root/drivers/block/paride/pd.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. status_reg
  2. read_reg
  3. write_status
  4. write_reg
  5. DRIVE
  6. pd_print_error
  7. pd_reset
  8. pd_wait_for
  9. pd_send_command
  10. pd_ide_command
  11. schedule_fsm
  12. ps_tq_int
  13. set_next_request
  14. run_fsm
  15. do_pd_io_start
  16. pd_special
  17. pd_next_buf
  18. do_pd_read_start
  19. do_pd_write_start
  20. pd_ready
  21. do_pd_read_drq
  22. do_pd_write_done
  23. pd_init_dev_parms
  24. pd_door_lock
  25. pd_door_unlock
  26. pd_eject
  27. pd_media_check
  28. pd_standby_off
  29. pd_identify
  30. pd_queue_rq
  31. pd_special_command
  32. pd_open
  33. pd_getgeo
  34. pd_ioctl
  35. pd_release
  36. pd_check_events
  37. pd_revalidate
  38. pd_probe_drive
  39. pd_detect
  40. pd_init
  41. pd_exit

   1 /* 
   2         pd.c    (c) 1997-8  Grant R. Guenther <grant@torque.net>
   3                             Under the terms of the GNU General Public License.
   4 
   5         This is the high-level driver for parallel port IDE hard
   6         drives based on chips supported by the paride module.
   7 
   8         By default, the driver will autoprobe for a single parallel
   9         port IDE drive, but if their individual parameters are
  10         specified, the driver can handle up to 4 drives.
  11 
  12         The behaviour of the pd driver can be altered by setting
  13         some parameters from the insmod command line.  The following
  14         parameters are adjustable:
  15  
  16             drive0      These four arguments can be arrays of       
  17             drive1      1-8 integers as follows:
  18             drive2
  19             drive3      <prt>,<pro>,<uni>,<mod>,<geo>,<sby>,<dly>,<slv>
  20 
  21                         Where,
  22 
  23                 <prt>   is the base of the parallel port address for
  24                         the corresponding drive.  (required)
  25 
  26                 <pro>   is the protocol number for the adapter that
  27                         supports this drive.  These numbers are
  28                         logged by 'paride' when the protocol modules
  29                         are initialised.  (0 if not given)
  30 
  31                 <uni>   for those adapters that support chained
  32                         devices, this is the unit selector for the
  33                         chain of devices on the given port.  It should
  34                         be zero for devices that don't support chaining.
  35                         (0 if not given)
  36 
  37                 <mod>   this can be -1 to choose the best mode, or one
  38                         of the mode numbers supported by the adapter.
  39                         (-1 if not given)
  40 
  41                 <geo>   this defaults to 0 to indicate that the driver
  42                         should use the CHS geometry provided by the drive
  43                         itself.  If set to 1, the driver will provide
  44                         a logical geometry with 64 heads and 32 sectors
  45                         per track, to be consistent with most SCSI
  46                         drivers.  (0 if not given)
  47 
  48                 <sby>   set this to zero to disable the power saving
  49                         standby mode, if needed.  (1 if not given)
  50 
  51                 <dly>   some parallel ports require the driver to 
  52                         go more slowly.  -1 sets a default value that
  53                         should work with the chosen protocol.  Otherwise,
  54                         set this to a small integer, the larger it is
  55                         the slower the port i/o.  In some cases, setting
  56                         this to zero will speed up the device. (default -1)
  57 
  58                 <slv>   IDE disks can be jumpered to master or slave.
  59                         Set this to 0 to choose the master drive, 1 to
  60                         choose the slave, -1 (the default) to choose the
  61                         first drive found.
  62                         
  63 
  64             major       You may use this parameter to override the
  65                         default major number (45) that this driver
  66                         will use.  Be sure to change the device
  67                         name as well.
  68 
  69             name        This parameter is a character string that
  70                         contains the name the kernel will use for this
  71                         device (in /proc output, for instance).
  72                         (default "pd")
  73 
  74             cluster     The driver will attempt to aggregate requests
  75                         for adjacent blocks into larger multi-block
  76                         clusters.  The maximum cluster size (in 512
  77                         byte sectors) is set with this parameter.
  78                         (default 64)
  79 
  80             verbose     This parameter controls the amount of logging
  81                         that the driver will do.  Set it to 0 for 
  82                         normal operation, 1 to see autoprobe progress
  83                         messages, or 2 to see additional debugging
  84                         output.  (default 0)
  85 
  86             nice        This parameter controls the driver's use of
  87                         idle CPU time, at the expense of some speed.
  88 
  89         If this driver is built into the kernel, you can use kernel
  90         the following command line parameters, with the same values
  91         as the corresponding module parameters listed above:
  92 
  93             pd.drive0
  94             pd.drive1
  95             pd.drive2
  96             pd.drive3
  97             pd.cluster
  98             pd.nice
  99 
 100         In addition, you can use the parameter pd.disable to disable
 101         the driver entirely.
