root/drivers/atm/lanai.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vci_bitfield_iterate
  2. lanai_buf_allocate
  3. lanai_buf_size
  4. lanai_buf_deallocate
  5. lanai_buf_size_cardorder
  6. reg_addr
  7. reg_read
  8. reg_write
  9. conf1_write
  10. conf2_write
  11. conf2_write_if_powerup
  12. reset_board
  13. sram_addr
  14. sram_read
  15. sram_write
  16. sram_test_word
  17. sram_test_pass
  18. sram_test_and_clear
  19. cardvcc_addr
  20. cardvcc_read
  21. cardvcc_write
  22. aal5_size
  23. lanai_free_skb
  24. host_vcc_start_rx
  25. host_vcc_start_tx
  26. lanai_shutdown_rx_vci
  27. lanai_shutdown_tx_vci
  28. aal0_buffer_allocate
  29. aal0_buffer_free
  30. eeprom_read
  31. eeprom_validate
  32. eeprom_read
  33. eeprom_be4
  34. eeprom_validate
  35. eeprom_mac
  36. intr_pending
  37. intr_enable
  38. intr_disable
  39. status_message
  40. lanai_check_status
  41. pcistatus_got
  42. pcistatus_check
  43. vcc_tx_space
  44. vcc_is_backlogged
  45. vcc_tx_add_aal5_descriptor
  46. vcc_tx_add_aal5_trailer
  47. vcc_tx_memcpy
  48. vcc_tx_memzero
  49. lanai_endtx
  50. lanai_send_one_aal5
  51. vcc_tx_unqueue_aal5
  52. vcc_tx_aal5
  53. vcc_tx_unqueue_aal0
  54. vcc_tx_aal0
  55. vcc_rx_memcpy
  56. vcc_rx_aal5
  57. vcc_rx_aal0
  58. vcc_table_allocate
  59. vcc_table_deallocate
  60. new_lanai_vcc
  61. lanai_get_sized_buffer
  62. lanai_setup_rx_vci_aal5
  63. lanai_setup_tx_vci
  64. host_vcc_bind
  65. host_vcc_unbind
  66. lanai_reset
  67. service_buffer_allocate
  68. service_buffer_deallocate
  69. handle_service
  70. iter_transmit
  71. run_service
  72. get_statistics
  73. iter_dequeue
  74. lanai_timed_poll
  75. lanai_timed_poll_start
  76. lanai_timed_poll_stop
  77. lanai_int_1
  78. lanai_int
  79. check_board_id_and_rev
  80. lanai_pci_start
  81. vci0_is_ok
  82. vci_is_ok
  83. lanai_normalize_ci
  84. pcr_to_cbricg
  85. lanai_cbr_setup
  86. lanai_cbr_shutdown
  87. lanai_dev_open
  88. lanai_dev_close
  89. lanai_close
  90. lanai_open
  91. lanai_send
  92. lanai_change_qos
  93. lanai_proc_read
  94. lanai_init_one

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
   3  *
   4  * This driver supports ATM cards based on the Efficient "Lanai"
   5  * chipset such as the Speedstream 3010 and the ENI-25p.  The
   6  * Speedstream 3060 is currently not supported since we don't
   7  * have the code to drive the on-board Alcatel DSL chipset (yet).
   8  *
   9  * Thanks to Efficient for supporting this project with hardware,
  10  * documentation, and by answering my questions.
  11  *
  12  * Things not working yet:
  13  *
  14  * o  We don't support the Speedstream 3060 yet - this card has
  15  *    an on-board DSL modem chip by Alcatel and the driver will
  16  *    need some extra code added to handle it
  17  *
  18  * o  Note that due to limitations of the Lanai only one VCC can be
  19  *    in CBR at once
  20  *
  21  * o We don't currently parse the EEPROM at all.  The code is all
  22  *   there as per the spec, but it doesn't actually work.  I think
  23  *   there may be some issues with the docs.  Anyway, do NOT
  24  *   enable it yet - bugs in that code may actually damage your
  25  *   hardware!  Because of this you should hardware an ESI before
  26  *   trying to use this in a LANE or MPOA environment.
  27  *
  28  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  29  *      vcc_tx_aal0() needs to send or queue a SKB
  30  *      vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  31  *      vcc_rx_aal0() needs to handle AAL0 interrupts
  32  *    This isn't too much work - I just wanted to get other things
  33  *    done first.
  34  *
  35  * o  lanai_change_qos() isn't written yet
  36  *
  37  * o  There aren't any ioctl's yet -- I'd like to eventually support
  38  *    setting loopback and LED modes that way.
  39  *
  40  * o  If the segmentation engine or DMA gets shut down we should restart
  41  *    card as per section 17.0i.  (see lanai_reset)
  42  *
  43  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  44  *   API says it isn't exactly commonly implemented)
  45  */
  46 
  47 /* Version history:
  48  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  49  *   v.0.02 -- 11-JAN-2000 -- Endian fixes
  50  *   v.0.01 -- 30-NOV-1999 -- Initial release
  51  */
  52 
  53 #include <linux/module.h>
  54 #include <linux/slab.h>
  55 #include <linux/mm.h>
  56 #include <linux/atmdev.h>
  57 #include <asm/io.h>
  58 #include <asm/byteorder.h>
  59 #include <linux/spinlock.h>
  60 #include <linux/pci.h>
  61 #include <linux/dma-mapping.h>
  62 #include <linux/init.h>
  63 #include <linux/delay.h>
  64 #include <linux/interrupt.h>
  65 
  66 /* -------------------- TUNABLE PARAMATERS: */
  67 
  68 /*
  69  * Maximum number of VCIs per card.  Setting it lower could theoretically
  70  * save some memory, but since we allocate our vcc list with get_free_pages,
  71  * it's not really likely for most architectures
  72  */
  73 #define NUM_VCI                 (1024)
  74 
  75 /*
  76  * Enable extra debugging
  77  */
  78 #define DEBUG
  79 /*
  80  * Debug _all_ register operations with card, except the memory test.
  81  * Also disables the timed poll to prevent extra chattiness.  This
  82  * isn't for normal use
  83  */
  84 #undef DEBUG_RW
  85 
  86 /*
  87  * The programming guide specifies a full test of the on-board SRAM
  88  * at initialization time.  Undefine to remove this
  89  */
  90 #define FULL_MEMORY_TEST
  91 
  92 /*
  93  * This is the number of (4 byte) service entries that we will
  94  * try to allocate at startup.  Note that we will end up with
  95  * one PAGE_SIZE's worth regardless of what this is set to
  96  */
  97 #define SERVICE_ENTRIES         (1024)
  98 /* TODO: make above a module load-time option */
  99 
 100 /*
 101  * We normally read the onboard EEPROM in order to discover our MAC
 102  * address.  Undefine to _not_ do this
 103  */
 104 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
 105 /* TODO: make above a module load-time option (also) */
 106 
 107 /*
 108  * Depth of TX fifo (in 128 byte units; range 2-31)
 109  * Smaller numbers are better for network latency
 110  * Larger numbers are better for PCI latency
 111  * I'm really sure where the best tradeoff is, but the BSD driver uses
 112  * 7 and it seems to work ok.
 113  */
 114 #define TX_FIFO_DEPTH           (7)
 115 /* TODO: make above a module load-time option */
 116 
 117 /*
 118  * How often (in jiffies) we will try to unstick stuck connections -
 119  * shouldn't need to happen much
 120  */
 121 #define LANAI_POLL_PERIOD       (10*HZ)
 122 /* TODO: make above a module load-time option */
 123 
 124 /*
 125  * When allocating an AAL5 receiving buffer, try to make it at least
 126  * large enough to hold this many max_sdu sized PDUs
 127  */
 128 #define AAL5_RX_MULTIPLIER      (3)
 129 /* TODO: make above a module load-time option */
 130 
 131 /*
 132  * Same for transmitting buffer
 133  */
 134 #define AAL5_TX_MULTIPLIER      (3)
 135 /* TODO: make above a module load-time option */
 136 
 137 /*
 138  * When allocating an AAL0 transmiting buffer, how many cells should fit.
