root/drivers/block/xsysace.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ace_in_8
  2. ace_out_8
  3. ace_datain_8
  4. ace_dataout_8
  5. ace_in_be16
  6. ace_out_be16
  7. ace_datain_be16
  8. ace_dataout_be16
  9. ace_in_le16
  10. ace_out_le16
  11. ace_datain_le16
  12. ace_dataout_le16
  13. ace_in
  14. ace_in32
  15. ace_out
  16. ace_out32
  17. ace_dump_mem
  18. ace_dump_mem
  19. ace_dump_regs
  20. ace_fix_driveid
  21. ace_fsm_yield
  22. ace_fsm_yieldirq
  23. ace_has_next_request
  24. ace_get_next_request
  25. ace_fsm_dostate
  26. ace_fsm_tasklet
  27. ace_stall_timer
  28. ace_interrupt_checkstate
  29. ace_interrupt
  30. ace_queue_rq
  31. ace_check_events
  32. ace_revalidate_disk
  33. ace_open
  34. ace_release
  35. ace_getgeo
  36. ace_setup
  37. ace_teardown
  38. ace_alloc
  39. ace_free
  40. ace_probe
  41. ace_remove
  42. ace_init
  43. ace_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Xilinx SystemACE device driver
   4  *
   5  * Copyright 2007 Secret Lab Technologies Ltd.
   6  */
   7 
   8 /*
   9  * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  10  * bitstream from a file on a CF card and squirting it into FPGAs connected
  11  * to the SystemACE JTAG chain.  It also has the advantage of providing an
  12  * MPU interface which can be used to control the FPGA configuration process
  13  * and to use the attached CF card for general purpose storage.
  14  *
  15  * This driver is a block device driver for the SystemACE.
  16  *
  17  * Initialization:
  18  *    The driver registers itself as a platform_device driver at module
  19  *    load time.  The platform bus will take care of calling the
  20  *    ace_probe() method for all SystemACE instances in the system.  Any
  21  *    number of SystemACE instances are supported.  ace_probe() calls
  22  *    ace_setup() which initialized all data structures, reads the CF
  23  *    id structure and registers the device.
  24  *
  25  * Processing:
  26  *    Just about all of the heavy lifting in this driver is performed by
  27  *    a Finite State Machine (FSM).  The driver needs to wait on a number
  28  *    of events; some raised by interrupts, some which need to be polled
  29  *    for.  Describing all of the behaviour in a FSM seems to be the
  30  *    easiest way to keep the complexity low and make it easy to
  31  *    understand what the driver is doing.  If the block ops or the
  32  *    request function need to interact with the hardware, then they
  33  *    simply need to flag the request and kick of FSM processing.
  34  *
  35  *    The FSM itself is atomic-safe code which can be run from any
  36  *    context.  The general process flow is:
  37  *    1. obtain the ace->lock spinlock.
  38  *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  39  *       cleared.
  40  *    3. release the lock.
  41  *
  42  *    Individual states do not sleep in any way.  If a condition needs to
  43  *    be waited for then the state much clear the fsm_continue flag and
  44  *    either schedule the FSM to be run again at a later time, or expect
  45  *    an interrupt to call the FSM when the desired condition is met.
  46  *
  47  *    In normal operation, the FSM is processed at interrupt context
  48  *    either when the driver's tasklet is scheduled, or when an irq is
  49  *    raised by the hardware.  The tasklet can be scheduled at any time.
  50  *    The request method in particular schedules the tasklet when a new
  51  *    request has been indicated by the block layer.  Once started, the
  52  *    FSM proceeds as far as it can processing the request until it
  53  *    needs on a hardware event.  At this point, it must yield execution.
  54  *
  55  *    A state has two options when yielding execution:
  56  *    1. ace_fsm_yield()
  57  *       - Call if need to poll for event.
  58  *       - clears the fsm_continue flag to exit the processing loop
  59  *       - reschedules the tasklet to run again as soon as possible
  60  *    2. ace_fsm_yieldirq()
  61  *       - Call if an irq is expected from the HW
  62  *       - clears the fsm_continue flag to exit the processing loop
  63  *       - does not reschedule the tasklet so the FSM will not be processed
  64  *         again until an irq is received.
  65  *    After calling a yield function, the state must return control back
  66  *    to the FSM main loop.
  67  *
  68  *    Additionally, the driver maintains a kernel timer which can process
  69  *    the FSM.  If the FSM gets stalled, typically due to a missed
  70  *    interrupt, then the kernel timer will expire and the driver can
  71  *    continue where it left off.
  72  *
  73  * To Do:
  74  *    - Add FPGA configuration control interface.
