 struct scatterlist *sg;
1393 
1394                 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1395                         data_size -= sg->length;
1396                         if (data_size <= 0) {
1397                                 sg->length += data_size;
1398                                 i++;
1399                                 break;
1400                         }
1401                 }
1402                 brq->data.sg_len = i;
1403         }
1404 
1405         if (do_rel_wr_p)
1406                 *do_rel_wr_p = do_rel_wr;
1407 
1408         if (do_data_tag_p)
1409                 *do_data_tag_p = do_data_tag;
1410 }
1411 
1412 #define MMC_CQE_RETRIES 2
1413 
1414 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1415 {
1416         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1417         struct mmc_request *mrq = &mqrq->brq.mrq;
1418         struct request_queue *q = req->q;
1419         struct mmc_host *host = mq->card->host;
1420         enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1421         unsigned long flags;
1422         bool put_card;
1423         int err;
1424 
1425         mmc_cqe_post_req(host, mrq);
1426 
1427         if (mrq->cmd && mrq->cmd->error)
1428                 err = mrq->cmd->error;
1429         else if (mrq->data && mrq->data->error)
1430                 err = mrq->data->error;
1431         else
1432                 err = 0;
1433 
1434         if (err) {
1435                 if (mqrq->retries++ < MMC_CQE_RETRIES)
1436                         blk_mq_requeue_request(req, true);
1437                 else
1438                         blk_mq_end_request(req, BLK_STS_IOERR);
1439         } else if (mrq->data) {
1440                 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1441                         blk_mq_requeue_request(req, true);
1442                 else
1443                         __blk_mq_end_request(req, BLK_STS_OK);
1444         } else {
1445                 blk_mq_end_request(req, BLK_STS_OK);
1446         }
1447 
1448         spin_lock_irqsave(&mq->lock, flags);
1449 
1450         mq->in_flight[issue_type] -= 1;
1451 
1452         put_card = (mmc_tot_in_flight(mq) == 0);
1453 
1454         mmc_cqe_check_busy(mq);
1455 
1456         spin_unlock_irqrestore(&mq->lock, flags);
1457 
1458         if (!mq->cqe_busy)
1459                 blk_mq_run_hw_queues(q, true);
1460 
1461         if (put_card)
1462                 mmc_put_card(mq->card, &mq->ctx);
1463 }
1464 
1465 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1466 {
1467         struct mmc_card *card = mq->card;
1468         struct mmc_host *host = card->host;
1469         int err;
1470 
1471         pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1472 
1473         err = mmc_cqe_recovery(host);
1474         if (err)
1475                 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1476         else
1477                 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1478 
1479         pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1480 }
1481 
1482 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1483 {
1484         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1485                                                   brq.mrq);
1486         struct request *req = mmc_queue_req_to_req(mqrq);
1487         struct request_queue *q = req->q;
1488         struct mmc_queue *mq = q->queuedata;
1489 
1490         /*
1491          * Block layer timeouts race with completions which means the normal
1492          * completion path cannot be used during recovery.
1493          */
1494         if (mq->in_recovery)
1495                 mmc_blk_cqe_complete_rq(mq, req);
1496         else
1497                 blk_mq_complete_request(req);
1498 }
1499 
1500 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1501 {
1502         mrq->done               = mmc_blk_cqe_req_done;
1503         mrq->recovery_notifier  = mmc_cqe_recovery_notifier;
1504 
1505         return mmc_cqe_start_req(host, mrq);
1506 }
1507 
1508 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1509                                                  struct request *req)
1510 {
1511         struct mmc_blk_request *brq = &mqrq->brq;
1512 
1513         memset(brq, 0, sizeof(*brq));
1514 
1515         brq->mrq.cmd = &brq->cmd;
1516         brq->mrq.tag = req->tag;
1517 
1518         return &brq->mrq;
1519 }
1520 
1521 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1522 {
1523         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1524         struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1525 
1526         mrq->cmd->opcode = MMC_SWITCH;
1527         mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1528                         (EXT_CSD_FLUSH_CACHE << 16) |
1529                         (1 << 8) |
1530                         EXT_CSD_CMD_SET_NORMAL;
1531         mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1532 
1533         return mmc_blk_cqe_start_req(mq->card->host, mrq);
1534 }
1535 
1536 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1537 {
1538         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1539 
1540         mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1541 
1542         return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1543 }
1544 
1545 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1546                                struct mmc_card *card,
1547                                int disable_multi,
1548                                struct mmc_queue *mq)
1549 {
1550         u32 readcmd, writecmd;
1551         struct mmc_blk_request *brq = &mqrq->brq;
1552         struct request *req = mmc_queue_req_to_req(mqrq);
1553         struct mmc_blk_data *md = mq->blkdata;
1554         bool do_rel_wr, do_data_tag;
1555 
1556         mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1557 
1558         brq->mrq.cmd = &brq->cmd;
1559 
1560         brq->cmd.arg = blk_rq_pos(req);
1561         if (!mmc_card_blockaddr(card))
1562                 brq->cmd.arg <<= 9;
1563         brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1564 
1565         if (brq->data.blocks > 1 || do_rel_wr) {
1566                 /* SPI multiblock writes terminate using a special
1567                  * token, not a STOP_TRANSMISSION request.
1568                  */
1569                 if (!mmc_host_is_spi(card->host) ||
1570                     rq_data_dir(req) == READ)
1571                         brq->mrq.stop = &brq->stop;
1572                 readcmd = MMC_READ_MULTIPLE_BLOCK;
1573                 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1574         } else {
1575                 brq->mrq.stop = NULL;
1576                 readcmd = MMC_READ_SINGLE_BLOCK;
1577                 writecmd = MMC_WRITE_BLOCK;
1578         }
1579         brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1580 
1581         /*
1582          * Pre-defined multi-block transfers are preferable to
1583          * open ended-ones (and necessary for reliable writes).
1584          * However, it is not sufficient to just send CMD23,
1585          * and avoid the final CMD12, as on an error condition
1586          * CMD12 (stop) needs to be sent anyway. This, coupled
1587          * with Auto-CMD23 enhancements provided by some
1588          * hosts, means that the complexity of dealing
1589          * with this is best left to the host. If CMD23 is
1590          * supported by card and host, we'll fill sbc in and let
1591          * the host deal with handling it correctly. This means
1592          * that for hosts that don't expose MMC_CAP_CMD23, no
1593          * change of behavior will be observed.
1594          *
1595          * N.B: Some MMC cards experience perf degradation.