 102  
 103 */
 104 
 105 /* Changes:
 106 
 107         1.01    GRG 1997.01.24  Restored pd_reset()
 108                                 Added eject ioctl
 109         1.02    GRG 1998.05.06  SMP spinlock changes, 
 110                                 Added slave support
 111         1.03    GRG 1998.06.16  Eliminate an Ugh.
 112         1.04    GRG 1998.08.15  Extra debugging, use HZ in loop timing
 113         1.05    GRG 1998.09.24  Added jumbo support
 114 
 115 */
 116 
 117 #define PD_VERSION      "1.05"
 118 #define PD_MAJOR        45
 119 #define PD_NAME         "pd"
 120 #define PD_UNITS        4
 121 
 122 /* Here are things one can override from the insmod command.
 123    Most are autoprobed by paride unless set here.  Verbose is off
 124    by default.
 125 
 126 */
 127 #include <linux/types.h>
 128 
 129 static int verbose = 0;
 130 static int major = PD_MAJOR;
 131 static char *name = PD_NAME;
 132 static int cluster = 64;
 133 static int nice = 0;
 134 static int disable = 0;
 135 
 136 static int drive0[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
 137 static int drive1[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
 138 static int drive2[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
 139 static int drive3[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
 140 
 141 static int (*drives[4])[8] = {&drive0, &drive1, &drive2, &drive3};
 142 
 143 enum {D_PRT, D_PRO, D_UNI, D_MOD, D_GEO, D_SBY, D_DLY, D_SLV};
 144 
 145 /* end of parameters */
 146 
 147 #include <linux/init.h>
 148 #include <linux/module.h>
 149 #include <linux/gfp.h>
 150 #include <linux/fs.h>
 151 #include <linux/delay.h>
 152 #include <linux/hdreg.h>
 153 #include <linux/cdrom.h>        /* for the eject ioctl */
 154 #include <linux/blk-mq.h>
 155 #include <linux/blkpg.h>
 156 #include <linux/kernel.h>
 157 #include <linux/mutex.h>
 158 #include <linux/uaccess.h>
 159 #include <linux/workqueue.h>
 160 
 161 static DEFINE_MUTEX(pd_mutex);
 162 static DEFINE_SPINLOCK(pd_lock);
 163 
 164 module_param(verbose, int, 0);
 165 module_param(major, int, 0);
 166 module_param(name, charp, 0);
 167 module_param(cluster, int, 0);
 168 module_param(nice, int, 0);
 169 module_param_array(drive0, int, NULL, 0);
 170 module_param_array(drive1, int, NULL, 0);
 171 module_param_array(drive2, int, NULL, 0);
 172 module_param_array(drive3, int, NULL, 0);
 173 
 174 #include "paride.h"
 175 
 176 #define PD_BITS    4
 177 
 178 /* numbers for "SCSI" geometry */
 179 
 180 #define PD_LOG_HEADS    64
 181 #define PD_LOG_SECTS    32
 182 
 183 #define PD_ID_OFF       54
 184 #define PD_ID_LEN       14
 185 
 186 #define PD_MAX_RETRIES  5
 187 #define PD_TMO          800     /* interrupt timeout in jiffies */
 188 #define PD_SPIN_DEL     50      /* spin delay in micro-seconds  */
 189 
 190 #define PD_SPIN         (1000000*PD_TMO)/(HZ*PD_SPIN_DEL)
 191 
 192 #define STAT_ERR        0x00001
 193 #define STAT_INDEX      0x00002
 194 #define STAT_ECC        0x00004
 195 #define STAT_DRQ        0x00008
 196 #define STAT_SEEK       0x00010
 197 #define STAT_WRERR      0x00020
 198 #define STAT_READY      0x00040
 199 #define STAT_BUSY       0x00080
 200 
 201 #define ERR_AMNF        0x00100
 202 #define ERR_TK0NF       0x00200
 203 #define ERR_ABRT        0x00400
 204 #define ERR_MCR         0x00800
 205 #define ERR_IDNF        0x01000
 206 #define ERR_MC          0x02000
 207 #define ERR_UNC         0x04000
 208 #define ERR_TMO         0x10000
 209 
 210 #define IDE_READ                0x20
 211 #define IDE_WRITE               0x30
 212 #define IDE_READ_VRFY           0x40
 213 #define IDE_INIT_DEV_PARMS      0x91
 214 #define IDE_STANDBY             0x96
 215 #define IDE_ACKCHANGE           0xdb
 216 #define IDE_DOORLOCK            0xde
 217 #define IDE_DOORUNLOCK          0xdf
 218 #define IDE_IDENTIFY            0xec
 219 #define IDE_EJECT               0xed
 220 
 221 #define PD_NAMELEN      8
 222 
 223 struct pd_unit {
 224         struct pi_adapter pia;  /* interface to paride layer */
 225         struct pi_adapter *pi;
 226         int access;             /* count of active opens ... */
 227         int capacity;           /* Size of this volume in sectors */
 228         int heads;              /* physical geometry */
 229         int sectors;
 230         int cylinders;
 231         int can_lba;
 232         int drive;              /* master=0 slave=1 */
 233         int changed;            /* Have we seen a disk change ? */
 234         int removable;          /* removable media device  ?  */
 235         int standby;
 236         int alt_geom;
 237         char name[PD_NAMELEN];  /* pda, pdb, etc ... */
 238         struct gendisk *gd;