  75  *    - Request major number from lanana
  76  */
  77 
  78 #undef DEBUG
  79 
  80 #include <linux/module.h>
  81 #include <linux/ctype.h>
  82 #include <linux/init.h>
  83 #include <linux/interrupt.h>
  84 #include <linux/errno.h>
  85 #include <linux/kernel.h>
  86 #include <linux/delay.h>
  87 #include <linux/slab.h>
  88 #include <linux/blk-mq.h>
  89 #include <linux/mutex.h>
  90 #include <linux/ata.h>
  91 #include <linux/hdreg.h>
  92 #include <linux/platform_device.h>
  93 #if defined(CONFIG_OF)
  94 #include <linux/of_address.h>
  95 #include <linux/of_device.h>
  96 #include <linux/of_platform.h>
  97 #endif
  98 
  99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
 100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
 101 MODULE_LICENSE("GPL");
 102 
 103 /* SystemACE register definitions */
 104 #define ACE_BUSMODE (0x00)
 105 
 106 #define ACE_STATUS (0x04)
 107 #define ACE_STATUS_CFGLOCK      (0x00000001)
 108 #define ACE_STATUS_MPULOCK      (0x00000002)
 109 #define ACE_STATUS_CFGERROR     (0x00000004)    /* config controller error */
 110 #define ACE_STATUS_CFCERROR     (0x00000008)    /* CF controller error */
 111 #define ACE_STATUS_CFDETECT     (0x00000010)
 112 #define ACE_STATUS_DATABUFRDY   (0x00000020)
 113 #define ACE_STATUS_DATABUFMODE  (0x00000040)
 114 #define ACE_STATUS_CFGDONE      (0x00000080)
 115 #define ACE_STATUS_RDYFORCFCMD  (0x00000100)
 116 #define ACE_STATUS_CFGMODEPIN   (0x00000200)
 117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
 118 #define ACE_STATUS_CFBSY        (0x00020000)
 119 #define ACE_STATUS_CFRDY        (0x00040000)
 120 #define ACE_STATUS_CFDWF        (0x00080000)
 121 #define ACE_STATUS_CFDSC        (0x00100000)
 122 #define ACE_STATUS_CFDRQ        (0x00200000)
 123 #define ACE_STATUS_CFCORR       (0x00400000)
 124 #define ACE_STATUS_CFERR        (0x00800000)
 125 
 126 #define ACE_ERROR (0x08)
 127 #define ACE_CFGLBA (0x0c)
 128 #define ACE_MPULBA (0x10)
 129 
 130 #define ACE_SECCNTCMD (0x14)
 131 #define ACE_SECCNTCMD_RESET      (0x0100)
 132 #define ACE_SECCNTCMD_IDENTIFY   (0x0200)
 133 #define ACE_SECCNTCMD_READ_DATA  (0x0300)
 134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
 135 #define ACE_SECCNTCMD_ABORT      (0x0600)
 136 
 137 #define ACE_VERSION (0x16)
 138 #define ACE_VERSION_REVISION_MASK (0x00FF)
 139 #define ACE_VERSION_MINOR_MASK    (0x0F00)
 140 #define ACE_VERSION_MAJOR_MASK    (0xF000)
 141 
 142 #define ACE_CTRL (0x18)
 143 #define ACE_CTRL_FORCELOCKREQ   (0x0001)
 144 #define ACE_CTRL_LOCKREQ        (0x0002)
 145 #define ACE_CTRL_FORCECFGADDR   (0x0004)
 146 #define ACE_CTRL_FORCECFGMODE   (0x0008)
 147 #define ACE_CTRL_CFGMODE        (0x0010)
 148 #define ACE_CTRL_CFGSTART       (0x0020)
 149 #define ACE_CTRL_CFGSEL         (0x0040)
 150 #define ACE_CTRL_CFGRESET       (0x0080)
 151 #define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
 152 #define ACE_CTRL_ERRORIRQ       (0x0200)
 153 #define ACE_CTRL_CFGDONEIRQ     (0x0400)
 154 #define ACE_CTRL_RESETIRQ       (0x0800)
 155 #define ACE_CTRL_CFGPROG        (0x1000)
 156 #define ACE_CTRL_CFGADDR_MASK   (0xe000)
 157 
 158 #define ACE_FATSTAT (0x1c)
 159 
 160 #define ACE_NUM_MINORS 16
 161 #define ACE_SECTOR_SIZE (512)
 162 #define ACE_FIFO_SIZE (32)
 163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
 164 
 165 #define ACE_BUS_WIDTH_8  0
 166 #define ACE_BUS_WIDTH_16 1
 167 
 168 struct ace_reg_ops;
 169 
 170 struct ace_device {
 171         /* driver state data */
 172         int id;
 173         int media_change;
 174         int users;
 175         struct list_head list;
 176 
 177         /* finite state machine data */
 178         struct tasklet_struct fsm_tasklet;
 179         uint fsm_task;          /* Current activity (ACE_TASK_*) */
 180         uint fsm_state;         /* Current state (ACE_FSM_STATE_*) */
 181         uint fsm_continue_flag; /* cleared to exit FSM mainloop */
 182         uint fsm_iter_num;
 183         struct timer_list stall_timer;
 184 
 185         /* Transfer state/result, use for both id and block request */
 186         struct request *req;    /* request being processed */
 187         void *data_ptr;         /* pointer to I/O buffer */
 188         int data_count;         /* number of buffers remaining */
 189         int data_result;        /* Result of transfer; 0 := success */
 190 
 191         int id_req_count;       /* count of id requests */
 192         int id_result;
 193         struct completion id_completion;        /* used when id req finishes */
 194         int in_irq;
 195 
 196         /* Details of hardware device */
 197         resource_size_t physaddr;
 198         void __iomem *baseaddr;
 199         int irq;
 200         int bus_width;          /* 0 := 8 bit; 1 := 16 bit */
 201         struct ace_reg_ops *reg_ops;
 202         int lock_count;
 203 
 204         /* Block device data structures */
 205         spinlock_t lock;
 206         struct device *dev;
 207         struct request_queue *queue;
 208         struct gendisk *gd;
 209         struct blk_mq_tag_set tag_set;
 210         struct list_head rq_list;
 211 
 212         /* Inserted CF card parameters */
 213         u16 cf_id[ATA_ID_WORDS];
 214 };
 215 
 216 static DEFINE_MUTEX(xsysace_mutex);
 217 static int ace_major;
 218 
 219 /* ---------------------------------------------------------------------
 220  * Low level register access
 221  */
 222 
 223 struct ace_reg_ops {
 224         u16(*in) (struct ace_device * ace, int reg);
 225         void (*out) (struct ace_device * ace, int reg, u16 val);
 226         void (*datain) (struct ace_device * ace);
 227         void (*dataout) (struct ace_device * ace);
 228 };
 229 
 230 /* 8 Bit bus width */
 231 static u16 ace_in_8(struct ace_device *ace, int reg)
 232 {
 233         void __iomem *r = ace->baseaddr + reg;
 234         return in_8(r) | (in_8(r + 1) << 8);
 235 }
 236 
 237 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
 238 {
 239         void __iomem *r = ace->baseaddr + reg;
 240         out_8(r, val);
 241         out_8(r + 1, val >> 8);
 242 }
 243 
 244 static void ace_datain_8(struct ace_device *ace)
 245 {
 246         void __iomem *r = ace->baseaddr + 0x40;
 247         u8 *dst = ace->data_ptr;
 248         int i = ACE_FIFO_SIZE;
 249         while (i--)
 250                 *dst++ = in_8(r++);
 251         ace->data_ptr = dst;