1596          * We'll avoid using CMD23-bounded multiblock writes for
1597          * these, while retaining features like reliable writes.
1598          */
1599         if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1600             (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1601              do_data_tag)) {
1602                 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1603                 brq->sbc.arg = brq->data.blocks |
1604                         (do_rel_wr ? (1 << 31) : 0) |
1605                         (do_data_tag ? (1 << 29) : 0);
1606                 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1607                 brq->mrq.sbc = &brq->sbc;
1608         }
1609 }
1610 
1611 #define MMC_MAX_RETRIES         5
1612 #define MMC_DATA_RETRIES        2
1613 #define MMC_NO_RETRIES          (MMC_MAX_RETRIES + 1)
1614 
1615 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1616 {
1617         struct mmc_command cmd = {
1618                 .opcode = MMC_STOP_TRANSMISSION,
1619                 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1620                 /* Some hosts wait for busy anyway, so provide a busy timeout */
1621                 .busy_timeout = timeout,
1622         };
1623 
1624         return mmc_wait_for_cmd(card->host, &cmd, 5);
1625 }
1626 
1627 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1628 {
1629         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1630         struct mmc_blk_request *brq = &mqrq->brq;
1631         unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1632         int err;
1633 
1634         mmc_retune_hold_now(card->host);
1635 
1636         mmc_blk_send_stop(card, timeout);
1637 
1638         err = card_busy_detect(card, timeout, NULL);
1639 
1640         mmc_retune_release(card->host);
1641 
1642         return err;
1643 }
1644 
1645 #define MMC_READ_SINGLE_RETRIES 2
1646 
1647 /* Single sector read during recovery */
1648 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1649 {
1650         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1651         struct mmc_request *mrq = &mqrq->brq.mrq;
1652         struct mmc_card *card = mq->card;
1653         struct mmc_host *host = card->host;
1654         blk_status_t error = BLK_STS_OK;
1655         int retries = 0;
1656 
1657         do {
1658                 u32 status;
1659                 int err;
1660 
1661                 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1662 
1663                 mmc_wait_for_req(host, mrq);
1664 
1665                 err = mmc_send_status(card, &status);
1666                 if (err)
1667                         goto error_exit;
1668 
1669                 if (!mmc_host_is_spi(host) &&
1670                     !mmc_blk_in_tran_state(status)) {
1671                         err = mmc_blk_fix_state(card, req);
1672                         if (err)
1673                                 goto error_exit;
1674                 }
1675 
1676                 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1677                         continue;
1678 
1679                 retries = 0;
1680 
1681                 if (mrq->cmd->error ||
1682                     mrq->data->error ||
1683                     (!mmc_host_is_spi(host) &&
1684                      (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1685                         error = BLK_STS_IOERR;
1686                 else
1687                         error = BLK_STS_OK;
1688 
1689         } while (blk_update_request(req, error, 512));
1690 
1691         return;
1692 
1693 error_exit:
1694         mrq->data->bytes_xfered = 0;
1695         blk_update_request(req, BLK_STS_IOERR, 512);
1696         /* Let it try the remaining request again */
1697         if (mqrq->retries > MMC_MAX_RETRIES - 1)
1698                 mqrq->retries = MMC_MAX_RETRIES - 1;
1699 }
1700 
1701 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1702 {
1703         return !!brq->mrq.sbc;
1704 }
1705 
1706 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1707 {
1708         return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1709 }
1710 
1711 /*
1712  * Check for errors the host controller driver might not have seen such as
1713  * response mode errors or invalid card state.
1714  */
1715 static bool mmc_blk_status_error(struct request *req, u32 status)
1716 {
1717         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1718         struct mmc_blk_request *brq = &mqrq->brq;
1719         struct mmc_queue *mq = req->q->queuedata;
1720         u32 stop_err_bits;
1721 
1722         if (mmc_host_is_spi(mq->card->host))
1723                 return false;
1724 
1725         stop_err_bits = mmc_blk_stop_err_bits(brq);
1726 
1727         return brq->cmd.resp[0]  & CMD_ERRORS    ||
1728                brq->stop.resp[0] & stop_err_bits ||
1729                status            & stop_err_bits ||
1730                (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1731 }
1732 
1733 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1734 {
1735         return !brq->sbc.error && !brq->cmd.error &&
1736                !(brq->cmd.resp[0] & CMD_ERRORS);
1737 }
1738 
1739 /*
1740  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1741  * policy:
1742  * 1. A request that has transferred at least some data is considered
1743  * successful and will be requeued if there is remaining data to
1744  * transfer.
1745  * 2. Otherwise the number of retries is incremented and the request
1746  * will be requeued if there are remaining retries.
1747  * 3. Otherwise the request will be errored out.
1748  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1749  * mqrq->retries. So there are only 4 possible actions here:
1750  *      1. do not accept the bytes_xfered value i.e. set it to zero
1751  *      2. change mqrq->retries to determine the number of retries
1752  *      3. try to reset the card
1753  *      4. read one sector at a time
1754  */
1755 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1756 {
1757         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1758         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1759         struct mmc_blk_request *brq = &mqrq->brq;
1760         struct mmc_blk_data *md = mq->blkdata;
1761         struct mmc_card *card = mq->card;
1762         u32 status;
1763         u32 blocks;
1764         int err;
1765 
1766         /*
1767          * Some errors the host driver might not have seen. Set the number of
1768          * bytes transferred to zero in that case.
1769          */
1770         err = __mmc_send_status(card, &status, 0);
1771         if (err || mmc_blk_status_error(req, status))
1772                 brq->data.bytes_xfered = 0;
1773 
1774         mmc_retune_release(card->host);
1775 
1776         /*
1777          * Try again to get the status. This also provides an opportunity for
1778          * re-tuning.
1779          */
1780         if (err)
1781                 err = __mmc_send_status(card, &status, 0);
1782 
1783         /*
1784          * Nothing more to do after the number of bytes transferred has been
1785          * updated and there is no card.
1786          */
1787         if (err && mmc_detect_card_removed(card->host))
1788                 return;
1789 
1790         /* Try to get back to "tran" state */
1791         if (!mmc_host_is_spi(mq->card->host) &&
1792             (err || !mmc_blk_in_tran_state(status)))
1793                 err = mmc_blk_fix_state(mq->card, req);
1794 
1795         /*
1796          * Special case for SD cards where the card might record the number of
1797          * blocks written.