 239         struct blk_mq_tag_set tag_set;
 240         struct list_head rq_list;
 241 };
 242 
 243 static struct pd_unit pd[PD_UNITS];
 244 
 245 struct pd_req {
 246         /* for REQ_OP_DRV_IN: */
 247         enum action (*func)(struct pd_unit *disk);
 248 };
 249 
 250 static char pd_scratch[512];    /* scratch block buffer */
 251 
 252 static char *pd_errs[17] = { "ERR", "INDEX", "ECC", "DRQ", "SEEK", "WRERR",
 253         "READY", "BUSY", "AMNF", "TK0NF", "ABRT", "MCR",
 254         "IDNF", "MC", "UNC", "???", "TMO"
 255 };
 256 
 257 static void *par_drv;           /* reference of parport driver */
 258 
 259 static inline int status_reg(struct pd_unit *disk)
 260 {
 261         return pi_read_regr(disk->pi, 1, 6);
 262 }
 263 
 264 static inline int read_reg(struct pd_unit *disk, int reg)
 265 {
 266         return pi_read_regr(disk->pi, 0, reg);
 267 }
 268 
 269 static inline void write_status(struct pd_unit *disk, int val)
 270 {
 271         pi_write_regr(disk->pi, 1, 6, val);
 272 }
 273 
 274 static inline void write_reg(struct pd_unit *disk, int reg, int val)
 275 {
 276         pi_write_regr(disk->pi, 0, reg, val);
 277 }
 278 
 279 static inline u8 DRIVE(struct pd_unit *disk)
 280 {
 281         return 0xa0+0x10*disk->drive;
 282 }
 283 
 284 /*  ide command interface */
 285 
 286 static void pd_print_error(struct pd_unit *disk, char *msg, int status)
 287 {
 288         int i;
 289 
 290         printk("%s: %s: status = 0x%x =", disk->name, msg, status);
 291         for (i = 0; i < ARRAY_SIZE(pd_errs); i++)
 292                 if (status & (1 << i))
 293                         printk(" %s", pd_errs[i]);
 294         printk("\n");
 295 }
 296 
 297 static void pd_reset(struct pd_unit *disk)
 298 {                               /* called only for MASTER drive */
 299         write_status(disk, 4);
 300         udelay(50);
 301         write_status(disk, 0);
 302         udelay(250);
 303 }
 304 
 305 #define DBMSG(msg)      ((verbose>1)?(msg):NULL)
 306 
 307 static int pd_wait_for(struct pd_unit *disk, int w, char *msg)
 308 {                               /* polled wait */
 309         int k, r, e;
 310 
 311         k = 0;
 312         while (k < PD_SPIN) {
 313                 r = status_reg(disk);
 314                 k++;
 315                 if (((r & w) == w) && !(r & STAT_BUSY))
 316                         break;
 317                 udelay(PD_SPIN_DEL);
 318         }
 319         e = (read_reg(disk, 1) << 8) + read_reg(disk, 7);
 320         if (k >= PD_SPIN)
 321                 e |= ERR_TMO;
 322         if ((e & (STAT_ERR | ERR_TMO)) && (msg != NULL))
 323                 pd_print_error(disk, msg, e);
 324         return e;
 325 }
 326 
 327 static void pd_send_command(struct pd_unit *disk, int n, int s, int h, int c0, int c1, int func)
 328 {
 329         write_reg(disk, 6, DRIVE(disk) + h);
 330         write_reg(disk, 1, 0);          /* the IDE task file */
 331         write_reg(disk, 2, n);
 332         write_reg(disk, 3, s);
 333         write_reg(disk, 4, c0);
 334         write_reg(disk, 5, c1);
 335         write_reg(disk, 7, func);
 336 
 337         udelay(1);
 338 }
 339 
 340 static void pd_ide_command(struct pd_unit *disk, int func, int block, int count)
 341 {
 342         int c1, c0, h, s;
 343 
 344         if (disk->can_lba) {
 345                 s = block & 255;
 346                 c0 = (block >>= 8) & 255;
 347                 c1 = (block >>= 8) & 255;
 348                 h = ((block >>= 8) & 15) + 0x40;
 349         } else {
 350                 s = (block % disk->sectors) + 1;
 351                 h = (block /= disk->sectors) % disk->heads;
 352                 c0 = (block /= disk->heads) % 256;
 353                 c1 = (block >>= 8);
 354         }
 355         pd_send_command(disk, count, s, h, c0, c1, func);
 356 }
 357 
 358 /* The i/o request engine */
 359 
 360 enum action {Fail = 0, Ok = 1, Hold, Wait};
 361 
 362 static struct request *pd_req;  /* current request */
 363 static enum action (*phase)(void);
 364 
 365 static void run_fsm(void);
 366 
 367 static void ps_tq_int(struct work_struct *work);
 368 
 369 static DECLARE_DELAYED_WORK(fsm_tq, ps_tq_int);
 370 
 371 static void schedule_fsm(void)
 372 {
 373         if (!nice)
 374                 schedule_delayed_work(&fsm_tq, 0);
 375         else
 376                 schedule_delayed_work(&fsm_tq, nice-1);
 377 }
 378 
 379 static void ps_tq_int(struct work_struct *work)
 380 {
 381         run_fsm();
 382 }
 383 
 384 static enum action do_pd_io_start(void);
 385 static enum action pd_special(void);
 386 static enum action do_pd_read_start(void);
 387 static enum action do_pd_write_start(void);
 388 static enum action do_pd_read_drq(void);