 252 }
 253 
 254 static void ace_dataout_8(struct ace_device *ace)
 255 {
 256         void __iomem *r = ace->baseaddr + 0x40;
 257         u8 *src = ace->data_ptr;
 258         int i = ACE_FIFO_SIZE;
 259         while (i--)
 260                 out_8(r++, *src++);
 261         ace->data_ptr = src;
 262 }
 263 
 264 static struct ace_reg_ops ace_reg_8_ops = {
 265         .in = ace_in_8,
 266         .out = ace_out_8,
 267         .datain = ace_datain_8,
 268         .dataout = ace_dataout_8,
 269 };
 270 
 271 /* 16 bit big endian bus attachment */
 272 static u16 ace_in_be16(struct ace_device *ace, int reg)
 273 {
 274         return in_be16(ace->baseaddr + reg);
 275 }
 276 
 277 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
 278 {
 279         out_be16(ace->baseaddr + reg, val);
 280 }
 281 
 282 static void ace_datain_be16(struct ace_device *ace)
 283 {
 284         int i = ACE_FIFO_SIZE / 2;
 285         u16 *dst = ace->data_ptr;
 286         while (i--)
 287                 *dst++ = in_le16(ace->baseaddr + 0x40);
 288         ace->data_ptr = dst;
 289 }
 290 
 291 static void ace_dataout_be16(struct ace_device *ace)
 292 {
 293         int i = ACE_FIFO_SIZE / 2;
 294         u16 *src = ace->data_ptr;
 295         while (i--)
 296                 out_le16(ace->baseaddr + 0x40, *src++);
 297         ace->data_ptr = src;
 298 }
 299 
 300 /* 16 bit little endian bus attachment */
 301 static u16 ace_in_le16(struct ace_device *ace, int reg)
 302 {
 303         return in_le16(ace->baseaddr + reg);
 304 }
 305 
 306 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
 307 {
 308         out_le16(ace->baseaddr + reg, val);
 309 }
 310 
 311 static void ace_datain_le16(struct ace_device *ace)
 312 {
 313         int i = ACE_FIFO_SIZE / 2;
 314         u16 *dst = ace->data_ptr;
 315         while (i--)
 316                 *dst++ = in_be16(ace->baseaddr + 0x40);
 317         ace->data_ptr = dst;
 318 }
 319 
 320 static void ace_dataout_le16(struct ace_device *ace)
 321 {
 322         int i = ACE_FIFO_SIZE / 2;
 323         u16 *src = ace->data_ptr;
 324         while (i--)
 325                 out_be16(ace->baseaddr + 0x40, *src++);
 326         ace->data_ptr = src;
 327 }
 328 
 329 static struct ace_reg_ops ace_reg_be16_ops = {
 330         .in = ace_in_be16,
 331         .out = ace_out_be16,
 332         .datain = ace_datain_be16,
 333         .dataout = ace_dataout_be16,
 334 };
 335 
 336 static struct ace_reg_ops ace_reg_le16_ops = {
 337         .in = ace_in_le16,
 338         .out = ace_out_le16,
 339         .datain = ace_datain_le16,
 340         .dataout = ace_dataout_le16,
 341 };
 342 
 343 static inline u16 ace_in(struct ace_device *ace, int reg)
 344 {
 345         return ace->reg_ops->in(ace, reg);
 346 }
 347 
 348 static inline u32 ace_in32(struct ace_device *ace, int reg)
 349 {
 350         return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
 351 }
 352 
 353 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
 354 {
 355         ace->reg_ops->out(ace, reg, val);
 356 }
 357 
 358 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
 359 {
 360         ace_out(ace, reg, val);
 361         ace_out(ace, reg + 2, val >> 16);
 362 }
 363 
 364 /* ---------------------------------------------------------------------
 365  * Debug support functions
 366  */
 367 
 368 #if defined(DEBUG)
 369 static void ace_dump_mem(void *base, int len)
 370 {
 371         const char *ptr = base;
 372         int i, j;
 373 
 374         for (i = 0; i < len; i += 16) {
 375                 printk(KERN_INFO "%.8x:", i);
 376                 for (j = 0; j < 16; j++) {
 377                         if (!(j % 4))
 378                                 printk(" ");
 379                         printk("%.2x", ptr[i + j]);
 380                 }
 381                 printk(" ");
 382                 for (j = 0; j < 16; j++)
 383                         printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
 384                 printk("\n");
 385         }
 386 }
 387 #else
 388 static inline void ace_dump_mem(void *base, int len)
 389 {
 390 }
 391 #endif
 392 
 393 static void ace_dump_regs(struct ace_device *ace)
 394 {
 395         dev_info(ace->dev,
 396                  "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
 397                  "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
 398                  "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
 399                  ace_in32(ace, ACE_CTRL),
 400                  ace_in(ace, ACE_SECCNTCMD),
 401                  ace_in(ace, ACE_VERSION),
 402                  ace_in32(ace, ACE_STATUS),
 403                  ace_in32(ace, ACE_MPULBA),
 404                  ace_in(ace, ACE_BUSMODE),
 405                  ace_in32(ace, ACE_ERROR),
 406                  ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
 407 }
 408 
 409 static void ace_fix_driveid(u16 *id)
 410 {
 411 #if defined(__BIG_ENDIAN)
 412         int i;
 413 
 414         /* All half words have wrong byte order; swap the bytes */
 415         for (i = 0; i < ATA_ID_WORDS; i++, id++)
 416                 *id = le16_to_cpu(*id);
 417 #endif
 418 }
 419 
 420 /* ---------------------------------------------------------------------
 421  * Finite State Machine (FSM) implementation
 422  */
 423 
 424 /* FSM tasks; used to direct state transitions */
 425 #define ACE_TASK_IDLE      0
 426 #define ACE_TASK_IDENTIFY  1
 427 #define ACE_TASK_READ      2
 428 #define ACE_TASK_WRITE     3
 429 #define ACE_FSM_NUM_TASKS  4
 430 
 431 /* FSM state definitions */
 432 #define ACE_FSM_STATE_IDLE               0
 433 #define ACE_FSM_STATE_REQ_LOCK           1
 434 #define ACE_FSM_STATE_WAIT_LOCK          2
 435 #define ACE_FSM_STATE_WAIT_CFREADY       3
 436 #define ACE_FSM_STATE_IDENTIFY_PREPARE   4
 437 #define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
 438 #define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
 439 #define ACE_FSM_STATE_REQ_PREPARE        7
 440 #define ACE_FSM_STATE_REQ_TRANSFER       8
 441 #define ACE_FSM_STATE_REQ_COMPLETE       9
 442 #define ACE_FSM_STATE_ERROR             10
 443 #define ACE_FSM_NUM_STATES              11
 444 
 445 /* Set flag to exit FSM loop and reschedule tasklet */
 446 static inline void ace_fsm_yield(struct ace_device *ace)
 447 {
 448         dev_dbg(ace->dev, "ace_fsm_yield()\n");