1798          */
1799         if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1800             rq_data_dir(req) == WRITE) {
1801                 if (mmc_sd_num_wr_blocks(card, &blocks))
1802                         brq->data.bytes_xfered = 0;
1803                 else
1804                         brq->data.bytes_xfered = blocks << 9;
1805         }
1806 
1807         /* Reset if the card is in a bad state */
1808         if (!mmc_host_is_spi(mq->card->host) &&
1809             err && mmc_blk_reset(md, card->host, type)) {
1810                 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1811                 mqrq->retries = MMC_NO_RETRIES;
1812                 return;
1813         }
1814 
1815         /*
1816          * If anything was done, just return and if there is anything remaining
1817          * on the request it will get requeued.
1818          */
1819         if (brq->data.bytes_xfered)
1820                 return;
1821 
1822         /* Reset before last retry */
1823         if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1824                 mmc_blk_reset(md, card->host, type);
1825 
1826         /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1827         if (brq->sbc.error || brq->cmd.error)
1828                 return;
1829 
1830         /* Reduce the remaining retries for data errors */
1831         if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1832                 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1833                 return;
1834         }
1835 
1836         /* FIXME: Missing single sector read for large sector size */
1837         if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1838             brq->data.blocks > 1) {
1839                 /* Read one sector at a time */
1840                 mmc_blk_read_single(mq, req);
1841                 return;
1842         }
1843 }
1844 
1845 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1846 {
1847         mmc_blk_eval_resp_error(brq);
1848 
1849         return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1850                brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1851 }
1852 
1853 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1854 {
1855         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1856         u32 status = 0;
1857         int err;
1858 
1859         if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1860                 return 0;
1861 
1862         err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1863 
1864         /*
1865          * Do not assume data transferred correctly if there are any error bits
1866          * set.
1867          */
1868         if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1869                 mqrq->brq.data.bytes_xfered = 0;
1870                 err = err ? err : -EIO;
1871         }
1872 
1873         /* Copy the exception bit so it will be seen later on */
1874         if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1875                 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1876 
1877         return err;
1878 }
1879 
1880 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1881                                             struct request *req)
1882 {
1883         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1884 
1885         mmc_blk_reset_success(mq->blkdata, type);
1886 }
1887 
1888 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1889 {
1890         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1891         unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1892 
1893         if (nr_bytes) {
1894                 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1895                         blk_mq_requeue_request(req, true);
1896                 else
1897                         __blk_mq_end_request(req, BLK_STS_OK);
1898         } else if (!blk_rq_bytes(req)) {
1899                 __blk_mq_end_request(req, BLK_STS_IOERR);
1900         } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1901                 blk_mq_requeue_request(req, true);
1902         } else {
1903                 if (mmc_card_removed(mq->card))
1904                         req->rq_flags |= RQF_QUIET;
1905                 blk_mq_end_request(req, BLK_STS_IOERR);
1906         }
1907 }
1908 
1909 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1910                                         struct mmc_queue_req *mqrq)
1911 {
1912         return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1913                (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1914                 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1915 }
1916 
1917 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1918                                  struct mmc_queue_req *mqrq)
1919 {
1920         if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1921                 mmc_run_bkops(mq->card);
1922 }
1923 
1924 void mmc_blk_mq_complete(struct request *req)
1925 {
1926         struct mmc_queue *mq = req->q->queuedata;
1927 
1928         if (mq->use_cqe)
1929                 mmc_blk_cqe_complete_rq(mq, req);
1930         else
1931                 mmc_blk_mq_complete_rq(mq, req);
1932 }
1933 
1934 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1935                                        struct request *req)
1936 {
1937         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1938         struct mmc_host *host = mq->card->host;
1939 
1940         if (mmc_blk_rq_error(&mqrq->brq) ||
1941             mmc_blk_card_busy(mq->card, req)) {
1942                 mmc_blk_mq_rw_recovery(mq, req);
1943         } else {
1944                 mmc_blk_rw_reset_success(mq, req);
1945                 mmc_retune_release(host);
1946         }
1947 
1948         mmc_blk_urgent_bkops(mq, mqrq);
1949 }
1950 
1951 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1952 {
1953         unsigned long flags;
1954         bool put_card;
1955 
1956         spin_lock_irqsave(&mq->lock, flags);
1957 
1958         mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1959 
1960         put_card = (mmc_tot_in_flight(mq) == 0);
1961 
1962         spin_unlock_irqrestore(&mq->lock, flags);
1963 
1964         if (put_card)
1965                 mmc_put_card(mq->card, &mq->ctx);
1966 }
1967 
1968 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1969 {
1970         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1971         struct mmc_request *mrq = &mqrq->brq.mrq;
1972         struct mmc_host *host = mq->card->host;
1973 
1974         mmc_post_req(host, mrq, 0);
1975 
1976         /*
1977          * Block layer timeouts race with completions which means the normal
1978          * completion path cannot be used during recovery.
1979          */
1980         if (mq->in_recovery)
1981                 mmc_blk_mq_complete_rq(mq, req);
1982         else
1983                 blk_mq_complete_request(req);
1984 
1985         mmc_blk_mq_dec_in_flight(mq, req);
1986 }
1987 
1988 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1989 {
1990         struct request *req = mq->recovery_req;
1991         struct mmc_host *host = mq->card->host;
1992         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993 
1994         mq->recovery_req = NULL;
1995         mq->rw_wait = false;
1996 
1997         if (mmc_blk_rq_error(&mqrq->brq)) {
1998                 mmc_retune_hold_now(host);
1999                 mmc_blk_mq_rw_recovery(mq, req);
2000         }
2001 
2002         mmc_blk_urgent_bkops(mq, mqrq);
2003 
2004         mmc_blk_mq_post_req(mq, req);
2005 }
2006 
2007 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2008                                          struct request **prev_req)
2009 {
2010         if (mmc_host_done_complete(mq->card->host))
2011                 return;
2012 
2013         mutex_lock(&mq->complete_lock);
2014 
2015         if (!mq->complete_req)
2016                 goto out_unlock;
2017 
2018         mmc_blk_mq_poll_completion(mq, mq->complete_req);
2019 
2020         if (prev_req)
2021                 *prev_req = mq->complete_req;
2022         else
2023                 mmc_blk_mq_post_req(mq, mq->complete_req);
2024 
2025         mq->complete_req = NULL;
2026 
2027 out_unlock:
2028         mutex_unlock(&mq->complete_lock);
2029 }
2030 
2031 void mmc_blk_mq_complete_work(struct work_struct *work)
2032 {
2033         struct mmc_queue *mq = container_of(work, struct mmc_queue,
2034                                             complete_work);
2035 
2036         mmc_blk_mq_complete_prev_req(mq, NULL);
2037 }
2038 
2039 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2040 {
2041         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2042                                                   brq.mrq);
2043         struct request *req = mmc_queue_req_to_req(mqrq);
2044         struct request_queue *q = req->q;
2045         struct mmc_queue *mq = q->queuedata;
2046         struct mmc_host *host = mq->card->host;
2047         unsigned long flags;
2048 
2049         if (!mmc_host_done_complete(host)) {
2050                 bool waiting;
2051 
2052                 /*
2053                  * We cannot complete the request in this context, so record
2054                  * that there is a request to complete, and that a following
2055                  * request does not need to wait (although it does need to
2056                  * complete complete_req first).