 139  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
 140  * really critical
 141  */
 142 #define AAL0_TX_MULTIPLIER      (40)
 143 /* TODO: make above a module load-time option */
 144 
 145 /*
 146  * How large should we make the AAL0 receiving buffer.  Remember that this
 147  * is shared between all AAL0 VC's
 148  */
 149 #define AAL0_RX_BUFFER_SIZE     (PAGE_SIZE)
 150 /* TODO: make above a module load-time option */
 151 
 152 /*
 153  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
 154  */
 155 /* #define USE_POWERDOWN */
 156 /* TODO: make above a module load-time option (also) */
 157 
 158 /* -------------------- DEBUGGING AIDS: */
 159 
 160 #define DEV_LABEL "lanai"
 161 
 162 #ifdef DEBUG
 163 
 164 #define DPRINTK(format, args...) \
 165         printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 166 #define APRINTK(truth, format, args...) \
 167         do { \
 168                 if (unlikely(!(truth))) \
 169                         printk(KERN_ERR DEV_LABEL ": " format, ##args); \
 170         } while (0)
 171 
 172 #else /* !DEBUG */
 173 
 174 #define DPRINTK(format, args...)
 175 #define APRINTK(truth, format, args...)
 176 
 177 #endif /* DEBUG */
 178 
 179 #ifdef DEBUG_RW
 180 #define RWDEBUG(format, args...) \
 181         printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 182 #else /* !DEBUG_RW */
 183 #define RWDEBUG(format, args...)
 184 #endif
 185 
 186 /* -------------------- DATA DEFINITIONS: */
 187 
 188 #define LANAI_MAPPING_SIZE      (0x40000)
 189 #define LANAI_EEPROM_SIZE       (128)
 190 
 191 typedef int vci_t;
 192 typedef void __iomem *bus_addr_t;
 193 
 194 /* DMA buffer in host memory for TX, RX, or service list. */
 195 struct lanai_buffer {
 196         u32 *start;     /* From get_free_pages */
 197         u32 *end;       /* One past last byte */
 198         u32 *ptr;       /* Pointer to current host location */
 199         dma_addr_t dmaaddr;
 200 };
 201 
 202 struct lanai_vcc_stats {
 203         unsigned rx_nomem;
 204         union {
 205                 struct {
 206                         unsigned rx_badlen;
 207                         unsigned service_trash;
 208                         unsigned service_stream;
 209                         unsigned service_rxcrc;
 210                 } aal5;
 211                 struct {
 212                 } aal0;
 213         } x;
 214 };
 215 
 216 struct lanai_dev;                       /* Forward declaration */
 217 
 218 /*
 219  * This is the card-specific per-vcc data.  Note that unlike some other
 220  * drivers there is NOT a 1-to-1 correspondance between these and
 221  * atm_vcc's - each one of these represents an actual 2-way vcc, but
 222  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
 223  * direction.  To make it weirder, there can even be 0-way vccs
 224  * bound to us, waiting to do a change_qos
 225  */
 226 struct lanai_vcc {
 227         bus_addr_t vbase;               /* Base of VCC's registers */
 228         struct lanai_vcc_stats stats;
 229         int nref;                       /* # of atm_vcc's who reference us */
 230         vci_t vci;
 231         struct {
 232                 struct lanai_buffer buf;
 233                 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
 234         } rx;
 235         struct {
 236                 struct lanai_buffer buf;
 237                 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
 238                 int endptr;             /* last endptr from service entry */
 239                 struct sk_buff_head backlog;
 240                 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
 241         } tx;
 242 };
 243 
 244 enum lanai_type {
 245         lanai2  = PCI_DEVICE_ID_EF_ATM_LANAI2,
 246         lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
 247 };
 248 
 249 struct lanai_dev_stats {
 250         unsigned ovfl_trash;    /* # of cells dropped - buffer overflow */
 251         unsigned vci_trash;     /* # of cells dropped - closed vci */
 252         unsigned hec_err;       /* # of cells dropped - bad HEC */
 253         unsigned atm_ovfl;      /* # of cells dropped - rx fifo overflow */
 254         unsigned pcierr_parity_detect;
 255         unsigned pcierr_serr_set;
 256         unsigned pcierr_master_abort;
 257         unsigned pcierr_m_target_abort;
 258         unsigned pcierr_s_target_abort;
 259         unsigned pcierr_master_parity;
 260         unsigned service_notx;
 261         unsigned service_norx;
 262         unsigned service_rxnotaal5;
 263         unsigned dma_reenable;
 264         unsigned card_reset;
 265 };
 266 
 267 struct lanai_dev {
 268         bus_addr_t base;
 269         struct lanai_dev_stats stats;
 270         struct lanai_buffer service;
 271         struct lanai_vcc **vccs;
 272 #ifdef USE_POWERDOWN
 273         int nbound;                     /* number of bound vccs */
 274 #endif
 275         enum lanai_type type;
 276         vci_t num_vci;                  /* Currently just NUM_VCI */
 277         u8 eeprom[LANAI_EEPROM_SIZE];
 278         u32 serialno, magicno;
 279         struct pci_dev *pci;
 280         DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
 281         DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
 282         struct timer_list timer;
 283         int naal0;
 284         struct lanai_buffer aal0buf;    /* AAL0 RX buffers */
 285         u32 conf1, conf2;               /* CONFIG[12] registers */
 286         u32 status;                     /* STATUS register */
 287         spinlock_t endtxlock;
 288         spinlock_t servicelock;
 289         struct atm_vcc *cbrvcc;
 290         int number;
 291         int board_rev;
 292 /* TODO - look at race conditions with maintence of conf1/conf2 */
 293 /* TODO - transmit locking: should we use _irq not _irqsave? */
 294 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
 295 };
 296 
 297 /*
 298  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
 299  * This function iterates one of these, calling a given function for each
 300  * vci with their bit set
 301  */
 302 static void vci_bitfield_iterate(struct lanai_dev *lanai,
 303         const unsigned long *lp,
 304         void (*func)(struct lanai_dev *,vci_t vci))
 305 {
 306         vci_t vci;
 307 
 308         for_each_set_bit(vci, lp, NUM_VCI)
 309                 func(lanai, vci);
 310 }
 311 
 312 /* -------------------- BUFFER  UTILITIES: */
 313 
 314 /*
 315  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
 316  * usually any page allocation will do.  Just to be safe in case
 317  * PAGE_SIZE is insanely tiny, though...
 318  */
 319 #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
 320 
 321 /*
 322  * Allocate a buffer in host RAM for service list, RX, or TX
 323  * Returns buf->start==NULL if no memory
 324  * Note that the size will be rounded up 2^n bytes, and
 325  * if we can't allocate that we'll settle for something smaller
 326  * until minbytes
 327  */
 328 static void lanai_buf_allocate(struct lanai_buffer *buf,
 329         size_t bytes, size_t minbytes, struct pci_dev *pci)
 330 {
 331         int size;
 332 
 333         if (bytes > (128 * 1024))       /* max lanai buffer size */
 334                 bytes = 128 * 1024;
 335         for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
 336                 ;
 337         if (minbytes < LANAI_PAGE_SIZE)
 338                 minbytes = LANAI_PAGE_SIZE;
 339         do {
 340                 /*
 341                  * Technically we could use non-consistent mappings for
 342                  * everything, but the way the lanai uses DMA memory would
 343                  * make that a terrific pain.  This is much simpler.