 449         tasklet_schedule(&ace->fsm_tasklet);
 450         ace->fsm_continue_flag = 0;
 451 }
 452 
 453 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
 454 static inline void ace_fsm_yieldirq(struct ace_device *ace)
 455 {
 456         dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
 457 
 458         if (!ace->irq)
 459                 /* No IRQ assigned, so need to poll */
 460                 tasklet_schedule(&ace->fsm_tasklet);
 461         ace->fsm_continue_flag = 0;
 462 }
 463 
 464 static bool ace_has_next_request(struct request_queue *q)
 465 {
 466         struct ace_device *ace = q->queuedata;
 467 
 468         return !list_empty(&ace->rq_list);
 469 }
 470 
 471 /* Get the next read/write request; ending requests that we don't handle */
 472 static struct request *ace_get_next_request(struct request_queue *q)
 473 {
 474         struct ace_device *ace = q->queuedata;
 475         struct request *rq;
 476 
 477         rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
 478         if (rq) {
 479                 list_del_init(&rq->queuelist);
 480                 blk_mq_start_request(rq);
 481         }
 482 
 483         return NULL;
 484 }
 485 
 486 static void ace_fsm_dostate(struct ace_device *ace)
 487 {
 488         struct request *req;
 489         u32 status;
 490         u16 val;
 491         int count;
 492 
 493 #if defined(DEBUG)
 494         dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
 495                 ace->fsm_state, ace->id_req_count);
 496 #endif
 497 
 498         /* Verify that there is actually a CF in the slot. If not, then
 499          * bail out back to the idle state and wake up all the waiters */
 500         status = ace_in32(ace, ACE_STATUS);
 501         if ((status & ACE_STATUS_CFDETECT) == 0) {
 502                 ace->fsm_state = ACE_FSM_STATE_IDLE;
 503                 ace->media_change = 1;
 504                 set_capacity(ace->gd, 0);
 505                 dev_info(ace->dev, "No CF in slot\n");
 506 
 507                 /* Drop all in-flight and pending requests */
 508                 if (ace->req) {
 509                         blk_mq_end_request(ace->req, BLK_STS_IOERR);
 510                         ace->req = NULL;
 511                 }
 512                 while ((req = ace_get_next_request(ace->queue)) != NULL)
 513                         blk_mq_end_request(req, BLK_STS_IOERR);
 514 
 515                 /* Drop back to IDLE state and notify waiters */
 516                 ace->fsm_state = ACE_FSM_STATE_IDLE;
 517                 ace->id_result = -EIO;
 518                 while (ace->id_req_count) {
 519                         complete(&ace->id_completion);
 520                         ace->id_req_count--;
 521                 }
 522         }
 523 
 524         switch (ace->fsm_state) {
 525         case ACE_FSM_STATE_IDLE:
 526                 /* See if there is anything to do */
 527                 if (ace->id_req_count || ace_has_next_request(ace->queue)) {
 528                         ace->fsm_iter_num++;
 529                         ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
 530                         mod_timer(&ace->stall_timer, jiffies + HZ);
 531                         if (!timer_pending(&ace->stall_timer))
 532                                 add_timer(&ace->stall_timer);
 533                         break;
 534                 }
 535                 del_timer(&ace->stall_timer);
 536                 ace->fsm_continue_flag = 0;
 537                 break;
 538 
 539         case ACE_FSM_STATE_REQ_LOCK:
 540                 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 541                         /* Already have the lock, jump to next state */
 542                         ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 543                         break;
 544                 }
 545 
 546                 /* Request the lock */
 547                 val = ace_in(ace, ACE_CTRL);
 548                 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
 549                 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
 550                 break;
 551 
 552         case ACE_FSM_STATE_WAIT_LOCK:
 553                 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
 554                         /* got the lock; move to next state */
 555                         ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
 556                         break;
 557                 }
 558 
 559                 /* wait a bit for the lock */
 560                 ace_fsm_yield(ace);
 561                 break;
 562 
 563         case ACE_FSM_STATE_WAIT_CFREADY:
 564                 status = ace_in32(ace, ACE_STATUS);
 565                 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
 566                     (status & ACE_STATUS_CFBSY)) {
 567                         /* CF card isn't ready; it needs to be polled */
 568                         ace_fsm_yield(ace);
 569                         break;
 570                 }
 571 
 572                 /* Device is ready for command; determine what to do next */
 573                 if (ace->id_req_count)
 574                         ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
 575                 else
 576                         ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
 577                 break;
 578 
 579         case ACE_FSM_STATE_IDENTIFY_PREPARE:
 580                 /* Send identify command */
 581                 ace->fsm_task = ACE_TASK_IDENTIFY;
 582                 ace->data_ptr = ace->cf_id;
 583                 ace->data_count = ACE_BUF_PER_SECTOR;
 584                 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
 585 
 586                 /* As per datasheet, put config controller in reset */
 587                 val = ace_in(ace, ACE_CTRL);
 588                 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 589 
 590                 /* irq handler takes over from this point; wait for the
 591                  * transfer to complete */
 592                 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
 593                 ace_fsm_yieldirq(ace);
 594                 break;
 595 
 596         case ACE_FSM_STATE_IDENTIFY_TRANSFER:
 597                 /* Check that the sysace is ready to receive data */
 598                 status = ace_in32(ace, ACE_STATUS);