2057                  */
2058                 spin_lock_irqsave(&mq->lock, flags);
2059                 mq->complete_req = req;
2060                 mq->rw_wait = false;
2061                 waiting = mq->waiting;
2062                 spin_unlock_irqrestore(&mq->lock, flags);
2063 
2064                 /*
2065                  * If 'waiting' then the waiting task will complete this
2066                  * request, otherwise queue a work to do it. Note that
2067                  * complete_work may still race with the dispatch of a following
2068                  * request.
2069                  */
2070                 if (waiting)
2071                         wake_up(&mq->wait);
2072                 else
2073                         queue_work(mq->card->complete_wq, &mq->complete_work);
2074 
2075                 return;
2076         }
2077 
2078         /* Take the recovery path for errors or urgent background operations */
2079         if (mmc_blk_rq_error(&mqrq->brq) ||
2080             mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2081                 spin_lock_irqsave(&mq->lock, flags);
2082                 mq->recovery_needed = true;
2083                 mq->recovery_req = req;
2084                 spin_unlock_irqrestore(&mq->lock, flags);
2085                 wake_up(&mq->wait);
2086                 schedule_work(&mq->recovery_work);
2087                 return;
2088         }
2089 
2090         mmc_blk_rw_reset_success(mq, req);
2091 
2092         mq->rw_wait = false;
2093         wake_up(&mq->wait);
2094 
2095         mmc_blk_mq_post_req(mq, req);
2096 }
2097 
2098 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2099 {
2100         unsigned long flags;
2101         bool done;
2102 
2103         /*
2104          * Wait while there is another request in progress, but not if recovery
2105          * is needed. Also indicate whether there is a request waiting to start.
2106          */
2107         spin_lock_irqsave(&mq->lock, flags);
2108         if (mq->recovery_needed) {
2109                 *err = -EBUSY;
2110                 done = true;
2111         } else {
2112                 done = !mq->rw_wait;
2113         }
2114         mq->waiting = !done;
2115         spin_unlock_irqrestore(&mq->lock, flags);
2116 
2117         return done;
2118 }
2119 
2120 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2121 {
2122         int err = 0;
2123 
2124         wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2125 
2126         /* Always complete the previous request if there is one */
2127         mmc_blk_mq_complete_prev_req(mq, prev_req);
2128 
2129         return err;
2130 }
2131 
2132 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2133                                   struct request *req)
2134 {
2135         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2136         struct mmc_host *host = mq->card->host;
2137         struct request *prev_req = NULL;
2138         int err = 0;
2139 
2140         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2141 
2142         mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2143 
2144         mmc_pre_req(host, &mqrq->brq.mrq);
2145 
2146         err = mmc_blk_rw_wait(mq, &prev_req);
2147         if (err)
2148                 goto out_post_req;
2149 
2150         mq->rw_wait = true;
2151 
2152         err = mmc_start_request(host, &mqrq->brq.mrq);
2153 
2154         if (prev_req)
2155                 mmc_blk_mq_post_req(mq, prev_req);
2156 
2157         if (err)
2158                 mq->rw_wait = false;
2159 
2160         /* Release re-tuning here where there is no synchronization required */
2161         if (err || mmc_host_done_complete(host))
2162                 mmc_retune_release(host);
2163 
2164 out_post_req:
2165         if (err)
2166                 mmc_post_req(host, &mqrq->brq.mrq, err);
2167 
2168         return err;
2169 }
2170 
2171 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2172 {
2173         if (mq->use_cqe)
2174                 return host->cqe_ops->cqe_wait_for_idle(host);
2175 
2176         return mmc_blk_rw_wait(mq, NULL);
2177 }
2178 
2179 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2180 {
2181         struct mmc_blk_data *md = mq->blkdata;
2182         struct mmc_card *card = md->queue.card;
2183         struct mmc_host *host = card->host;
2184         int ret;
2185 
2186         ret = mmc_blk_part_switch(card, md->part_type);
2187         if (ret)
2188                 return MMC_REQ_FAILED_TO_START;
2189 
2190         switch (mmc_issue_type(mq, req)) {
2191         case MMC_ISSUE_SYNC:
2192                 ret = mmc_blk_wait_for_idle(mq, host);
2193                 if (ret)
2194                         return MMC_REQ_BUSY;
2195                 switch (req_op(req)) {
2196                 case REQ_OP_DRV_IN:
2197                 case REQ_OP_DRV_OUT:
2198                         mmc_blk_issue_drv_op(mq, req);
2199                         break;
2200                 case REQ_OP_DISCARD:
2201                         mmc_blk_issue_discard_rq(mq, req);
2202                         break;
2203                 case REQ_OP_SECURE_ERASE:
2204                         mmc_blk_issue_secdiscard_rq(mq, req);
2205                         break;
2206                 case REQ_OP_FLUSH:
2207                         mmc_blk_issue_flush(mq, req);
2208                         break;
2209                 default:
2210                         WARN_ON_ONCE(1);
2211                         return MMC_REQ_FAILED_TO_START;
2212                 }
2213                 return MMC_REQ_FINISHED;
2214         case MMC_ISSUE_DCMD:
2215         case MMC_ISSUE_ASYNC:
2216                 switch (req_op(req)) {
2217                 case REQ_OP_FLUSH:
2218                         ret = mmc_blk_cqe_issue_flush(mq, req);
2219                         break;
2220                 case REQ_OP_READ:
2221                 case REQ_OP_WRITE:
2222                         if (mq->use_cqe)
2223                                 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2224                         else
2225                                 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2226                         break;
2227                 default:
2228                         WARN_ON_ONCE(1);
2229                         ret = -EINVAL;
2230                 }
2231                 if (!ret)
2232                         return MMC_REQ_STARTED;
2233                 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2234         default:
2235                 WARN_ON_ONCE(1);
2236                 return MMC_REQ_FAILED_TO_START;
2237         }
2238 }
2239 
2240 static inline int mmc_blk_readonly(struct mmc_card *card)
2241 {
2242         return mmc_card_readonly(card) ||
2243                !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2244 }
2245 
2246 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2247                                               struct device *parent,
2248                                               sector_t size,
2249                                               bool default_ro,
2250                                               const char *subname,
2251                                               int area_type)
2252 {
2253         struct mmc_blk_data *md;
2254         int devidx, ret;
2255 
2256         devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2257         if (devidx < 0) {
2258                 /*
2259                  * We get -ENOSPC because there are no more any available
2260                  * devidx. The reason may be that, either userspace haven't yet
2261                  * unmounted the partitions, which postpones mmc_blk_release()
2262                  * from being called, or the device has more partitions than
2263                  * what we support.