 344                  */
 345                 buf->start = dma_alloc_coherent(&pci->dev,
 346                                                 size, &buf->dmaaddr, GFP_KERNEL);
 347                 if (buf->start != NULL) {       /* Success */
 348                         /* Lanai requires 256-byte alignment of DMA bufs */
 349                         APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
 350                             "bad dmaaddr: 0x%lx\n",
 351                             (unsigned long) buf->dmaaddr);
 352                         buf->ptr = buf->start;
 353                         buf->end = (u32 *)
 354                             (&((unsigned char *) buf->start)[size]);
 355                         memset(buf->start, 0, size);
 356                         break;
 357                 }
 358                 size /= 2;
 359         } while (size >= minbytes);
 360 }
 361 
 362 /* size of buffer in bytes */
 363 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
 364 {
 365         return ((unsigned long) buf->end) - ((unsigned long) buf->start);
 366 }
 367 
 368 static void lanai_buf_deallocate(struct lanai_buffer *buf,
 369         struct pci_dev *pci)
 370 {
 371         if (buf->start != NULL) {
 372                 dma_free_coherent(&pci->dev, lanai_buf_size(buf),
 373                                   buf->start, buf->dmaaddr);
 374                 buf->start = buf->end = buf->ptr = NULL;
 375         }
 376 }
 377 
 378 /* size of buffer as "card order" (0=1k .. 7=128k) */
 379 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
 380 {
 381         int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
 382 
 383         /* This can only happen if PAGE_SIZE is gigantic, but just in case */
 384         if (order > 7)
 385                 order = 7;
 386         return order;
 387 }
 388 
 389 /* -------------------- PORT I/O UTILITIES: */
 390 
 391 /* Registers (and their bit-fields) */
 392 enum lanai_register {
 393         Reset_Reg               = 0x00, /* Reset; read for chip type; bits: */
 394 #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)    /* Board revision */
 395 #define   RESET_GET_BOARD_ID(x)     (((x)>> 2)&0x03)    /* Board ID */
 396 #define     BOARD_ID_LANAI256           (0)     /* 25.6M adapter card */
 397         Endian_Reg              = 0x04, /* Endian setting */
 398         IntStatus_Reg           = 0x08, /* Interrupt status */
 399         IntStatusMasked_Reg     = 0x0C, /* Interrupt status (masked) */
 400         IntAck_Reg              = 0x10, /* Interrupt acknowledge */
 401         IntAckMasked_Reg        = 0x14, /* Interrupt acknowledge (masked) */
 402         IntStatusSet_Reg        = 0x18, /* Get status + enable/disable */
 403         IntStatusSetMasked_Reg  = 0x1C, /* Get status + en/di (masked) */
 404         IntControlEna_Reg       = 0x20, /* Interrupt control enable */
 405         IntControlDis_Reg       = 0x24, /* Interrupt control disable */
 406         Status_Reg              = 0x28, /* Status */
 407 #define   STATUS_PROMDATA        (0x00000001)   /* PROM_DATA pin */
 408 #define   STATUS_WAITING         (0x00000002)   /* Interrupt being delayed */
 409 #define   STATUS_SOOL            (0x00000004)   /* SOOL alarm */
 410 #define   STATUS_LOCD            (0x00000008)   /* LOCD alarm */
 411 #define   STATUS_LED             (0x00000010)   /* LED (HAPPI) output */
 412 #define   STATUS_GPIN            (0x00000020)   /* GPIN pin */
 413 #define   STATUS_BUTTBUSY        (0x00000040)   /* Butt register is pending */
 414         Config1_Reg             = 0x2C, /* Config word 1; bits: */
 415 #define   CONFIG1_PROMDATA       (0x00000001)   /* PROM_DATA pin */
 416 #define   CONFIG1_PROMCLK        (0x00000002)   /* PROM_CLK pin */
 417 #define   CONFIG1_SET_READMODE(x) ((x)*0x004)   /* PCI BM reads; values: */
 418 #define     READMODE_PLAIN          (0)         /*   Plain memory read */
 419 #define     READMODE_LINE           (2)         /*   Memory read line */
 420 #define     READMODE_MULTIPLE       (3)         /*   Memory read multiple */
 421 #define   CONFIG1_DMA_ENABLE     (0x00000010)   /* Turn on DMA */
 422 #define   CONFIG1_POWERDOWN      (0x00000020)   /* Turn off clocks */
 423 #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)   /* Clock&loop mode; values: */
 424 #define     LOOPMODE_NORMAL         (0)         /*   Normal - no loop */
 425 #define     LOOPMODE_TIME           (1)
 426 #define     LOOPMODE_DIAG           (2)
 427 #define     LOOPMODE_LINE           (3)
 428 #define   CONFIG1_MASK_LOOPMODE  (0x00000180)
 429 #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)   /* Mode of LED; values: */
 430 #define     LEDMODE_NOT_SOOL        (0)         /*   !SOOL */
 431 #define     LEDMODE_OFF             (1)         /*   0     */
 432 #define     LEDMODE_ON              (2)         /*   1     */
 433 #define     LEDMODE_NOT_LOCD        (3)         /*   !LOCD */
 434 #define     LEDMORE_GPIN            (4)         /*   GPIN  */
 435 #define     LEDMODE_NOT_GPIN        (7)         /*   !GPIN */
 436 #define   CONFIG1_MASK_LEDMODE   (0x00000E00)
 437 #define   CONFIG1_GPOUT1         (0x00001000)   /* Toggle for reset */
 438 #define   CONFIG1_GPOUT2         (0x00002000)   /* Loopback PHY */
 439 #define   CONFIG1_GPOUT3         (0x00004000)   /* Loopback lanai */
 440         Config2_Reg             = 0x30, /* Config word 2; bits: */
 441 #define   CONFIG2_HOWMANY        (0x00000001)   /* >512 VCIs? */
 442 #define   CONFIG2_PTI7_MODE      (0x00000002)   /* Make PTI=7 RM, not OAM */
 443 #define   CONFIG2_VPI_CHK_DIS    (0x00000004)   /* Ignore RX VPI value */
 444 #define   CONFIG2_HEC_DROP       (0x00000008)   /* Drop cells w/ HEC errors */
 445 #define   CONFIG2_VCI0_NORMAL    (0x00000010)   /* Treat VCI=0 normally */
 446 #define   CONFIG2_CBR_ENABLE     (0x00000020)   /* Deal with CBR traffic */
 447 #define   CONFIG2_TRASH_ALL      (0x00000040)   /* Trashing incoming cells */
 448 #define   CONFIG2_TX_DISABLE     (0x00000080)   /* Trashing outgoing cells */
 449 #define   CONFIG2_SET_TRASH      (0x00000100)   /* Turn trashing on */
 450         Statistics_Reg          = 0x34, /* Statistics; bits: */
 451 #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)    /* FIFO overflowed */
 452 #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)    /* HEC was bad */
 453 #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)    /* VCI not open */
 454 #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)    /* VCC buffer full */
 455         ServiceStuff_Reg        = 0x38, /* Service stuff; bits: */
 456 #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)   /* size of service buffer */
 457 #define   SSTUFF_SET_ADDR(x)        ((x)>>8)    /* set address of buffer */
 458         ServWrite_Reg           = 0x3C, /* ServWrite Pointer */
 459         ServRead_Reg            = 0x40, /* ServRead Pointer */
 460         TxDepth_Reg             = 0x44, /* FIFO Transmit Depth */
 461         Butt_Reg                = 0x48, /* Butt register */
 462         CBR_ICG_Reg             = 0x50,
 463         CBR_PTR_Reg             = 0x54,
 464         PingCount_Reg           = 0x58, /* Ping count */
 465         DMA_Addr_Reg            = 0x5C  /* DMA address */
 466 };
 467 
 468 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
 469         enum lanai_register reg)
 470 {
 471         return lanai->base + reg;
 472 }
 473 
 474 static inline u32 reg_read(const struct lanai_dev *lanai,
 475         enum lanai_register reg)
 476 {
 477         u32 t;
 478         t = readl(reg_addr(lanai, reg));
 479         RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
 480             (int) reg, t);
 481         return t;
 482 }
 483 
 484 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
 485         enum lanai_register reg)
 486 {
 487         RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
 488             (int) reg, val);
 489         writel(val, reg_addr(lanai, reg));
 490 }
 491 
 492 static inline void conf1_write(const struct lanai_dev *lanai)
 493 {
 494         reg_write(lanai, lanai->conf1, Config1_Reg);
 495 }
 496 
 497 static inline void conf2_write(const struct lanai_dev *lanai)
 498 {
 499         reg_write(lanai, lanai->conf2, Config2_Reg);
 500 }
 501 
 502 /* Same as conf2_write(), but defers I/O if we're powered down */
 503 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
 504 {
 505 #ifdef USE_POWERDOWN
 506         if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
 507                 return;
 508 #endif /* USE_POWERDOWN */
 509         conf2_write(lanai);
 510 }
 511 
 512 static inline void reset_board(const struct lanai_dev *lanai)
 513 {
 514         DPRINTK("about to reset board\n");
 515         reg_write(lanai, 0, Reset_Reg);
 516         /*
 517          * If we don't delay a little while here then we can end up
 518          * leaving the card in a VERY weird state and lock up the
 519          * PCI bus.  This isn't documented anywhere but I've convinced
 520          * myself after a lot of painful experimentation
 521          */
 522         udelay(5);
 523 }
 524 
 525 /* -------------------- CARD SRAM UTILITIES: */
 526 