 389 static enum action do_pd_write_done(void);
 390 
 391 static int pd_queue;
 392 static int pd_claimed;
 393 
 394 static struct pd_unit *pd_current; /* current request's drive */
 395 static PIA *pi_current; /* current request's PIA */
 396 
 397 static int set_next_request(void)
 398 {
 399         struct gendisk *disk;
 400         struct request_queue *q;
 401         int old_pos = pd_queue;
 402 
 403         do {
 404                 disk = pd[pd_queue].gd;
 405                 q = disk ? disk->queue : NULL;
 406                 if (++pd_queue == PD_UNITS)
 407                         pd_queue = 0;
 408                 if (q) {
 409                         struct pd_unit *disk = q->queuedata;
 410 
 411                         if (list_empty(&disk->rq_list))
 412                                 continue;
 413 
 414                         pd_req = list_first_entry(&disk->rq_list,
 415                                                         struct request,
 416                                                         queuelist);
 417                         list_del_init(&pd_req->queuelist);
 418                         blk_mq_start_request(pd_req);
 419                         break;
 420                 }
 421         } while (pd_queue != old_pos);
 422 
 423         return pd_req != NULL;
 424 }
 425 
 426 static void run_fsm(void)
 427 {
 428         while (1) {
 429                 enum action res;
 430                 int stop = 0;
 431 
 432                 if (!phase) {
 433                         pd_current = pd_req->rq_disk->private_data;
 434                         pi_current = pd_current->pi;
 435                         phase = do_pd_io_start;
 436                 }
 437 
 438                 switch (pd_claimed) {
 439                         case 0:
 440                                 pd_claimed = 1;
 441                                 if (!pi_schedule_claimed(pi_current, run_fsm))
 442                                         return;
 443                                 /* fall through */
 444                         case 1:
 445                                 pd_claimed = 2;
 446                                 pi_current->proto->connect(pi_current);
 447                 }
 448 
 449                 switch(res = phase()) {
 450                         case Ok: case Fail: {
 451                                 blk_status_t err;
 452 
 453                                 err = res == Ok ? 0 : BLK_STS_IOERR;
 454                                 pi_disconnect(pi_current);
 455                                 pd_claimed = 0;
 456                                 phase = NULL;
 457                                 spin_lock_irq(&pd_lock);
 458                                 if (!blk_update_request(pd_req, err,
 459                                                 blk_rq_cur_bytes(pd_req))) {
 460                                         __blk_mq_end_request(pd_req, err);
 461                                         pd_req = NULL;
 462                                         stop = !set_next_request();
 463                                 }
 464                                 spin_unlock_irq(&pd_lock);
 465                                 if (stop)
 466                                         return;
 467                                 }
 468                                 /* fall through */
 469                         case Hold:
 470                                 schedule_fsm();
 471                                 return;
 472                         case Wait:
 473                                 pi_disconnect(pi_current);
 474                                 pd_claimed = 0;
 475                 }
 476         }
 477 }
 478 
 479 static int pd_retries = 0;      /* i/o error retry count */
 480 static int pd_block;            /* address of next requested block */
 481 static int pd_count;            /* number of blocks still to do */
 482 static int pd_run;              /* sectors in current cluster */
 483 static char *pd_buf;            /* buffer for request in progress */
 484 
 485 static enum action do_pd_io_start(void)
 486 {
 487         switch (req_op(pd_req)) {
 488         case REQ_OP_DRV_IN:
 489                 phase = pd_special;
 490                 return pd_special();
 491         case REQ_OP_READ:
 492         case REQ_OP_WRITE:
 493                 pd_block = blk_rq_pos(pd_req);
 494                 pd_count = blk_rq_cur_sectors(pd_req);
 495                 if (pd_block + pd_count > get_capacity(pd_req->rq_disk))
 496                         return Fail;
 497                 pd_run = blk_rq_sectors(pd_req);
 498                 pd_buf = bio_data(pd_req->bio);