2264                  */
2265                 if (devidx == -ENOSPC)
2266                         dev_err(mmc_dev(card->host),
2267                                 "no more device IDs available\n");
2268 
2269                 return ERR_PTR(devidx);
2270         }
2271 
2272         md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2273         if (!md) {
2274                 ret = -ENOMEM;
2275                 goto out;
2276         }
2277 
2278         md->area_type = area_type;
2279 
2280         /*
2281          * Set the read-only status based on the supported commands
2282          * and the write protect switch.
2283          */
2284         md->read_only = mmc_blk_readonly(card);
2285 
2286         md->disk = alloc_disk(perdev_minors);
2287         if (md->disk == NULL) {
2288                 ret = -ENOMEM;
2289                 goto err_kfree;
2290         }
2291 
2292         INIT_LIST_HEAD(&md->part);
2293         INIT_LIST_HEAD(&md->rpmbs);
2294         md->usage = 1;
2295 
2296         ret = mmc_init_queue(&md->queue, card);
2297         if (ret)
2298                 goto err_putdisk;
2299 
2300         md->queue.blkdata = md;
2301 
2302         /*
2303          * Keep an extra reference to the queue so that we can shutdown the
2304          * queue (i.e. call blk_cleanup_queue()) while there are still
2305          * references to the 'md'. The corresponding blk_put_queue() is in
2306          * mmc_blk_put().
2307          */
2308         if (!blk_get_queue(md->queue.queue)) {
2309                 mmc_cleanup_queue(&md->queue);
2310                 ret = -ENODEV;
2311                 goto err_putdisk;
2312         }
2313 
2314         md->disk->major = MMC_BLOCK_MAJOR;
2315         md->disk->first_minor = devidx * perdev_minors;
2316         md->disk->fops = &mmc_bdops;
2317         md->disk->private_data = md;
2318         md->disk->queue = md->queue.queue;
2319         md->parent = parent;
2320         set_disk_ro(md->disk, md->read_only || default_ro);
2321         md->disk->flags = GENHD_FL_EXT_DEVT;
2322         if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2323                 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2324                                    | GENHD_FL_SUPPRESS_PARTITION_INFO;
2325 
2326         /*
2327          * As discussed on lkml, GENHD_FL_REMOVABLE should:
2328          *
2329          * - be set for removable media with permanent block devices
2330          * - be unset for removable block devices with permanent media
2331          *
2332          * Since MMC block devices clearly fall under the second
2333          * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2334          * should use the block device creation/destruction hotplug
2335          * messages to tell when the card is present.
2336          */
2337 
2338         snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2339                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2340 
2341         set_capacity(md->disk, size);
2342 
2343         if (mmc_host_cmd23(card->host)) {
2344                 if ((mmc_card_mmc(card) &&
2345                      card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2346                     (mmc_card_sd(card) &&
2347                      card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2348                         md->flags |= MMC_BLK_CMD23;
2349         }
2350 
2351         if (mmc_card_mmc(card) &&
2352             md->flags & MMC_BLK_CMD23 &&
2353             ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2354              card->ext_csd.rel_sectors)) {
2355                 md->flags |= MMC_BLK_REL_WR;
2356                 blk_queue_write_cache(md->queue.queue, true, true);
2357         }
2358 
2359         return md;
2360 
2361  err_putdisk:
2362         put_disk(md->disk);
2363  err_kfree:
2364         kfree(md);
2365  out:
2366         ida_simple_remove(&mmc_blk_ida, devidx);
2367         return ERR_PTR(ret);
2368 }
2369 
2370 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2371 {
2372         sector_t size;
2373 
2374         if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2375                 /*
2376                  * The EXT_CSD sector count is in number or 512 byte
2377                  * sectors.
2378                  */
2379                 size = card->ext_csd.sectors;
2380         } else {
2381                 /*
2382                  * The CSD capacity field is in units of read_blkbits.
2383                  * set_capacity takes units of 512 bytes.
2384                  */
2385                 size = (typeof(sector_t))card->csd.capacity
2386                         << (card->csd.read_blkbits - 9);
2387         }
2388 
2389         return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2390                                         MMC_BLK_DATA_AREA_MAIN);
2391 }
2392 
2393 static int mmc_blk_alloc_part(struct mmc_card *card,
2394                               struct mmc_blk_data *md,
2395                               unsigned int part_type,
2396                               sector_t size,
2397                               bool default_ro,
2398                               const char *subname,
2399                               int area_type)
2400 {
2401         char cap_str[10];
2402         struct mmc_blk_data *part_md;
2403 
2404         part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2405                                     subname, area_type);
2406         if (IS_ERR(part_md))
2407                 return PTR_ERR(part_md);
2408         part_md->part_type = part_type;
2409         list_add(&part_md->part, &md->part);
2410 
2411         string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2412                         cap_str, sizeof(cap_str));
2413         pr_info("%s: %s %s partition %u %s\n",
2414                part_md->disk->disk_name, mmc_card_id(card),
2415                mmc_card_name(card), part_md->part_type, cap_str);
2416         return 0;
2417 }
2418 
2419 /**
2420  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2421  * @filp: the character device file
2422  * @cmd: the ioctl() command
2423  * @arg: the argument from userspace
2424  *
2425  * This will essentially just redirect the ioctl()s coming in over to
2426  * the main block device spawning the RPMB character device.