 599                 if (status & ACE_STATUS_CFBSY) {
 600                         dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
 601                                 ace->fsm_task, ace->fsm_iter_num,
 602                                 ace->data_count);
 603                         ace_fsm_yield(ace);
 604                         break;
 605                 }
 606                 if (!(status & ACE_STATUS_DATABUFRDY)) {
 607                         ace_fsm_yield(ace);
 608                         break;
 609                 }
 610 
 611                 /* Transfer the next buffer */
 612                 ace->reg_ops->datain(ace);
 613                 ace->data_count--;
 614 
 615                 /* If there are still buffers to be transfers; jump out here */
 616                 if (ace->data_count != 0) {
 617                         ace_fsm_yieldirq(ace);
 618                         break;
 619                 }
 620 
 621                 /* transfer finished; kick state machine */
 622                 dev_dbg(ace->dev, "identify finished\n");
 623                 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
 624                 break;
 625 
 626         case ACE_FSM_STATE_IDENTIFY_COMPLETE:
 627                 ace_fix_driveid(ace->cf_id);
 628                 ace_dump_mem(ace->cf_id, 512);  /* Debug: Dump out disk ID */
 629 
 630                 if (ace->data_result) {
 631                         /* Error occurred, disable the disk */
 632                         ace->media_change = 1;
 633                         set_capacity(ace->gd, 0);
 634                         dev_err(ace->dev, "error fetching CF id (%i)\n",
 635                                 ace->data_result);
 636                 } else {
 637                         ace->media_change = 0;
 638 
 639                         /* Record disk parameters */
 640                         set_capacity(ace->gd,
 641                                 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 642                         dev_info(ace->dev, "capacity: %i sectors\n",
 643                                 ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
 644                 }
 645 
 646                 /* We're done, drop to IDLE state and notify waiters */
 647                 ace->fsm_state = ACE_FSM_STATE_IDLE;
 648                 ace->id_result = ace->data_result;
 649                 while (ace->id_req_count) {
 650                         complete(&ace->id_completion);
 651                         ace->id_req_count--;
 652                 }
 653                 break;
 654 
 655         case ACE_FSM_STATE_REQ_PREPARE:
 656                 req = ace_get_next_request(ace->queue);
 657                 if (!req) {
 658                         ace->fsm_state = ACE_FSM_STATE_IDLE;
 659                         break;
 660                 }
 661 
 662                 /* Okay, it's a data request, set it up for transfer */
 663                 dev_dbg(ace->dev,
 664                         "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
 665                         (unsigned long long)blk_rq_pos(req),
 666                         blk_rq_sectors(req), blk_rq_cur_sectors(req),
 667                         rq_data_dir(req));
 668 
 669                 ace->req = req;
 670                 ace->data_ptr = bio_data(req->bio);
 671                 ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
 672                 ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
 673 
 674                 count = blk_rq_sectors(req);
 675                 if (rq_data_dir(req)) {
 676                         /* Kick off write request */
 677                         dev_dbg(ace->dev, "write data\n");
 678                         ace->fsm_task = ACE_TASK_WRITE;
 679                         ace_out(ace, ACE_SECCNTCMD,
 680                                 count | ACE_SECCNTCMD_WRITE_DATA);
 681                 } else {
 682                         /* Kick off read request */
 683                         dev_dbg(ace->dev, "read data\n");
 684                         ace->fsm_task = ACE_TASK_READ;
 685                         ace_out(ace, ACE_SECCNTCMD,
 686                                 count | ACE_SECCNTCMD_READ_DATA);
 687                 }
 688 
 689                 /* As per datasheet, put config controller in reset */
 690                 val = ace_in(ace, ACE_CTRL);
 691                 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
 692 
 693                 /* Move to the transfer state.  The systemace will raise
 694                  * an interrupt once there is something to do
 695                  */
 696                 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
 697                 if (ace->fsm_task == ACE_TASK_READ)
 698                         ace_fsm_yieldirq(ace);  /* wait for data ready */
 699                 break;
 700 
 701         case ACE_FSM_STATE_REQ_TRANSFER:
 702                 /* Check that the sysace is ready to receive data */
 703                 status = ace_in32(ace, ACE_STATUS);
 704                 if (status & ACE_STATUS_CFBSY) {
 705                         dev_dbg(ace->dev,
 706                                 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 707                                 ace->fsm_task, ace->fsm_iter_num,
 708                                 blk_rq_cur_sectors(ace->req) * 16,
 709                                 ace->data_count, ace->in_irq);
 710                         ace_fsm_yield(ace);     /* need to poll CFBSY bit */
 711                         break;
 712                 }
 713                 if (!(status & ACE_STATUS_DATABUFRDY)) {
 714                         dev_dbg(ace->dev,
 715                                 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
 716                                 ace->fsm_task, ace->fsm_iter_num,
 717                                 blk_rq_cur_sectors(ace->req) * 16,
 718                                 ace->data_count, ace->in_irq);
 719                         ace_fsm_yieldirq(ace);
 720                         break;
 721                 }
 722 
 723                 /* Transfer the next buffer */
 724                 if (ace->fsm_task == ACE_TASK_WRITE)
 725                         ace->reg_ops->dataout(ace);
 726                 else