 499                 pd_retries = 0;
 500                 if (req_op(pd_req) == REQ_OP_READ)
 501                         return do_pd_read_start();
 502                 else
 503                         return do_pd_write_start();
 504         }
 505         return Fail;
 506 }
 507 
 508 static enum action pd_special(void)
 509 {
 510         struct pd_req *req = blk_mq_rq_to_pdu(pd_req);
 511 
 512         return req->func(pd_current);
 513 }
 514 
 515 static int pd_next_buf(void)
 516 {
 517         unsigned long saved_flags;
 518 
 519         pd_count--;
 520         pd_run--;
 521         pd_buf += 512;
 522         pd_block++;
 523         if (!pd_run)
 524                 return 1;
 525         if (pd_count)
 526                 return 0;
 527         spin_lock_irqsave(&pd_lock, saved_flags);
 528         if (!blk_update_request(pd_req, 0, blk_rq_cur_bytes(pd_req))) {
 529                 __blk_mq_end_request(pd_req, 0);
 530                 pd_req = NULL;
 531                 pd_count = 0;
 532                 pd_buf = NULL;
 533         } else {
 534                 pd_count = blk_rq_cur_sectors(pd_req);
 535                 pd_buf = bio_data(pd_req->bio);
 536         }
 537         spin_unlock_irqrestore(&pd_lock, saved_flags);
 538         return !pd_count;
 539 }
 540 
 541 static unsigned long pd_timeout;
 542 
 543 static enum action do_pd_read_start(void)
 544 {
 545         if (pd_wait_for(pd_current, STAT_READY, "do_pd_read") & STAT_ERR) {
 546                 if (pd_retries < PD_MAX_RETRIES) {
 547                         pd_retries++;
 548                         return Wait;
 549                 }
 550                 return Fail;
 551         }
 552         pd_ide_command(pd_current, IDE_READ, pd_block, pd_run);
 553         phase = do_pd_read_drq;
 554         pd_timeout = jiffies + PD_TMO;
 555         return Hold;
 556 }
 557 
 558 static enum action do_pd_write_start(void)
 559 {
 560         if (pd_wait_for(pd_current, STAT_READY, "do_pd_write") & STAT_ERR) {
 561                 if (pd_retries < PD_MAX_RETRIES) {
 562                         pd_retries++;
 563                         return Wait;
 564                 }
 565                 return Fail;
 566         }
 567         pd_ide_command(pd_current, IDE_WRITE, pd_block, pd_run);
 568         while (1) {
 569                 if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_write_drq") & STAT_ERR) {
 570                         if (pd_retries < PD_MAX_RETRIES) {
 571                                 pd_retries++;
 572                                 return Wait;
 573                         }
 574                         return Fail;
 575                 }
 576                 pi_write_block(pd_current->pi, pd_buf, 512);
 577                 if (pd_next_buf())
 578                         break;
 579         }
 580         phase = do_pd_write_done;
 581         pd_timeout = jiffies + PD_TMO;
 582         return Hold;
 583 }
 584 
 585 static inline int pd_ready(void)
 586 {
 587         return !(status_reg(pd_current) & STAT_BUSY);
 588 }
 589 
 590 static enum action do_pd_read_drq(void)
 591 {
 592         if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
 593                 return Hold;
 594 
 595         while (1) {
 596                 if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_read_drq") & STAT_ERR) {
 597                         if (pd_retries < PD_MAX_RETRIES) {
 598                                 pd_retries++;
 599                                 phase = do_pd_read_start;
 600                                 return Wait;
 601                         }
 602                         return Fail;
 603                 }
 604                 pi_read_block(pd_current->pi, pd_buf, 512);
 605                 if (pd_next_buf())
 606                         break;
 607         }
 608         return Ok;
 609 }
 610 
 611 static enum action do_pd_write_done(void)
 612 {
 613         if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
 614                 return Hold;
 615 
 616         if (pd_wait_for(pd_current, STAT_READY, "do_pd_write_done") & STAT_ERR) {
 617                 if (pd_retries < PD_MAX_RETRIES) {
 618                         pd_retries++;
 619                         phase = do_pd_write_start;
 620                         return Wait;
 621                 }
 622                 return Fail;
 623         }
 624         return Ok;
 625 }
 626 
 627 /* special io requests */
 628 
 629 /* According to the ATA standard, the default CHS geometry should be
 630    available following a reset.  Some Western Digital drives come up
 631    in a mode where only LBA addresses are accepted until the device
 632    parameters are initialised.