2427  */
2428 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2429                            unsigned long arg)
2430 {
2431         struct mmc_rpmb_data *rpmb = filp->private_data;
2432         int ret;
2433 
2434         switch (cmd) {
2435         case MMC_IOC_CMD:
2436                 ret = mmc_blk_ioctl_cmd(rpmb->md,
2437                                         (struct mmc_ioc_cmd __user *)arg,
2438                                         rpmb);
2439                 break;
2440         case MMC_IOC_MULTI_CMD:
2441                 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2442                                         (struct mmc_ioc_multi_cmd __user *)arg,
2443                                         rpmb);
2444                 break;
2445         default:
2446                 ret = -EINVAL;
2447                 break;
2448         }
2449 
2450         return ret;
2451 }
2452 
2453 #ifdef CONFIG_COMPAT
2454 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2455                               unsigned long arg)
2456 {
2457         return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2458 }
2459 #endif
2460 
2461 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2462 {
2463         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2464                                                   struct mmc_rpmb_data, chrdev);
2465 
2466         get_device(&rpmb->dev);
2467         filp->private_data = rpmb;
2468         mmc_blk_get(rpmb->md->disk);
2469 
2470         return nonseekable_open(inode, filp);
2471 }
2472 
2473 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2474 {
2475         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2476                                                   struct mmc_rpmb_data, chrdev);
2477 
2478         mmc_blk_put(rpmb->md);
2479         put_device(&rpmb->dev);
2480 
2481         return 0;
2482 }
2483 
2484 static const struct file_operations mmc_rpmb_fileops = {
2485         .release = mmc_rpmb_chrdev_release,
2486         .open = mmc_rpmb_chrdev_open,
2487         .owner = THIS_MODULE,
2488         .llseek = no_llseek,
2489         .unlocked_ioctl = mmc_rpmb_ioctl,
2490 #ifdef CONFIG_COMPAT
2491         .compat_ioctl = mmc_rpmb_ioctl_compat,
2492 #endif
2493 };
2494 
2495 static void mmc_blk_rpmb_device_release(struct device *dev)
2496 {
2497         struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2498 
2499         ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2500         kfree(rpmb);
2501 }
2502 
2503 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2504                                    struct mmc_blk_data *md,
2505                                    unsigned int part_index,
2506                                    sector_t size,
2507                                    const char *subname)
2508 {
2509         int devidx, ret;
2510         char rpmb_name[DISK_NAME_LEN];
2511         char cap_str[10];
2512         struct mmc_rpmb_data *rpmb;
2513 
2514         /* This creates the minor number for the RPMB char device */
2515         devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2516         if (devidx < 0)
2517                 return devidx;
2518 
2519         rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2520         if (!rpmb) {
2521                 ida_simple_remove(&mmc_rpmb_ida, devidx);
2522                 return -ENOMEM;
2523         }
2524 
2525         snprintf(rpmb_name, sizeof(rpmb_name),
2526                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2527 
2528         rpmb->id = devidx;
2529         rpmb->part_index = part_index;
2530         rpmb->dev.init_name = rpmb_name;
2531         rpmb->dev.bus = &mmc_rpmb_bus_type;
2532         rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2533         rpmb->dev.parent = &card->dev;
2534         rpmb->dev.release = mmc_blk_rpmb_device_release;
2535         device_initialize(&rpmb->dev);
2536         dev_set_drvdata(&rpmb->dev, rpmb);
2537         rpmb->md = md;
2538 
2539         cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2540         rpmb->chrdev.owner = THIS_MODULE;
2541         ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2542         if (ret) {
2543                 pr_err("%s: could not add character device\n", rpmb_name);
2544                 goto out_put_device;
2545         }
2546 
2547         list_add(&rpmb->node, &md->rpmbs);
2548 
2549         string_get_size((u64)size, 512, STRING_UNITS_2,
2550                         cap_str, sizeof(cap_str));
2551 
2552         pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2553                 rpmb_name, mmc_card_id(card),
2554                 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2555                 MAJOR(mmc_rpmb_devt), rpmb->id);
2556 
2557         return 0;
2558 
2559 out_put_device:
2560         put_device(&rpmb->dev);
2561         return ret;
2562 }
2563 
2564 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2565 
2566 {
2567         cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2568         put_device(&rpmb->dev);
2569 }
2570 
2571 /* MMC Physical partitions consist of two boot partitions and
2572  * up to four general purpose partitions.
2573  * For each partition enabled in EXT_CSD a block device will be allocatedi
2574  * to provide access to the partition.
2575  */
2576 
2577 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2578 {
2579         int idx, ret;
2580 
2581         if (!mmc_card_mmc(card))
2582                 return 0;
2583 
2584         for (idx = 0; idx < card->nr_parts; idx++) {
2585                 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2586                         /*
2587                          * RPMB partitions does not provide block access, they
2588                          * are only accessed using ioctl():s. Thus create
2589                          * special RPMB block devices that do not have a
2590                          * backing block queue for these.
2591                          */
2592                         ret = mmc_blk_alloc_rpmb_part(card, md,
2593                                 card->part[idx].part_cfg,
2594                                 card->part[idx].size >> 9,
2595                                 card->part[idx].name);
2596                         if (ret)
2597                                 return ret;
2598                 } else if (card->part[idx].size) {
2599                         ret = mmc_blk_alloc_part(card, md,
2600                                 card->part[idx].part_cfg,
2601                                 card->part[idx].size >> 9,
2602                                 card->part[idx].force_ro,
2603                                 card->part[idx].name,
2604                                 card->part[idx].area_type);
2605                         if (ret)
2606                                 return ret;
2607                 }
2608         }
2609 
2610         return 0;
2611 }
2612 
2613 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2614 {
2615         struct mmc_card *card;
2616 
2617         if (md) {
2618                 /*
2619                  * Flush remaining requests and free queues. It
2620                  * is freeing the queue that stops new requests
2621                  * from being accepted.