 727                         ace->reg_ops->datain(ace);
 728                 ace->data_count--;
 729 
 730                 /* If there are still buffers to be transfers; jump out here */
 731                 if (ace->data_count != 0) {
 732                         ace_fsm_yieldirq(ace);
 733                         break;
 734                 }
 735 
 736                 /* bio finished; is there another one? */
 737                 if (blk_update_request(ace->req, BLK_STS_OK,
 738                     blk_rq_cur_bytes(ace->req))) {
 739                         /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
 740                          *      blk_rq_sectors(ace->req),
 741                          *      blk_rq_cur_sectors(ace->req));
 742                          */
 743                         ace->data_ptr = bio_data(ace->req->bio);
 744                         ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
 745                         ace_fsm_yieldirq(ace);
 746                         break;
 747                 }
 748 
 749                 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
 750                 break;
 751 
 752         case ACE_FSM_STATE_REQ_COMPLETE:
 753                 ace->req = NULL;
 754 
 755                 /* Finished request; go to idle state */
 756                 ace->fsm_state = ACE_FSM_STATE_IDLE;
 757                 break;
 758 
 759         default:
 760                 ace->fsm_state = ACE_FSM_STATE_IDLE;
 761                 break;
 762         }
 763 }
 764 
 765 static void ace_fsm_tasklet(unsigned long data)
 766 {
 767         struct ace_device *ace = (void *)data;
 768         unsigned long flags;
 769 
 770         spin_lock_irqsave(&ace->lock, flags);
 771 
 772         /* Loop over state machine until told to stop */
 773         ace->fsm_continue_flag = 1;
 774         while (ace->fsm_continue_flag)
 775                 ace_fsm_dostate(ace);
 776 
 777         spin_unlock_irqrestore(&ace->lock, flags);
 778 }
 779 
 780 static void ace_stall_timer(struct timer_list *t)
 781 {
 782         struct ace_device *ace = from_timer(ace, t, stall_timer);
 783         unsigned long flags;
 784 
 785         dev_warn(ace->dev,
 786                  "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
 787                  ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
 788                  ace->data_count);
 789         spin_lock_irqsave(&ace->lock, flags);
 790 
 791         /* Rearm the stall timer *before* entering FSM (which may then
 792          * delete the timer) */
 793         mod_timer(&ace->stall_timer, jiffies + HZ);
 794 
 795         /* Loop over state machine until told to stop */
 796         ace->fsm_continue_flag = 1;
 797         while (ace->fsm_continue_flag)
 798                 ace_fsm_dostate(ace);
 799 
 800         spin_unlock_irqrestore(&ace->lock, flags);
 801 }
 802 
 803 /* ---------------------------------------------------------------------
 804  * Interrupt handling routines
 805  */
 806 static int ace_interrupt_checkstate(struct ace_device *ace)
 807 {
 808         u32 sreg = ace_in32(ace, ACE_STATUS);
 809         u16 creg = ace_in(ace, ACE_CTRL);
 810 
 811         /* Check for error occurrence */
 812         if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
 813             (creg & ACE_CTRL_ERRORIRQ)) {
 814                 dev_err(ace->dev, "transfer failure\n");
 815                 ace_dump_regs(ace);
 816                 return -EIO;
 817         }
 818 
 819         return 0;
 820 }
 821 
 822 static irqreturn_t ace_interrupt(int irq, void *dev_id)
 823 {
 824         u16 creg;
 825         struct ace_device *ace = dev_id;
 826 
 827         /* be safe and get the lock */
 828         spin_lock(&ace->lock);
 829         ace->in_irq = 1;
 830 
 831         /* clear the interrupt */
 832         creg = ace_in(ace, ACE_CTRL);
 833         ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
 834         ace_out(ace, ACE_CTRL, creg);
 835 
 836         /* check for IO failures */
 837         if (ace_interrupt_checkstate(ace))
 838                 ace->data_result = -EIO;
 839 
 840         if (ace->fsm_task == 0) {
 841                 dev_err(ace->dev,
 842                         "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
 843                         ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
 844                         ace_in(ace, ACE_SECCNTCMD));
 845                 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
 846                         ace->fsm_task, ace->fsm_state, ace->data_count);
 847         }
 848 
 849         /* Loop over state machine until told to stop */
 850         ace->fsm_continue_flag = 1;
 851         while (ace->fsm_continue_flag)
 852                 ace_fsm_dostate(ace);
 853 
 854         /* done with interrupt; drop the lock */
 855         ace->in_irq = 0;
 856         spin_unlock(&ace->lock);
 857 
 858         return IRQ_HANDLED;
 859 }
 860 
 861 /* ---------------------------------------------------------------------
 862  * Block ops
 863  */
 864 static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
 865                                  const struct blk_mq_queue_data *bd)
 866 {
 867         struct ace_device *ace = hctx->queue->queuedata;
 868         struct request *req = bd->rq;
 869 
 870         if (blk_rq_is_passthrough(req)) {
 871                 blk_mq_start_request(req);
 872                 return BLK_STS_IOERR;
 873         }
 874 
 875         spin_lock_irq(&ace->lock);
 876         list_add_tail(&req->queuelist, &ace->rq_list);
 877         spin_unlock_irq(&ace->lock);
 878 
 879         tasklet_schedule(&ace->fsm_tasklet);
 880         return BLK_STS_OK;
 881 }
 882 
 883 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
 884 {
 885         struct ace_device *ace = gd->private_data;
 886         dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
 887 
 888         return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
 889 }
 890 
 891 static int ace_revalidate_disk(struct gendisk *gd)
 892 {
 893         struct ace_device *ace = gd->private_data;
 894         unsigned long flags;
 895 
 896         dev_dbg(ace->dev, "ace_revalidate_disk()\n");
 897 
 898         if (ace->media_change) {
 899                 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
 900 