 527 /* The SRAM is mapped into normal PCI memory space - the only catch is
 528  * that it is only 16-bits wide but must be accessed as 32-bit.  The
 529  * 16 high bits will be zero.  We don't hide this, since they get
 530  * programmed mostly like discrete registers anyway
 531  */
 532 #define SRAM_START (0x20000)
 533 #define SRAM_BYTES (0x20000)    /* Again, half don't really exist */
 534 
 535 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
 536 {
 537         return lanai->base + SRAM_START + offset;
 538 }
 539 
 540 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
 541 {
 542         return readl(sram_addr(lanai, offset));
 543 }
 544 
 545 static inline void sram_write(const struct lanai_dev *lanai,
 546         u32 val, int offset)
 547 {
 548         writel(val, sram_addr(lanai, offset));
 549 }
 550 
 551 static int sram_test_word(const struct lanai_dev *lanai, int offset,
 552                           u32 pattern)
 553 {
 554         u32 readback;
 555         sram_write(lanai, pattern, offset);
 556         readback = sram_read(lanai, offset);
 557         if (likely(readback == pattern))
 558                 return 0;
 559         printk(KERN_ERR DEV_LABEL
 560             "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
 561             lanai->number, offset,
 562             (unsigned int) pattern, (unsigned int) readback);
 563         return -EIO;
 564 }
 565 
 566 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
 567 {
 568         int offset, result = 0;
 569         for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
 570                 result = sram_test_word(lanai, offset, pattern);
 571         return result;
 572 }
 573 
 574 static int sram_test_and_clear(const struct lanai_dev *lanai)
 575 {
 576 #ifdef FULL_MEMORY_TEST
 577         int result;
 578         DPRINTK("testing SRAM\n");
 579         if ((result = sram_test_pass(lanai, 0x5555)) != 0)
 580                 return result;
 581         if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
 582                 return result;
 583 #endif
 584         DPRINTK("clearing SRAM\n");
 585         return sram_test_pass(lanai, 0x0000);
 586 }
 587 
 588 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
 589 
 590 /* vcc table */
 591 enum lanai_vcc_offset {
 592         vcc_rxaddr1             = 0x00, /* Location1, plus bits: */
 593 #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of RX buffer */
 594 #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)   /* RM cell action; values: */
 595 #define     RMMODE_TRASH          (0)           /*   discard */
 596 #define     RMMODE_PRESERVE       (1)           /*   input as AAL0 */
 597 #define     RMMODE_PIPE           (2)           /*   pipe to coscheduler */
 598 #define     RMMODE_PIPEALL        (3)           /*   pipe non-RM too */
 599 #define   RXADDR1_OAM_PRESERVE   (0x00002000)   /* Input OAM cells as AAL0 */
 600 #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)   /* Reassembly mode */
 601 #define     RXMODE_TRASH          (0)           /*   discard */
 602 #define     RXMODE_AAL0           (1)           /*   non-AAL5 mode */
 603 #define     RXMODE_AAL5           (2)           /*   AAL5, intr. each PDU */
 604 #define     RXMODE_AAL5_STREAM    (3)           /*   AAL5 w/o per-PDU intr */
 605         vcc_rxaddr2             = 0x04, /* Location2 */
 606         vcc_rxcrc1              = 0x08, /* RX CRC claculation space */
 607         vcc_rxcrc2              = 0x0C,
 608         vcc_rxwriteptr          = 0x10, /* RX writeptr, plus bits: */
 609 #define   RXWRITEPTR_LASTEFCI    (0x00002000)   /* Last PDU had EFCI bit */
 610 #define   RXWRITEPTR_DROPPING    (0x00004000)   /* Had error, dropping */
 611 #define   RXWRITEPTR_TRASHING    (0x00008000)   /* Trashing */
 612         vcc_rxbufstart          = 0x14, /* RX bufstart, plus bits: */
 613 #define   RXBUFSTART_CLP         (0x00004000)
 614 #define   RXBUFSTART_CI          (0x00008000)
 615         vcc_rxreadptr           = 0x18, /* RX readptr */
 616         vcc_txicg               = 0x1C, /* TX ICG */
 617         vcc_txaddr1             = 0x20, /* Location1, plus bits: */
 618 #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of TX buffer */
 619 #define   TXADDR1_ABR            (0x00008000)   /* use ABR (doesn't work) */
 620         vcc_txaddr2             = 0x24, /* Location2 */
 621         vcc_txcrc1              = 0x28, /* TX CRC claculation space */
 622         vcc_txcrc2              = 0x2C,
 623         vcc_txreadptr           = 0x30, /* TX Readptr, plus bits: */
 624 #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
 625 #define   TXREADPTR_MASK_DELTA  (0x0000E000)    /* ? */
 626         vcc_txendptr            = 0x34, /* TX Endptr, plus bits: */
 627 #define   TXENDPTR_CLP          (0x00002000)
 628 #define   TXENDPTR_MASK_PDUMODE (0x0000C000)    /* PDU mode; values: */
 629 #define     PDUMODE_AAL0         (0*0x04000)
 630 #define     PDUMODE_AAL5         (2*0x04000)
 631 #define     PDUMODE_AAL5STREAM   (3*0x04000)
 632         vcc_txwriteptr          = 0x38, /* TX Writeptr */
 633 #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
 634         vcc_txcbr_next          = 0x3C  /* # of next CBR VCI in ring */
 635 #define   TXCBR_NEXT_BOZO       (0x00008000)    /* "bozo bit" */
 636 };
 637 
 638 #define CARDVCC_SIZE    (0x40)
 639 
 640 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
 641         vci_t vci)
 642 {
 643         return sram_addr(lanai, vci * CARDVCC_SIZE);
 644 }
 645 
 646 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
 647         enum lanai_vcc_offset offset)
 648 {
 649         u32 val;
 650         APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
 651         val= readl(lvcc->vbase + offset);
 652         RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
 653             lvcc->vci, (int) offset, val);
 654         return val;
 655 }
 656 
 657 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
 658         u32 val, enum lanai_vcc_offset offset)
 659 {
 660         APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
 661         APRINTK((val & ~0xFFFF) == 0,
 662             "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
 663             (unsigned int) val, lvcc->vci, (unsigned int) offset);
 664         RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
 665             lvcc->vci, (unsigned int) offset, (unsigned int) val);
 666         writel(val, lvcc->vbase + offset);
 667 }
 668 
 669 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
 670 
 671 /* How many bytes will an AAL5 PDU take to transmit - remember that:
 672  *   o  we need to add 8 bytes for length, CPI, UU, and CRC
 673  *   o  we need to round up to 48 bytes for cells
 674  */
 675 static inline int aal5_size(int size)
 676 {
 677         int cells = (size + 8 + 47) / 48;
 678         return cells * 48;
 679 }
 680 
 681 /* -------------------- FREE AN ATM SKB: */
 682 
 683 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
 684 {
 685         if (atmvcc->pop != NULL)
 686                 atmvcc->pop(atmvcc, skb);
 687         else
 688                 dev_kfree_skb_any(skb);
 689 }
 690 
 691 /* -------------------- TURN VCCS ON AND OFF: */
 692 
 693 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
 694 {
 695         u32 addr1;
 696         if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
 697                 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
 698                 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
 699                 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
 700                 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 701                 cardvcc_write(lvcc, 0, vcc_rxbufstart);
 702                 cardvcc_write(lvcc, 0, vcc_rxreadptr);
 703                 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
 704                 addr1 = ((dmaaddr >> 8) & 0xFF) |
 705                     RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
 706                     RXADDR1_SET_RMMODE(RMMODE_TRASH) |  /* ??? */
 707                  /* RXADDR1_OAM_PRESERVE |      --- no OAM support yet */
 708                     RXADDR1_SET_MODE(RXMODE_AAL5);
 709         } else
 710                 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
 711                     RXADDR1_OAM_PRESERVE |                    /* ??? */
 712                     RXADDR1_SET_MODE(RXMODE_AAL0);
 713         /* This one must be last! */
 714         cardvcc_write(lvcc, addr1, vcc_rxaddr1);
 715 }
 716 
 717 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
 718 {
 719         dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
 720         cardvcc_write(lvcc, 0, vcc_txicg);
 721         cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
 722         cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
 723         cardvcc_write(lvcc, 0, vcc_txreadptr);
 724         cardvcc_write(lvcc, 0, vcc_txendptr);
 725         cardvcc_write(lvcc, 0, vcc_txwriteptr);
 726         cardvcc_write(lvcc,
 727                 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
 728                 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