2622                  */
2623                 card = md->queue.card;
2624                 if (md->disk->flags & GENHD_FL_UP) {
2625                         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2626                         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2627                                         card->ext_csd.boot_ro_lockable)
2628                                 device_remove_file(disk_to_dev(md->disk),
2629                                         &md->power_ro_lock);
2630 
2631                         del_gendisk(md->disk);
2632                 }
2633                 mmc_cleanup_queue(&md->queue);
2634                 mmc_blk_put(md);
2635         }
2636 }
2637 
2638 static void mmc_blk_remove_parts(struct mmc_card *card,
2639                                  struct mmc_blk_data *md)
2640 {
2641         struct list_head *pos, *q;
2642         struct mmc_blk_data *part_md;
2643         struct mmc_rpmb_data *rpmb;
2644 
2645         /* Remove RPMB partitions */
2646         list_for_each_safe(pos, q, &md->rpmbs) {
2647                 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2648                 list_del(pos);
2649                 mmc_blk_remove_rpmb_part(rpmb);
2650         }
2651         /* Remove block partitions */
2652         list_for_each_safe(pos, q, &md->part) {
2653                 part_md = list_entry(pos, struct mmc_blk_data, part);
2654                 list_del(pos);
2655                 mmc_blk_remove_req(part_md);
2656         }
2657 }
2658 
2659 static int mmc_add_disk(struct mmc_blk_data *md)
2660 {
2661         int ret;
2662         struct mmc_card *card = md->queue.card;
2663 
2664         device_add_disk(md->parent, md->disk, NULL);
2665         md->force_ro.show = force_ro_show;
2666         md->force_ro.store = force_ro_store;
2667         sysfs_attr_init(&md->force_ro.attr);
2668         md->force_ro.attr.name = "force_ro";
2669         md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2670         ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2671         if (ret)
2672                 goto force_ro_fail;
2673 
2674         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2675              card->ext_csd.boot_ro_lockable) {
2676                 umode_t mode;
2677 
2678                 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2679                         mode = S_IRUGO;
2680                 else
2681                         mode = S_IRUGO | S_IWUSR;
2682 
2683                 md->power_ro_lock.show = power_ro_lock_show;
2684                 md->power_ro_lock.store = power_ro_lock_store;
2685                 sysfs_attr_init(&md->power_ro_lock.attr);
2686                 md->power_ro_lock.attr.mode = mode;
2687                 md->power_ro_lock.attr.name =
2688                                         "ro_lock_until_next_power_on";
2689                 ret = device_create_file(disk_to_dev(md->disk),
2690                                 &md->power_ro_lock);
2691                 if (ret)
2692                         goto power_ro_lock_fail;
2693         }
2694         return ret;
2695 
2696 power_ro_lock_fail:
2697         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2698 force_ro_fail:
2699         del_gendisk(md->disk);
2700 
2701         return ret;
2702 }
2703 
2704 #ifdef CONFIG_DEBUG_FS
2705 
2706 static int mmc_dbg_card_status_get(void *data, u64 *val)
2707 {
2708         struct mmc_card *card = data;
2709         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2710         struct mmc_queue *mq = &md->queue;
2711         struct request *req;
2712         int ret;
2713 
2714         /* Ask the block layer about the card status */
2715         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2716         if (IS_ERR(req))
2717                 return PTR_ERR(req);
2718         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2719         blk_execute_rq(mq->queue, NULL, req, 0);
2720         ret = req_to_mmc_queue_req(req)->drv_op_result;
2721         if (ret >= 0) {
2722                 *val = ret;
2723                 ret = 0;
2724         }
2725         blk_put_request(req);
2726 
2727         return ret;
2728 }
2729 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2730                          NULL, "%08llx\n");
2731 
2732 /* That is two digits * 512 + 1 for newline */
2733 #define EXT_CSD_STR_LEN 1025
2734 
2735 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2736 {
2737         struct mmc_card *card = inode->i_private;
2738         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2739         struct mmc_queue *mq = &md->queue;
2740         struct request *req;
2741         char *buf;
2742         ssize_t n = 0;
2743         u8 *ext_csd;
2744         int err, i;
2745 
2746         buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2747         if (!buf)
2748                 return -ENOMEM;
2749 
2750         /* Ask the block layer for the EXT CSD */
2751         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2752         if (IS_ERR(req)) {
2753                 err = PTR_ERR(req);
2754                 goto out_free;
2755         }
2756         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2757         req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2758         blk_execute_rq(mq->queue, NULL, req, 0);
2759         err = req_to_mmc_queue_req(req)->drv_op_result;
2760         blk_put_request(req);
2761         if (err) {
2762                 pr_err("FAILED %d\n", err);
2763                 goto out_free;
2764         }
2765 
2766         for (i = 0; i < 512; i++)
2767                 n += sprintf(buf + n, "%02x", ext_csd[i]);
2768         n += sprintf(buf + n, "\n");
2769 
2770         if (n != EXT_CSD_STR_LEN) {
2771                 err = -EINVAL;
2772                 kfree(ext_csd);
2773                 goto out_free;
2774         }
2775 
2776         filp->private_data = buf;
2777         kfree(ext_csd);
2778         return 0;
2779 
2780 out_free:
2781         kfree(buf);
2782         return err;
2783 }
2784 
2785 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2786                                 size_t cnt, loff_t *ppos)
2787 {
2788         char *buf = filp->private_data;
2789 
2790         return simple_read_from_buffer(ubuf, cnt, ppos,
2791                                        buf, EXT_CSD_STR_LEN);
2792 }
2793 
2794 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2795 {
2796         kfree(file->private_data);
2797         return 0;
2798 }
2799 
2800 static const struct file_operations mmc_dbg_ext_csd_fops = {
2801         .open           = mmc_ext_csd_open,
2802         .read           = mmc_ext_csd_read,
2803         .release        = mmc_ext_csd_release,
2804         .llseek         = default_llseek,
2805 };
2806 
2807 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2808 {
2809         struct dentry *root;
2810 
2811         if (!card->debugfs_root)
2812                 return 0;
2813 
2814         root = card->debugfs_root;
2815 
2816         if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2817                 md->status_dentry =
2818                         debugfs_create_file_unsafe("status", 0400, root,
2819                                                    card,
2820                                                    &mmc_dbg_card_status_fops);
2821                 if (!md->status_dentry)
2822                         return -EIO;
2823         }
2824 
2825         if (mmc_card_mmc(card)) {
2826                 md->ext_csd_dentry =
2827                         debugfs_create_file("ext_csd", S_IRUSR, root, card,
2828                                             &mmc_dbg_ext_csd_fops);
2829                 if (!md->ext_csd_dentry)
2830                         return -EIO;
2831         }
2832 
2833         return 0;
2834 }
2835 
2836 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2837                                    struct mmc_blk_data *md)
2838 {
2839         if (!card->debugfs_root)
2840                 return;
2841 
2842         if (!IS_ERR_OR_NULL(md->status_dentry)) {
2843                 debugfs_remove(md->status_dentry);
2844                 md->status_dentry = NULL;
2845         }
2846 
2847         if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2848                 debugfs_remove(md->ext_csd_dentry);
2849                 md->ext_csd_dentry = NULL;
2850         }
2851 }
2852 
2853 #else
2854 
2855 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2856 {
2857         return 0;
2858 }
2859 
2860 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2861                                    struct mmc_blk_data *md)
2862 {
2863 }
2864 
2865 #endif /* CONFIG_DEBUG_FS */
2866 
2867 static int mmc_blk_probe(struct mmc_card *card)
2868 {
2869         struct mmc_blk_data *md, *part_md;
2870         char cap_str[10];
2871 
2872         /*
2873          * Check that the card supports the command class(es) we need.