 633 */
 634 
 635 static void pd_init_dev_parms(struct pd_unit *disk)
 636 {
 637         pd_wait_for(disk, 0, DBMSG("before init_dev_parms"));
 638         pd_send_command(disk, disk->sectors, 0, disk->heads - 1, 0, 0,
 639                         IDE_INIT_DEV_PARMS);
 640         udelay(300);
 641         pd_wait_for(disk, 0, "Initialise device parameters");
 642 }
 643 
 644 static enum action pd_door_lock(struct pd_unit *disk)
 645 {
 646         if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
 647                 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORLOCK);
 648                 pd_wait_for(disk, STAT_READY, "Lock done");
 649         }
 650         return Ok;
 651 }
 652 
 653 static enum action pd_door_unlock(struct pd_unit *disk)
 654 {
 655         if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
 656                 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
 657                 pd_wait_for(disk, STAT_READY, "Lock done");
 658         }
 659         return Ok;
 660 }
 661 
 662 static enum action pd_eject(struct pd_unit *disk)
 663 {
 664         pd_wait_for(disk, 0, DBMSG("before unlock on eject"));
 665         pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
 666         pd_wait_for(disk, 0, DBMSG("after unlock on eject"));
 667         pd_wait_for(disk, 0, DBMSG("before eject"));
 668         pd_send_command(disk, 0, 0, 0, 0, 0, IDE_EJECT);
 669         pd_wait_for(disk, 0, DBMSG("after eject"));
 670         return Ok;
 671 }
 672 
 673 static enum action pd_media_check(struct pd_unit *disk)
 674 {
 675         int r = pd_wait_for(disk, STAT_READY, DBMSG("before media_check"));
 676         if (!(r & STAT_ERR)) {
 677                 pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
 678                 r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after READ_VRFY"));
 679         } else
 680                 disk->changed = 1;      /* say changed if other error */
 681         if (r & ERR_MC) {
 682                 disk->changed = 1;
 683                 pd_send_command(disk, 1, 0, 0, 0, 0, IDE_ACKCHANGE);
 684                 pd_wait_for(disk, STAT_READY, DBMSG("RDY after ACKCHANGE"));
 685                 pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
 686                 r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after VRFY"));
 687         }
 688         return Ok;
 689 }
 690 
 691 static void pd_standby_off(struct pd_unit *disk)
 692 {
 693         pd_wait_for(disk, 0, DBMSG("before STANDBY"));
 694         pd_send_command(disk, 0, 0, 0, 0, 0, IDE_STANDBY);
 695         pd_wait_for(disk, 0, DBMSG("after STANDBY"));
 696 }
 697 
 698 static enum action pd_identify(struct pd_unit *disk)
 699 {
 700         int j;
 701         char id[PD_ID_LEN + 1];
 702 
 703 /* WARNING:  here there may be dragons.  reset() applies to both drives,
 704    but we call it only on probing the MASTER. This should allow most
 705    common configurations to work, but be warned that a reset can clear
 706    settings on the SLAVE drive.
 707 */
 708 
 709         if (disk->drive == 0)
 710                 pd_reset(disk);
 711 
 712         write_reg(disk, 6, DRIVE(disk));
 713         pd_wait_for(disk, 0, DBMSG("before IDENT"));
 714         pd_send_command(disk, 1, 0, 0, 0, 0, IDE_IDENTIFY);
 715 
 716         if (pd_wait_for(disk, STAT_DRQ, DBMSG("IDENT DRQ")) & STAT_ERR)
 717                 return Fail;
 718         pi_read_block(disk->pi, pd_scratch, 512);
 719         disk->can_lba = pd_scratch[99] & 2;
 720         disk->sectors = le16_to_cpu(*(__le16 *) (pd_scratch + 12));
 721         disk->heads = le16_to_cpu(*(__le16 *) (pd_scratch + 6));
 722         disk->cylinders = le16_to_cpu(*(__le16 *) (pd_scratch + 2));
 723         if (disk->can_lba)
 724                 disk->capacity = le32_to_cpu(*(__le32 *) (pd_scratch + 120));
 725         else
 726                 disk->capacity = disk->sectors * disk->heads * disk->cylinders;
 727 
 728         for (j = 0; j < PD_ID_LEN; j++)
 729                 id[j ^ 1] = pd_scratch[j + PD_ID_OFF];
 730         j = PD_ID_LEN - 1;
 731         while ((j >= 0) && (id[j] <= 0x20))
 732                 j--;
 733         j++;
 734         id[j] = 0;
 735 
 736         disk->removable = pd_scratch[0] & 0x80;
 737 
 738         printk("%s: %s, %s, %d blocks [%dM], (%d/%d/%d), %s media\n",
 739                disk->name, id,
 740                disk->drive ? "slave" : "master",
 741                disk->capacity, disk->capacity / 2048,
 742                disk->cylinders, disk->heads, disk->sectors,
 743                disk->removable ? "removable" : "fixed");
 744 
 745         if (disk->capacity)
 746                 pd_init_dev_parms(disk);
 747         if (!disk->standby)
 748                 pd_standby_off(disk);
 749 
 750         return Ok;
 751 }
 752 
 753 /* end of io request engine */
 754 
 755 static blk_status_t pd_queue_rq(struct blk_mq_hw_ctx *hctx,
 756                                 const struct blk_mq_queue_data *bd)
 757 {