 729         cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
 730         cardvcc_write(lvcc,
 731             ((dmaaddr >> 8) & 0xFF) |
 732             TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
 733             vcc_txaddr1);
 734 }
 735 
 736 /* Shutdown receiving on card */
 737 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
 738 {
 739         if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 740                 return;
 741         /* 15.1.1 - set to trashing, wait one cell time (15us) */
 742         cardvcc_write(lvcc,
 743             RXADDR1_SET_RMMODE(RMMODE_TRASH) |
 744             RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
 745         udelay(15);
 746         /* 15.1.2 - clear rest of entries */
 747         cardvcc_write(lvcc, 0, vcc_rxaddr2);
 748         cardvcc_write(lvcc, 0, vcc_rxcrc1);
 749         cardvcc_write(lvcc, 0, vcc_rxcrc2);
 750         cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 751         cardvcc_write(lvcc, 0, vcc_rxbufstart);
 752         cardvcc_write(lvcc, 0, vcc_rxreadptr);
 753 }
 754 
 755 /* Shutdown transmitting on card.
 756  * Unfortunately the lanai needs us to wait until all the data
 757  * drains out of the buffer before we can dealloc it, so this
 758  * can take awhile -- up to 370ms for a full 128KB buffer
 759  * assuming everone else is quiet.  In theory the time is
 760  * boundless if there's a CBR VCC holding things up.
 761  */
 762 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
 763         struct lanai_vcc *lvcc)
 764 {
 765         struct sk_buff *skb;
 766         unsigned long flags, timeout;
 767         int read, write, lastread = -1;
 768         APRINTK(!in_interrupt(),
 769             "lanai_shutdown_tx_vci called w/o process context!\n");
 770         if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 771                 return;
 772         /* 15.2.1 - wait for queue to drain */
 773         while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
 774                 lanai_free_skb(lvcc->tx.atmvcc, skb);
 775         read_lock_irqsave(&vcc_sklist_lock, flags);
 776         __clear_bit(lvcc->vci, lanai->backlog_vccs);
 777         read_unlock_irqrestore(&vcc_sklist_lock, flags);
 778         /*
 779          * We need to wait for the VCC to drain but don't wait forever.  We
 780          * give each 1K of buffer size 1/128th of a second to clear out.
 781          * TODO: maybe disable CBR if we're about to timeout?
 782          */
 783         timeout = jiffies +
 784             (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
 785         write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
 786         for (;;) {
 787                 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
 788                 if (read == write &&       /* Is TX buffer empty? */
 789                     (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
 790                     (cardvcc_read(lvcc, vcc_txcbr_next) &
 791                     TXCBR_NEXT_BOZO) == 0))
 792                         break;
 793                 if (read != lastread) {    /* Has there been any progress? */
 794                         lastread = read;
 795                         timeout += HZ / 10;
 796                 }
 797                 if (unlikely(time_after(jiffies, timeout))) {
 798                         printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
 799                             "backlog closing vci %d\n",
 800                             lvcc->tx.atmvcc->dev->number, lvcc->vci);
 801                         DPRINTK("read, write = %d, %d\n", read, write);
 802                         break;
 803                 }
 804                 msleep(40);
 805         }
 806         /* 15.2.2 - clear out all tx registers */
 807         cardvcc_write(lvcc, 0, vcc_txreadptr);
 808         cardvcc_write(lvcc, 0, vcc_txwriteptr);
 809         cardvcc_write(lvcc, 0, vcc_txendptr);
 810         cardvcc_write(lvcc, 0, vcc_txcrc1);
 811         cardvcc_write(lvcc, 0, vcc_txcrc2);
 812         cardvcc_write(lvcc, 0, vcc_txaddr2);
 813         cardvcc_write(lvcc, 0, vcc_txaddr1);
 814 }
 815 
 816 /* -------------------- MANAGING AAL0 RX BUFFER: */
 817 
 818 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
 819 {
 820         DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
 821         lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
 822                            lanai->pci);
 823         return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
 824 }
 825 
 826 static inline void aal0_buffer_free(struct lanai_dev *lanai)
 827 {
 828         DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
 829         lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
 830 }
 831 
 832 /* -------------------- EEPROM UTILITIES: */
 833 
 834 /* Offsets of data in the EEPROM */
 835 #define EEPROM_COPYRIGHT        (0)
 836 #define EEPROM_COPYRIGHT_LEN    (44)
 837 #define EEPROM_CHECKSUM         (62)
 838 #define EEPROM_CHECKSUM_REV     (63)
 839 #define EEPROM_MAC              (64)
 840 #define EEPROM_MAC_REV          (70)
 841 #define EEPROM_SERIAL           (112)
 842 #define EEPROM_SERIAL_REV       (116)
 843 #define EEPROM_MAGIC            (120)
 844 #define EEPROM_MAGIC_REV        (124)
 845 
 846 #define EEPROM_MAGIC_VALUE      (0x5AB478D2)
 847 
 848 #ifndef READ_EEPROM
 849 
 850 /* Stub functions to use if EEPROM reading is disabled */
 851 static int eeprom_read(struct lanai_dev *lanai)
 852 {
 853         printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
 854             lanai->number);
 855         memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
 856         return 0;
 857 }
 858 
 859 static int eeprom_validate(struct lanai_dev *lanai)
 860 {
 861         lanai->serialno = 0;
 862         lanai->magicno = EEPROM_MAGIC_VALUE;
 863         return 0;
 864 }
 865 
 866 #else /* READ_EEPROM */
 867 
 868 static int eeprom_read(struct lanai_dev *lanai)
 869 {
 870         int i, address;
 871         u8 data;
 872         u32 tmp;
 873 #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
 874                             } while (0)
 875 #define clock_h()        set_config1(lanai->conf1 | CONFIG1_PROMCLK)
 876 #define clock_l()        set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
 877 #define data_h()         set_config1(lanai->conf1 | CONFIG1_PROMDATA)
 878 #define data_l()         set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
 879 #define pre_read()       do { data_h(); clock_h(); udelay(5); } while (0)
 880 #define read_pin()       (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
 881 #define send_stop()      do { data_l(); udelay(5); clock_h(); udelay(5); \
 882                               data_h(); udelay(5); } while (0)
 883         /* start with both clock and data high */
 884         data_h(); clock_h(); udelay(5);
 885         for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
 886                 data = (address << 1) | 1;      /* Command=read + address */
 887                 /* send start bit */
 888                 data_l(); udelay(5);
 889                 clock_l(); udelay(5);
 890                 for (i = 128; i != 0; i >>= 1) {   /* write command out */
 891                         tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
 892                             ((data & i) ? CONFIG1_PROMDATA : 0);
 893                         if (lanai->conf1 != tmp) {
 894                                 set_config1(tmp);
 895                                 udelay(5);      /* Let new data settle */
 896                         }
 897                         clock_h(); udelay(5); clock_l(); udelay(5);
 898                 }
 899                 /* look for ack */
 900                 data_h(); clock_h(); udelay(5);
 901                 if (read_pin() != 0)
 902                         goto error;     /* No ack seen */
 903                 clock_l(); udelay(5);
 904                 /* read back result */
 905                 for (data = 0, i = 7; i >= 0; i--) {
 906                         data_h(); clock_h(); udelay(5);
 907                         data = (data << 1) | !!read_pin();
 908                         clock_l(); udelay(5);
 909                 }
 910                 /* look again for ack */
 911                 data_h(); clock_h(); udelay(5);
 912                 if (read_pin() == 0)
 913                         goto error;     /* Spurious ack */
 914                 clock_l(); udelay(5);
 915                 send_stop();
 916                 lanai->eeprom[address] = data;
 917                 DPRINTK("EEPROM 0x%04X %02X\n",
 918                     (unsigned int) address, (unsigned int) data);
 919         }
 920         return 0;
 921     error:
 922         clock_l(); udelay(5);           /* finish read */
 923         send_stop();
 924         printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
 925             lanai->number, address);
 926         return -EIO;
 927 #undef set_config1
 928 #undef clock_h
 929 #undef clock_l
 930 #undef data_h
 931 #undef data_l
 932 #undef pre_read
 933 #undef read_pin
 934 #undef send_stop
 935 }
 936 