2874          */
2875         if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2876                 return -ENODEV;
2877 
2878         mmc_fixup_device(card, mmc_blk_fixups);
2879 
2880         card->complete_wq = alloc_workqueue("mmc_complete",
2881                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2882         if (unlikely(!card->complete_wq)) {
2883                 pr_err("Failed to create mmc completion workqueue");
2884                 return -ENOMEM;
2885         }
2886 
2887         md = mmc_blk_alloc(card);
2888         if (IS_ERR(md))
2889                 return PTR_ERR(md);
2890 
2891         string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2892                         cap_str, sizeof(cap_str));
2893         pr_info("%s: %s %s %s %s\n",
2894                 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2895                 cap_str, md->read_only ? "(ro)" : "");
2896 
2897         if (mmc_blk_alloc_parts(card, md))
2898                 goto out;
2899 
2900         dev_set_drvdata(&card->dev, md);
2901 
2902         if (mmc_add_disk(md))
2903                 goto out;
2904 
2905         list_for_each_entry(part_md, &md->part, part) {
2906                 if (mmc_add_disk(part_md))
2907                         goto out;
2908         }
2909 
2910         /* Add two debugfs entries */
2911         mmc_blk_add_debugfs(card, md);
2912 
2913         pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2914         pm_runtime_use_autosuspend(&card->dev);
2915 
2916         /*
2917          * Don't enable runtime PM for SD-combo cards here. Leave that
2918          * decision to be taken during the SDIO init sequence instead.
2919          */
2920         if (card->type != MMC_TYPE_SD_COMBO) {
2921                 pm_runtime_set_active(&card->dev);
2922                 pm_runtime_enable(&card->dev);
2923         }
2924 
2925         return 0;
2926 
2927  out:
2928         mmc_blk_remove_parts(card, md);
2929         mmc_blk_remove_req(md);
2930         return 0;
2931 }
2932 
2933 static void mmc_blk_remove(struct mmc_card *card)
2934 {
2935         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2936 
2937         mmc_blk_remove_debugfs(card, md);
2938         mmc_blk_remove_parts(card, md);
2939         pm_runtime_get_sync(&card->dev);
2940         if (md->part_curr != md->part_type) {
2941                 mmc_claim_host(card->host);
2942                 mmc_blk_part_switch(card, md->part_type);
2943                 mmc_release_host(card->host);
2944         }
2945         if (card->type != MMC_TYPE_SD_COMBO)
2946                 pm_runtime_disable(&card->dev);
2947         pm_runtime_put_noidle(&card->dev);
2948         mmc_blk_remove_req(md);
2949         dev_set_drvdata(&card->dev, NULL);
2950         destroy_workqueue(card->complete_wq);
2951 }
2952 
2953 static int _mmc_blk_suspend(struct mmc_card *card)
2954 {
2955         struct mmc_blk_data *part_md;
2956         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2957 
2958         if (md) {
2959                 mmc_queue_suspend(&md->queue);
2960                 list_for_each_entry(part_md, &md->part, part) {
2961                         mmc_queue_suspend(&part_md->queue);
2962                 }
2963         }
2964         return 0;
2965 }
2966 
2967 static void mmc_blk_shutdown(struct mmc_card *card)
2968 {
2969         _mmc_blk_suspend(card);
2970 }
2971 
2972 #ifdef CONFIG_PM_SLEEP
2973 static int mmc_blk_suspend(struct device *dev)
2974 {
2975         struct mmc_card *card = mmc_dev_to_card(dev);
2976 
2977         return _mmc_blk_suspend(card);
2978 }
2979 
2980 static int mmc_blk_resume(struct device *dev)
2981 {
2982         struct mmc_blk_data *part_md;
2983         struct mmc_blk_data *md = dev_get_drvdata(dev);
2984 
2985         if (md) {
2986                 /*
2987                  * Resume involves the card going into idle state,
2988                  * so current partition is always the main one.
2989                  */
2990                 md->part_curr = md->part_type;
2991                 mmc_queue_resume(&md->queue);
2992                 list_for_each_entry(part_md, &md->part, part) {
2993                         mmc_queue_resume(&part_md->queue);
2994                 }
2995         }
2996         return 0;
2997 }
2998 #endif
2999 
3000 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3001 
3002 static struct mmc_driver mmc_driver = {
3003         .drv            = {
3004                 .name   = "mmcblk",
3005                 .pm     = &mmc_blk_pm_ops,
3006         },
3007         .probe          = mmc_blk_probe,
3008         .remove         = mmc_blk_remove,
3009         .shutdown       = mmc_blk_shutdown,
3010 };
3011 
3012 static int __init mmc_blk_init(void)
3013 {
3014         int res;
3015 
3016         res  = bus_register(&mmc_rpmb_bus_type);
3017         if (res < 0) {
3018                 pr_err("mmcblk: could not register RPMB bus type\n");
3019                 return res;
3020         }
3021         res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3022         if (res < 0) {
3023                 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3024                 goto out_bus_unreg;
3025         }
3026 
3027         if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3028                 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3029 
3030         max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3031 
3032         res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3033         if (res)
3034                 goto out_chrdev_unreg;
3035 
3036         res = mmc_register_driver(&mmc_driver);
3037         if (res)
3038                 goto out_blkdev_unreg;
3039 
3040         return 0;
3041 
3042 out_blkdev_unreg:
3043         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3044 out_chrdev_unreg:
3045         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3046 out_bus_unreg:
3047         bus_unregister(&mmc_rpmb_bus_type);
3048         return res;
3049 }
3050 
3051 static void __exit mmc_blk_exit(void)
3052 {
3053         mmc_unregister_driver(&mmc_driver);
3054         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3055         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3056         bus_unregister(&mmc_rpmb_bus_type);
3057 }
3058 
3059 module_init(mmc_blk_init);
3060 module_exit(mmc_blk_exit);
3061 
3062 MODULE_LICENSE("GPL");
3063 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3064 

/* [<][>][^][v][top][bottom][index][help] */