 758         struct pd_unit *disk = hctx->queue->queuedata;
 759 
 760         spin_lock_irq(&pd_lock);
 761         if (!pd_req) {
 762                 pd_req = bd->rq;
 763                 blk_mq_start_request(pd_req);
 764         } else
 765                 list_add_tail(&bd->rq->queuelist, &disk->rq_list);
 766         spin_unlock_irq(&pd_lock);
 767 
 768         run_fsm();
 769         return BLK_STS_OK;
 770 }
 771 
 772 static int pd_special_command(struct pd_unit *disk,
 773                       enum action (*func)(struct pd_unit *disk))
 774 {
 775         struct request *rq;
 776         struct pd_req *req;
 777 
 778         rq = blk_get_request(disk->gd->queue, REQ_OP_DRV_IN, 0);
 779         if (IS_ERR(rq))
 780                 return PTR_ERR(rq);
 781         req = blk_mq_rq_to_pdu(rq);
 782 
 783         req->func = func;
 784         blk_execute_rq(disk->gd->queue, disk->gd, rq, 0);
 785         blk_put_request(rq);
 786         return 0;
 787 }
 788 
 789 /* kernel glue structures */
 790 
 791 static int pd_open(struct block_device *bdev, fmode_t mode)
 792 {
 793         struct pd_unit *disk = bdev->bd_disk->private_data;
 794 
 795         mutex_lock(&pd_mutex);
 796         disk->access++;
 797 
 798         if (disk->removable) {
 799                 pd_special_command(disk, pd_media_check);
 800                 pd_special_command(disk, pd_door_lock);
 801         }
 802         mutex_unlock(&pd_mutex);
 803         return 0;
 804 }
 805 
 806 static int pd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 807 {
 808         struct pd_unit *disk = bdev->bd_disk->private_data;
 809 
 810         if (disk->alt_geom) {
 811                 geo->heads = PD_LOG_HEADS;
 812                 geo->sectors = PD_LOG_SECTS;
 813                 geo->cylinders = disk->capacity / (geo->heads * geo->sectors);
 814         } else {
 815                 geo->heads = disk->heads;
 816                 geo->sectors = disk->sectors;
 817                 geo->cylinders = disk->cylinders;
 818         }
 819 
 820         return 0;
 821 }
 822 
 823 static int pd_ioctl(struct block_device *bdev, fmode_t mode,
 824          unsigned int cmd, unsigned long arg)
 825 {
 826         struct pd_unit *disk = bdev->bd_disk->private_data;
 827 
 828         switch (cmd) {
 829         case CDROMEJECT:
 830                 mutex_lock(&pd_mutex);
 831                 if (disk->access == 1)
 832                         pd_special_command(disk, pd_eject);
 833                 mutex_unlock(&pd_mutex);
 834                 return 0;
 835         default:
 836                 return -EINVAL;
 837         }
 838 }
 839 
 840 static void pd_release(struct gendisk *p, fmode_t mode)
 841 {
 842         struct pd_unit *disk = p->private_data;
 843 
 844         mutex_lock(&pd_mutex);
 845         if (!--disk->access && disk->removable)
 846                 pd_special_command(disk, pd_door_unlock);
 847         mutex_unlock(&pd_mutex);
 848 }
 849 
 850 static unsigned int pd_check_events(struct gendisk *p, unsigned int clearing)
 851 {
 852         struct pd_unit *disk = p->private_data;
 853         int r;
 854         if (!disk->removable)
 855                 return 0;
 856         pd_special_command(disk, pd_media_check);
 857         r = disk->changed;
 858         disk->changed = 0;
 859         return r ? DISK_EVENT_MEDIA_CHANGE : 0;
 860 }
 861 
 862 static int pd_revalidate(struct gendisk *p)
 863 {
 864         struct pd_unit *disk = p->private_data;
 865         if (pd_special_command(disk, pd_identify) == 0)
 866                 set_capacity(p, disk->capacity);
 867         else
 868                 set_capacity(p, 0);
 869         return 0;
 870 }
 871 
 872 static const struct block_device_operations pd_fops = {
 873         .owner          = THIS_MODULE,
 874         .open           = pd_open,
 875         .release        = pd_release,
 876         .ioctl          = pd_ioctl,
 877         .getgeo         = pd_getgeo,
 878         .check_events   = pd_check_events,
 879         .revalidate_disk= pd_revalidate
 880 };
 881 
 882 /* probing */
 883 
 884 static const struct blk_mq_ops pd_mq_ops = {
 885         .queue_rq       = pd_queue_rq,
 886 };
 887 
 888 static void pd_probe_drive(struct pd_unit *disk)
 889 {
 890         struct gendisk *p;
 891 
 892         p = alloc_disk(1 << PD_BITS);
 893         if (!p)
 894                 return;
 895 
 896         strcpy(p->disk_name, disk->name);
 897         p->fops = &pd_fops;
 898         p->major = major;
 899         p->first_minor = (disk - pd) << PD_BITS;
 900         p->events = DISK_EVENT_MEDIA_CHANGE;
 901         disk->gd = p;
 902         p->private_data = disk;
 903 
 904         memset(&disk->tag_set, 0, sizeof(disk->tag_set));
 905         disk->tag_set.ops = &pd_mq_ops;
 906         disk->tag_set.cmd_size = sizeof(struct pd_req);
 907         disk->tag_set.nr_hw_queues = 1;
 908         disk->tag_set.nr_maps = 1;
 909         disk->tag_set.queue_depth = 2;
 910         disk->tag_set.numa_node = NUMA_NO_NODE;