 937 /* read a big-endian 4-byte value out of eeprom */
 938 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
 939 {
 940         return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
 941 }
 942 
 943 /* Checksum/validate EEPROM contents */
 944 static int eeprom_validate(struct lanai_dev *lanai)
 945 {
 946         int i, s;
 947         u32 v;
 948         const u8 *e = lanai->eeprom;
 949 #ifdef DEBUG
 950         /* First, see if we can get an ASCIIZ string out of the copyright */
 951         for (i = EEPROM_COPYRIGHT;
 952             i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
 953                 if (e[i] < 0x20 || e[i] > 0x7E)
 954                         break;
 955         if ( i != EEPROM_COPYRIGHT &&
 956             i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
 957                 DPRINTK("eeprom: copyright = \"%s\"\n",
 958                     (char *) &e[EEPROM_COPYRIGHT]);
 959         else
 960                 DPRINTK("eeprom: copyright not found\n");
 961 #endif
 962         /* Validate checksum */
 963         for (i = s = 0; i < EEPROM_CHECKSUM; i++)
 964                 s += e[i];
 965         s &= 0xFF;
 966         if (s != e[EEPROM_CHECKSUM]) {
 967                 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
 968                     "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
 969                     (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
 970                 return -EIO;
 971         }
 972         s ^= 0xFF;
 973         if (s != e[EEPROM_CHECKSUM_REV]) {
 974                 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
 975                     "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
 976                     (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
 977                 return -EIO;
 978         }
 979         /* Verify MAC address */
 980         for (i = 0; i < 6; i++)
 981                 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
 982                         printk(KERN_ERR DEV_LABEL
 983                             "(itf %d) : EEPROM MAC addresses don't match "
 984                             "(0x%02X, inverse 0x%02X)\n", lanai->number,
 985                             (unsigned int) e[EEPROM_MAC + i],
 986                             (unsigned int) e[EEPROM_MAC_REV + i]);
 987                         return -EIO;
 988                 }
 989         DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
 990         /* Verify serial number */
 991         lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
 992         v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
 993         if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
 994                 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
 995                     "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
 996                     (unsigned int) lanai->serialno, (unsigned int) v);
 997                 return -EIO;
 998         }
 999         DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1000         /* Verify magic number */
1001         lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1002         v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1003         if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1004                 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1005                     "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1006                     lanai->magicno, v);
1007                 return -EIO;
1008         }
1009         DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1010         if (lanai->magicno != EEPROM_MAGIC_VALUE)
1011                 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1012                     "magic not what expected (got 0x%08X, not 0x%08X)\n",
1013                     lanai->number, (unsigned int) lanai->magicno,
1014                     (unsigned int) EEPROM_MAGIC_VALUE);
1015         return 0;
1016 }
1017 
1018 #endif /* READ_EEPROM */
1019 
1020 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1021 {
1022         return &lanai->eeprom[EEPROM_MAC];
1023 }
1024 
1025 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1026 
1027 /* Interrupt types */
1028 #define INT_STATS       (0x00000002)    /* Statistics counter overflow */
1029 #define INT_SOOL        (0x00000004)    /* SOOL changed state */
1030 #define INT_LOCD        (0x00000008)    /* LOCD changed state */
1031 #define INT_LED         (0x00000010)    /* LED (HAPPI) changed state */
1032 #define INT_GPIN        (0x00000020)    /* GPIN changed state */
1033 #define INT_PING        (0x00000040)    /* PING_COUNT fulfilled */
1034 #define INT_WAKE        (0x00000080)    /* Lanai wants bus */
1035 #define INT_CBR0        (0x00000100)    /* CBR sched hit VCI 0 */
1036 #define INT_LOCK        (0x00000200)    /* Service list overflow */
1037 #define INT_MISMATCH    (0x00000400)    /* TX magic list mismatch */
1038 #define INT_AAL0_STR    (0x00000800)    /* Non-AAL5 buffer half filled */
1039 #define INT_AAL0        (0x00001000)    /* Non-AAL5 data available */
1040 #define INT_SERVICE     (0x00002000)    /* Service list entries available */
1041 #define INT_TABORTSENT  (0x00004000)    /* Target abort sent by lanai */
1042 #define INT_TABORTBM    (0x00008000)    /* Abort rcv'd as bus master */
1043 #define INT_TIMEOUTBM   (0x00010000)    /* No response to bus master */
1044 #define INT_PCIPARITY   (0x00020000)    /* Parity error on PCI */
1045 
1046 /* Sets of the above */
1047 #define INT_ALL         (0x0003FFFE)    /* All interrupts */
1048 #define INT_STATUS      (0x0000003C)    /* Some status pin changed */
1049 #define INT_DMASHUT     (0x00038000)    /* DMA engine got shut down */
1050 #define INT_SEGSHUT     (0x00000700)    /* Segmentation got shut down */
1051 
1052 static inline u32 intr_pending(const struct lanai_dev *lanai)
1053 {
1054         return reg_read(lanai, IntStatusMasked_Reg);
1055 }
1056 
1057 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1058 {
1059         reg_write(lanai, i, IntControlEna_Reg);
1060 }
1061 
1062 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1063 {
1064         reg_write(lanai, i, IntControlDis_Reg);
1065 }
1066 
1067 /* -------------------- CARD/PCI STATUS: */
1068 
1069 static void status_message(int itf, const char *name, int status)
1070 {
1071         static const char *onoff[2] = { "off to on", "on to off" };
1072         printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1073             itf, name, onoff[!status]);
1074 }
1075 
1076 static void lanai_check_status(struct lanai_dev *lanai)
1077 {
1078         u32 new = reg_read(lanai, Status_Reg);
1079         u32 changes = new ^ lanai->status;
1080         lanai->status = new;
1081 #define e(flag, name) \
1082                 if (changes & flag) \
1083                         status_message(lanai->number, name, new & flag)
1084         e(STATUS_SOOL, "SOOL");
1085         e(STATUS_LOCD, "LOCD");
1086         e(STATUS_LED, "LED");
1087         e(STATUS_GPIN, "GPIN");
1088 #undef e
1089 }
1090 
1091 static void pcistatus_got(int itf, const char *name)
1092 {
1093         printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1094 }
1095 
1096 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1097 {
1098         u16 s;
1099         int result;
1100         result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1101         if (result != PCIBIOS_SUCCESSFUL) {
1102                 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1103                     "%d\n", lanai->number, result);
1104                 return;
1105         }
1106         s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1107             PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1108             PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1109         if (s == 0)
1110                 return;
1111         result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1112         if (result != PCIBIOS_SUCCESSFUL)
1113                 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1114                     "%d\n", lanai->number, result);
1115         if (clearonly)
1116                 return;
1117 #define e(flag, name, stat) \
1118                 if (s & flag) { \
1119                         pcistatus_got(lanai->number, name); \
1120                         ++lanai->stats.pcierr_##stat; \
1121                 }
1122         e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1123         e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1124         e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1125         e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1126         e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1127         e(PCI_STATUS_PARITY, "master parity", master_parity);
1128 #undef e
1129 }
1130 
1131 /* -------------------- VCC TX BUFFER UTILITIES: */
1132 
1133 /* space left in tx buffer in bytes */
1134 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1135 {
1136         int r;
1137         r = endptr * 16;
1138         r -= ((unsigned long) lvcc->tx.buf.ptr) -
1139             ((unsigned long) lvcc->tx.buf.start);