 901                 spin_lock_irqsave(&ace->lock, flags);
 902                 ace->id_req_count++;
 903                 spin_unlock_irqrestore(&ace->lock, flags);
 904 
 905                 tasklet_schedule(&ace->fsm_tasklet);
 906                 wait_for_completion(&ace->id_completion);
 907         }
 908 
 909         dev_dbg(ace->dev, "revalidate complete\n");
 910         return ace->id_result;
 911 }
 912 
 913 static int ace_open(struct block_device *bdev, fmode_t mode)
 914 {
 915         struct ace_device *ace = bdev->bd_disk->private_data;
 916         unsigned long flags;
 917 
 918         dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
 919 
 920         mutex_lock(&xsysace_mutex);
 921         spin_lock_irqsave(&ace->lock, flags);
 922         ace->users++;
 923         spin_unlock_irqrestore(&ace->lock, flags);
 924 
 925         check_disk_change(bdev);
 926         mutex_unlock(&xsysace_mutex);
 927 
 928         return 0;
 929 }
 930 
 931 static void ace_release(struct gendisk *disk, fmode_t mode)
 932 {
 933         struct ace_device *ace = disk->private_data;
 934         unsigned long flags;
 935         u16 val;
 936 
 937         dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
 938 
 939         mutex_lock(&xsysace_mutex);
 940         spin_lock_irqsave(&ace->lock, flags);
 941         ace->users--;
 942         if (ace->users == 0) {
 943                 val = ace_in(ace, ACE_CTRL);
 944                 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
 945         }
 946         spin_unlock_irqrestore(&ace->lock, flags);
 947         mutex_unlock(&xsysace_mutex);
 948 }
 949 
 950 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 951 {
 952         struct ace_device *ace = bdev->bd_disk->private_data;
 953         u16 *cf_id = ace->cf_id;
 954 
 955         dev_dbg(ace->dev, "ace_getgeo()\n");
 956 
 957         geo->heads      = cf_id[ATA_ID_HEADS];
 958         geo->sectors    = cf_id[ATA_ID_SECTORS];
 959         geo->cylinders  = cf_id[ATA_ID_CYLS];
 960 
 961         return 0;
 962 }
 963 
 964 static const struct block_device_operations ace_fops = {
 965         .owner = THIS_MODULE,
 966         .open = ace_open,
 967         .release = ace_release,
 968         .check_events = ace_check_events,
 969         .revalidate_disk = ace_revalidate_disk,
 970         .getgeo = ace_getgeo,
 971 };
 972 
 973 static const struct blk_mq_ops ace_mq_ops = {
 974         .queue_rq       = ace_queue_rq,
 975 };
 976 
 977 /* --------------------------------------------------------------------
 978  * SystemACE device setup/teardown code
 979  */
 980 static int ace_setup(struct ace_device *ace)
 981 {
 982         u16 version;
 983         u16 val;
 984         int rc;
 985 
 986         dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
 987         dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
 988                 (unsigned long long)ace->physaddr, ace->irq);
 989 
 990         spin_lock_init(&ace->lock);
 991         init_completion(&ace->id_completion);
 992         INIT_LIST_HEAD(&ace->rq_list);
 993 
 994         /*
 995          * Map the device
 996          */
 997         ace->baseaddr = ioremap(ace->physaddr, 0x80);
 998         if (!ace->baseaddr)
 999                 goto err_ioremap;
1000 
1001         /*
1002          * Initialize the state machine tasklet and stall timer
1003          */
1004         tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
1005         timer_setup(&ace->stall_timer, ace_stall_timer, 0);
1006 
1007         /*
1008          * Initialize the request queue
1009          */
1010         ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
1011                                                 BLK_MQ_F_SHOULD_MERGE);
1012         if (IS_ERR(ace->queue)) {
1013                 rc = PTR_ERR(ace->queue);
1014                 ace->queue = NULL;
1015                 goto err_blk_initq;
1016         }
1017         ace->queue->queuedata = ace;
1018 
1019         blk_queue_logical_block_size(ace->queue, 512);
1020         blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
1021 
1022         /*
1023          * Allocate and initialize GD structure
1024          */
1025         ace->gd = alloc_disk(ACE_NUM_MINORS);
1026         if (!ace->gd)
1027                 goto err_alloc_disk;
1028 
1029         ace->gd->major = ace_major;
1030         ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1031         ace->gd->fops = &ace_fops;
1032         ace->gd->events = DISK_EVENT_MEDIA_CHANGE;
1033         ace->gd->queue = ace->queue;
1034         ace->gd->private_data = ace;
1035         snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1036 
1037         /* set bus width */
1038         if (ace->bus_width == ACE_BUS_WIDTH_16) {
1039                 /* 0x0101 should work regardless of endianess */
1040                 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1041 
1042                 /* read it back to determine endianess */
1043                 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1044                         ace->reg_ops = &ace_reg_le16_ops;
1045                 else
1046                         ace->reg_ops = &ace_reg_be16_ops;
1047         } else {
1048                 ace_out_8(ace, ACE_BUSMODE, 0x00);
1049                 ace->reg_ops = &ace_reg_8_ops;
1050         }
1051 
1052         /* Make sure version register is sane */
1053         version = ace_in(ace, ACE_VERSION);
1054         if ((version == 0) || (version == 0xFFFF))
1055                 goto err_read;
1056 
1057         /* Put sysace in a sane state by clearing most control reg bits */
1058         ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1059                 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1060 
1061         /* Now we can hook up the irq handler */
1062         if (ace->irq) {
1063                 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1064                 if (rc) {
1065                         /* Failure - fall back to polled mode */
1066                         dev_err(ace->dev, "request_irq failed\n");
1067                         ace->irq = 0;
1068                 }
1069         }
1070 
1071         /* Enable interrupts */
1072         val = ace_in(ace, ACE_CTRL);
1073         val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1074         ace_out(ace, ACE_CTRL, val);
1075 