 911         disk->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
 912 
 913         if (blk_mq_alloc_tag_set(&disk->tag_set))
 914                 return;
 915 
 916         p->queue = blk_mq_init_queue(&disk->tag_set);
 917         if (IS_ERR(p->queue)) {
 918                 blk_mq_free_tag_set(&disk->tag_set);
 919                 p->queue = NULL;
 920                 return;
 921         }
 922 
 923         p->queue->queuedata = disk;
 924         blk_queue_max_hw_sectors(p->queue, cluster);
 925         blk_queue_bounce_limit(p->queue, BLK_BOUNCE_HIGH);
 926 
 927         if (disk->drive == -1) {
 928                 for (disk->drive = 0; disk->drive <= 1; disk->drive++)
 929                         if (pd_special_command(disk, pd_identify) == 0)
 930                                 return;
 931         } else if (pd_special_command(disk, pd_identify) == 0)
 932                 return;
 933         disk->gd = NULL;
 934         put_disk(p);
 935 }
 936 
 937 static int pd_detect(void)
 938 {
 939         int found = 0, unit, pd_drive_count = 0;
 940         struct pd_unit *disk;
 941 
 942         for (unit = 0; unit < PD_UNITS; unit++) {
 943                 int *parm = *drives[unit];
 944                 struct pd_unit *disk = pd + unit;
 945                 disk->pi = &disk->pia;
 946                 disk->access = 0;
 947                 disk->changed = 1;
 948                 disk->capacity = 0;
 949                 disk->drive = parm[D_SLV];
 950                 snprintf(disk->name, PD_NAMELEN, "%s%c", name, 'a'+unit);
 951                 disk->alt_geom = parm[D_GEO];
 952                 disk->standby = parm[D_SBY];
 953                 if (parm[D_PRT])
 954                         pd_drive_count++;
 955                 INIT_LIST_HEAD(&disk->rq_list);
 956         }
 957 
 958         par_drv = pi_register_driver(name);
 959         if (!par_drv) {
 960                 pr_err("failed to register %s driver\n", name);
 961                 return -1;
 962         }
 963 
 964         if (pd_drive_count == 0) { /* nothing spec'd - so autoprobe for 1 */
 965                 disk = pd;
 966                 if (pi_init(disk->pi, 1, -1, -1, -1, -1, -1, pd_scratch,
 967                             PI_PD, verbose, disk->name)) {
 968                         pd_probe_drive(disk);
 969                         if (!disk->gd)
 970                                 pi_release(disk->pi);
 971                 }
 972 
 973         } else {
 974                 for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
 975                         int *parm = *drives[unit];
 976                         if (!parm[D_PRT])
 977                                 continue;
 978                         if (pi_init(disk->pi, 0, parm[D_PRT], parm[D_MOD],
 979                                      parm[D_UNI], parm[D_PRO], parm[D_DLY],
 980                                      pd_scratch, PI_PD, verbose, disk->name)) {
 981                                 pd_probe_drive(disk);
 982                                 if (!disk->gd)
 983                                         pi_release(disk->pi);
 984                         }
 985                 }
 986         }
 987         for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
 988                 if (disk->gd) {
 989                         set_capacity(disk->gd, disk->capacity);
 990                         add_disk(disk->gd);
 991                         found = 1;
 992                 }
 993         }
 994         if (!found) {
 995                 printk("%s: no valid drive found\n", name);
 996                 pi_unregister_driver(par_drv);
 997         }
 998         return found;
 999 }
1000 
1001 static int __init pd_init(void)
1002 {
1003         if (disable)
1004                 goto out1;
1005 
1006         if (register_blkdev(major, name))
1007                 goto out1;
1008 
1009         printk("%s: %s version %s, major %d, cluster %d, nice %d\n",
1010                name, name, PD_VERSION, major, cluster, nice);
1011         if (!pd_detect())
1012                 goto out2;
1013 
1014         return 0;
1015 
1016 out2:
1017         unregister_blkdev(major, name);
1018 out1:
1019         return -ENODEV;
1020 }
1021 
1022 static void __exit pd_exit(void)
1023 {
1024         struct pd_unit *disk;
1025         int unit;
1026         unregister_blkdev(major, name);
1027         for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
1028                 struct gendisk *p = disk->gd;
1029                 if (p) {
1030                         disk->gd = NULL;
1031                         del_gendisk(p);
1032                         blk_cleanup_queue(p->queue);
1033                         blk_mq_free_tag_set(&disk->tag_set);
1034                         put_disk(p);
1035                         pi_release(disk->pi);
1036                 }
1037         }
1038 }
1039 
1040 MODULE_LICENSE("GPL");
1041 module_init(pd_init)
1042 module_exit(pd_exit)

/* [<][>][^][v][top][bottom][index][help] */