1140         r -= 16;        /* Leave "bubble" - if start==end it looks empty */
1141         if (r < 0)
1142                 r += lanai_buf_size(&lvcc->tx.buf);
1143         return r;
1144 }
1145 
1146 /* test if VCC is currently backlogged */
1147 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1148 {
1149         return !skb_queue_empty(&lvcc->tx.backlog);
1150 }
1151 
1152 /* Bit fields in the segmentation buffer descriptor */
1153 #define DESCRIPTOR_MAGIC        (0xD0000000)
1154 #define DESCRIPTOR_AAL5         (0x00008000)
1155 #define DESCRIPTOR_AAL5_STREAM  (0x00004000)
1156 #define DESCRIPTOR_CLP          (0x00002000)
1157 
1158 /* Add 32-bit descriptor with its padding */
1159 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1160         u32 flags, int len)
1161 {
1162         int pos;
1163         APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1164             "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1165         lvcc->tx.buf.ptr += 4;  /* Hope the values REALLY don't matter */
1166         pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1167             (unsigned char *) lvcc->tx.buf.start;
1168         APRINTK((pos & ~0x0001FFF0) == 0,
1169             "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1170             "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1171             lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1172         pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1173         APRINTK((pos & ~0x0001FFF0) == 0,
1174             "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1175             "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1176             lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1177         lvcc->tx.buf.ptr[-1] =
1178             cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1179             ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1180             DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1181         if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1182                 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1183 }
1184 
1185 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1186 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1187         int len, int cpi, int uu)
1188 {
1189         APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1190             "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1191         lvcc->tx.buf.ptr += 2;
1192         lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1193         if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194                 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195 }
1196 
1197 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1198         const unsigned char *src, int n)
1199 {
1200         unsigned char *e;
1201         int m;
1202         e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1203         m = e - (unsigned char *) lvcc->tx.buf.end;
1204         if (m < 0)
1205                 m = 0;
1206         memcpy(lvcc->tx.buf.ptr, src, n - m);
1207         if (m != 0) {
1208                 memcpy(lvcc->tx.buf.start, src + n - m, m);
1209                 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1210         }
1211         lvcc->tx.buf.ptr = (u32 *) e;
1212 }
1213 
1214 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1215 {
1216         unsigned char *e;
1217         int m;
1218         if (n == 0)
1219                 return;
1220         e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1221         m = e - (unsigned char *) lvcc->tx.buf.end;
1222         if (m < 0)
1223                 m = 0;
1224         memset(lvcc->tx.buf.ptr, 0, n - m);
1225         if (m != 0) {
1226                 memset(lvcc->tx.buf.start, 0, m);
1227                 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1228         }
1229         lvcc->tx.buf.ptr = (u32 *) e;
1230 }
1231 
1232 /* Update "butt" register to specify new WritePtr */
1233 static inline void lanai_endtx(struct lanai_dev *lanai,
1234         const struct lanai_vcc *lvcc)
1235 {
1236         int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1237             (unsigned char *) lvcc->tx.buf.start;
1238         APRINTK((ptr & ~0x0001FFF0) == 0,
1239             "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1240             ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1241             lvcc->tx.buf.end);
1242 
1243         /*
1244          * Since the "butt register" is a shared resounce on the card we
1245          * serialize all accesses to it through this spinlock.  This is
1246          * mostly just paranoia since the register is rarely "busy" anyway
1247          * but is needed for correctness.
1248          */
1249         spin_lock(&lanai->endtxlock);
1250         /*
1251          * We need to check if the "butt busy" bit is set before
1252          * updating the butt register.  In theory this should
1253          * never happen because the ATM card is plenty fast at
1254          * updating the register.  Still, we should make sure
1255          */
1256         for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1257                 if (unlikely(i > 50)) {
1258                         printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1259                             "always busy!\n", lanai->number);
1260                         break;
1261                 }
1262                 udelay(5);
1263         }
1264         /*
1265          * Before we tall the card to start work we need to be sure 100% of
1266          * the info in the service buffer has been written before we tell
1267          * the card about it
1268          */
1269         wmb();
1270         reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1271         spin_unlock(&lanai->endtxlock);
1272 }
1273 
1274 /*
1275  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1276  * space available.  "pdusize" is the number of bytes the PDU will take
1277  */
1278 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1279         struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1280 {
1281         int pad;
1282         APRINTK(pdusize == aal5_size(skb->len),
1283             "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1284             pdusize, aal5_size(skb->len));
1285         vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1286         pad = pdusize - skb->len - 8;
1287         APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1288         APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1289         vcc_tx_memcpy(lvcc, skb->data, skb->len);
1290         vcc_tx_memzero(lvcc, pad);
1291         vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1292         lanai_endtx(lanai, lvcc);
1293         lanai_free_skb(lvcc->tx.atmvcc, skb);
1294         atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1295 }
1296 
1297 /* Try to fill the buffer - don't call unless there is backlog */
1298 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1299         struct lanai_vcc *lvcc, int endptr)
1300 {
1301         int n;
1302         struct sk_buff *skb;
1303         int space = vcc_tx_space(lvcc, endptr);
1304         APRINTK(vcc_is_backlogged(lvcc),
1305             "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1306             lvcc->vci);
1307         while (space >= 64) {
1308                 skb = skb_dequeue(&lvcc->tx.backlog);
1309                 if (skb == NULL)
1310                         goto no_backlog;
1311                 n = aal5_size(skb->len);
1312                 if (n + 16 > space) {
1313                         /* No room for this packet - put it back on queue */
1314                         skb_queue_head(&lvcc->tx.backlog, skb);
1315                         return;
1316                 }
1317                 lanai_send_one_aal5(lanai, lvcc, skb, n);
1318                 space -= n + 16;
1319         }
1320         if (!vcc_is_backlogged(lvcc)) {
1321             no_backlog:
1322                 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1323         }
1324 }
1325 
1326 /* Given an skb that we want to transmit either send it now or queue */
1327 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1328         struct sk_buff *skb)
1329 {
1330         int space, n;
1331         if (vcc_is_backlogged(lvcc))            /* Already backlogged */
1332                 goto queue_it;
1333         space = vcc_tx_space(lvcc,
1334                     TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1335         n = aal5_size(skb->len);
1336         APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1337         if (space < n + 16) {                   /* No space for this PDU */
1338                 __set_bit(lvcc->vci, lanai->backlog_vccs);
1339             queue_it:
1340                 skb_queue_tail(&lvcc->tx.backlog, skb);
1341                 return;
1342         }
1343         lanai_send_one_aal5(lanai, lvcc, skb, n);
1344 }
1345 
1346 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1347         struct lanai_vcc *lvcc, int endptr)
1348 {
1349         printk(KERN_INFO DEV_LABEL
1350             ": vcc_tx_unqueue_aal0: not implemented\n");
1351 }
1352 