1076         /* Print the identification */
1077         dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1078                  (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1079         dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1080                 (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1081 
1082         ace->media_change = 1;
1083         ace_revalidate_disk(ace->gd);
1084 
1085         /* Make the sysace device 'live' */
1086         add_disk(ace->gd);
1087 
1088         return 0;
1089 
1090 err_read:
1091         /* prevent double queue cleanup */
1092         ace->gd->queue = NULL;
1093         put_disk(ace->gd);
1094 err_alloc_disk:
1095         blk_cleanup_queue(ace->queue);
1096         blk_mq_free_tag_set(&ace->tag_set);
1097 err_blk_initq:
1098         iounmap(ace->baseaddr);
1099 err_ioremap:
1100         dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1101                  (unsigned long long) ace->physaddr);
1102         return -ENOMEM;
1103 }
1104 
1105 static void ace_teardown(struct ace_device *ace)
1106 {
1107         if (ace->gd) {
1108                 del_gendisk(ace->gd);
1109                 put_disk(ace->gd);
1110         }
1111 
1112         if (ace->queue) {
1113                 blk_cleanup_queue(ace->queue);
1114                 blk_mq_free_tag_set(&ace->tag_set);
1115         }
1116 
1117         tasklet_kill(&ace->fsm_tasklet);
1118 
1119         if (ace->irq)
1120                 free_irq(ace->irq, ace);
1121 
1122         iounmap(ace->baseaddr);
1123 }
1124 
1125 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1126                      int irq, int bus_width)
1127 {
1128         struct ace_device *ace;
1129         int rc;
1130         dev_dbg(dev, "ace_alloc(%p)\n", dev);
1131 
1132         if (!physaddr) {
1133                 rc = -ENODEV;
1134                 goto err_noreg;
1135         }
1136 
1137         /* Allocate and initialize the ace device structure */
1138         ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1139         if (!ace) {
1140                 rc = -ENOMEM;
1141                 goto err_alloc;
1142         }
1143 
1144         ace->dev = dev;
1145         ace->id = id;
1146         ace->physaddr = physaddr;
1147         ace->irq = irq;
1148         ace->bus_width = bus_width;
1149 
1150         /* Call the setup code */
1151         rc = ace_setup(ace);
1152         if (rc)
1153                 goto err_setup;
1154 
1155         dev_set_drvdata(dev, ace);
1156         return 0;
1157 
1158 err_setup:
1159         dev_set_drvdata(dev, NULL);
1160         kfree(ace);
1161 err_alloc:
1162 err_noreg:
1163         dev_err(dev, "could not initialize device, err=%i\n", rc);
1164         return rc;
1165 }
1166 
1167 static void ace_free(struct device *dev)
1168 {
1169         struct ace_device *ace = dev_get_drvdata(dev);
1170         dev_dbg(dev, "ace_free(%p)\n", dev);
1171 
1172         if (ace) {
1173                 ace_teardown(ace);
1174                 dev_set_drvdata(dev, NULL);
1175                 kfree(ace);
1176         }
1177 }
1178 
1179 /* ---------------------------------------------------------------------
1180  * Platform Bus Support
1181  */
1182 
1183 static int ace_probe(struct platform_device *dev)
1184 {
1185         resource_size_t physaddr = 0;
1186         int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1187         u32 id = dev->id;
1188         int irq = 0;
1189         int i;
1190 
1191         dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1192 
1193         /* device id and bus width */
1194         if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1195                 id = 0;
1196         if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1197                 bus_width = ACE_BUS_WIDTH_8;
1198 
1199         for (i = 0; i < dev->num_resources; i++) {
1200                 if (dev->resource[i].flags & IORESOURCE_MEM)
1201                         physaddr = dev->resource[i].start;
1202                 if (dev->resource[i].flags & IORESOURCE_IRQ)
1203                         irq = dev->resource[i].start;
1204         }
1205 
1206         /* Call the bus-independent setup code */
1207         return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1208 }
1209 
1210 /*
1211  * Platform bus remove() method
1212  */
1213 static int ace_remove(struct platform_device *dev)
1214 {
1215         ace_free(&dev->dev);
1216         return 0;
1217 }
1218 
1219 #if defined(CONFIG_OF)
1220 /* Match table for of_platform binding */
1221 static const struct of_device_id ace_of_match[] = {
1222         { .compatible = "xlnx,opb-sysace-1.00.b", },
1223         { .compatible = "xlnx,opb-sysace-1.00.c", },
1224         { .compatible = "xlnx,xps-sysace-1.00.a", },
1225         { .compatible = "xlnx,sysace", },
1226         {},
1227 };
1228 MODULE_DEVICE_TABLE(of, ace_of_match);
1229 #else /* CONFIG_OF */
1230 #define ace_of_match NULL
1231 #endif /* CONFIG_OF */
1232 
1233 static struct platform_driver ace_platform_driver = {
1234         .probe = ace_probe,
1235         .remove = ace_remove,
1236         .driver = {
1237                 .name = "xsysace",
1238                 .of_match_table = ace_of_match,
1239         },
1240 };
1241 
1242 /* ---------------------------------------------------------------------
1243  * Module init/exit routines
1244  */
1245 static int __init ace_init(void)
1246 {
1247         int rc;
1248 
1249         ace_major = register_blkdev(ace_major, "xsysace");
1250         if (ace_major <= 0) {
1251                 rc = -ENOMEM;
1252                 goto err_blk;
1253         }
1254 
1255         rc = platform_driver_register(&ace_platform_driver);
1256         if (rc)
1257                 goto err_plat;
1258 
1259         pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1260         return 0;
1261 
1262 err_plat:
1263         unregister_blkdev(ace_major, "xsysace");
1264 err_blk:
1265         printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1266         return rc;
1267 }
1268 module_init(ace_init);
1269 
1270 static void __exit ace_exit(void)
1271 {
1272         pr_debug("Unregistering Xilinx SystemACE driver\n");
1273         platform_driver_unregister(&ace_platform_driver);
1274         unregister_blkdev(ace_major, "xsysace");
1275 }
1276 module_exit(ace_exit);

/* [<][>][^][v][top][bottom][index][help] */