1353 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1354         struct sk_buff *skb)
1355 {
1356         printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1357         /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1358         lanai_free_skb(lvcc->tx.atmvcc, skb);
1359 }
1360 
1361 /* -------------------- VCC RX BUFFER UTILITIES: */
1362 
1363 /* unlike the _tx_ cousins, this doesn't update ptr */
1364 static inline void vcc_rx_memcpy(unsigned char *dest,
1365         const struct lanai_vcc *lvcc, int n)
1366 {
1367         int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1368             ((const unsigned char *) (lvcc->rx.buf.end));
1369         if (m < 0)
1370                 m = 0;
1371         memcpy(dest, lvcc->rx.buf.ptr, n - m);
1372         memcpy(dest + n - m, lvcc->rx.buf.start, m);
1373         /* Make sure that these copies don't get reordered */
1374         barrier();
1375 }
1376 
1377 /* Receive AAL5 data on a VCC with a particular endptr */
1378 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1379 {
1380         int size;
1381         struct sk_buff *skb;
1382         const u32 *x;
1383         u32 *end = &lvcc->rx.buf.start[endptr * 4];
1384         int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1385         if (n < 0)
1386                 n += lanai_buf_size(&lvcc->rx.buf);
1387         APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1388             "vcc_rx_aal5: n out of range (%d/%zu)\n",
1389             n, lanai_buf_size(&lvcc->rx.buf));
1390         /* Recover the second-to-last word to get true pdu length */
1391         if ((x = &end[-2]) < lvcc->rx.buf.start)
1392                 x = &lvcc->rx.buf.end[-2];
1393         /*
1394          * Before we actually read from the buffer, make sure the memory
1395          * changes have arrived
1396          */
1397         rmb();
1398         size = be32_to_cpup(x) & 0xffff;
1399         if (unlikely(n != aal5_size(size))) {
1400                 /* Make sure size matches padding */
1401                 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1402                     "on vci=%d - size=%d n=%d\n",
1403                     lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1404                 lvcc->stats.x.aal5.rx_badlen++;
1405                 goto out;
1406         }
1407         skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1408         if (unlikely(skb == NULL)) {
1409                 lvcc->stats.rx_nomem++;
1410                 goto out;
1411         }
1412         skb_put(skb, size);
1413         vcc_rx_memcpy(skb->data, lvcc, size);
1414         ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1415         __net_timestamp(skb);
1416         lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1417         atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1418     out:
1419         lvcc->rx.buf.ptr = end;
1420         cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1421 }
1422 
1423 static void vcc_rx_aal0(struct lanai_dev *lanai)
1424 {
1425         printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1426         /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1427         /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1428 }
1429 
1430 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1431 
1432 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1433 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1434 #define VCCTABLE_GETFREEPAGE
1435 #else
1436 #include <linux/vmalloc.h>
1437 #endif
1438 
1439 static int vcc_table_allocate(struct lanai_dev *lanai)
1440 {
1441 #ifdef VCCTABLE_GETFREEPAGE
1442         APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1443             "vcc table > PAGE_SIZE!");
1444         lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1445         return (lanai->vccs == NULL) ? -ENOMEM : 0;
1446 #else
1447         int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1448         lanai->vccs = vzalloc(bytes);
1449         if (unlikely(lanai->vccs == NULL))
1450                 return -ENOMEM;
1451         return 0;
1452 #endif
1453 }
1454 
1455 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1456 {
1457 #ifdef VCCTABLE_GETFREEPAGE
1458         free_page((unsigned long) lanai->vccs);
1459 #else
1460         vfree(lanai->vccs);
1461 #endif
1462 }
1463 
1464 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1465 static inline struct lanai_vcc *new_lanai_vcc(void)
1466 {
1467         struct lanai_vcc *lvcc;
1468         lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1469         if (likely(lvcc != NULL)) {
1470                 skb_queue_head_init(&lvcc->tx.backlog);
1471 #ifdef DEBUG
1472                 lvcc->vci = -1;
1473 #endif
1474         }
1475         return lvcc;
1476 }
1477 
1478 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1479         struct lanai_buffer *buf, int max_sdu, int multiplier,
1480         const char *name)
1481 {
1482         int size;
1483         if (unlikely(max_sdu < 1))
1484                 max_sdu = 1;
1485         max_sdu = aal5_size(max_sdu);
1486         size = (max_sdu + 16) * multiplier + 16;
1487         lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1488         if (unlikely(buf->start == NULL))
1489                 return -ENOMEM;
1490         if (unlikely(lanai_buf_size(buf) < size))
1491                 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1492                     "for %s buffer, got only %zu\n", lanai->number, size,
1493                     name, lanai_buf_size(buf));
1494         DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1495         return 0;
1496 }
1497 
1498 /* Setup a RX buffer for a currently unbound AAL5 vci */
1499 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1500         struct lanai_vcc *lvcc, const struct atm_qos *qos)
1501 {
1502         return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1503             qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1504 }
1505 
1506 /* Setup a TX buffer for a currently unbound AAL5 vci */
1507 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1508         const struct atm_qos *qos)
1509 {
1510         int max_sdu, multiplier;
1511         if (qos->aal == ATM_AAL0) {
1512                 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1513                 max_sdu = ATM_CELL_SIZE - 1;
1514                 multiplier = AAL0_TX_MULTIPLIER;
1515         } else {
1516                 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1517                 max_sdu = qos->txtp.max_sdu;
1518                 multiplier = AAL5_TX_MULTIPLIER;
1519         }
1520         return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1521             multiplier, "TX");
1522 }
1523 
1524 static inline void host_vcc_bind(struct lanai_dev *lanai,
1525         struct lanai_vcc *lvcc, vci_t vci)
1526 {
1527         if (lvcc->vbase != NULL)
1528                 return;    /* We already were bound in the other direction */
1529         DPRINTK("Binding vci %d\n", vci);
1530 #ifdef USE_POWERDOWN
1531         if (lanai->nbound++ == 0) {
1532                 DPRINTK("Coming out of powerdown\n");
1533                 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1534                 conf1_write(lanai);
1535                 conf2_write(lanai);
1536         }
1537 #endif
1538         lvcc->vbase = cardvcc_addr(lanai, vci);
1539         lanai->vccs[lvcc->vci = vci] = lvcc;
1540 }
1541 
1542 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1543         struct lanai_vcc *lvcc)
1544 {
1545         if (lvcc->vbase == NULL)
1546                 return; /* This vcc was never bound */
1547         DPRINTK("Unbinding vci %d\n", lvcc->vci);
1548         lvcc->vbase = NULL;
1549         lanai->vccs[lvcc->vci] = NULL;
1550 #ifdef USE_POWERDOWN
1551         if (--lanai->nbound == 0) {
1552                 DPRINTK("Going into powerdown\n");
1553                 lanai->conf1 |= CONFIG1_POWERDOWN;
1554                 conf1_write(lanai);
1555         }
1556 #endif
1557 }
1558 
1559 /* -------------------- RESET CARD: */
1560 
1561 static void lanai_reset(struct lanai_dev *lanai)
1562 {
1563         printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1564             "implemented\n", lanai->number);
1565         /* TODO */
1566         /* The following is just a hack until we write the real
1567          * resetter - at least ack whatever interrupt sent us
1568          * here
1569          */
1570         reg_write(lanai, INT_ALL, IntAck_Reg);
1571         lanai->stats.card_reset++;
1572 }
1573 
1574 /* -------------------- SERVICE LIST UTILITIES: */
1575 
1576 /*
1577  * Allocate service buffer and tell card about it
1578  */
1579 static int service_buffer_allocate(struct lanai_dev *lanai)
1580 {
1581         lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1582             lanai->pci);
1583         if (unlikely(lanai->service.start == NULL))
1584                 return -ENOMEM;
1585         DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1586             lanai->service.start,
1587             lanai_buf_size(&lanai->service),
1588             lanai_buf_size_cardorder(&lanai->service));
1589         /* Clear ServWrite register to be safe */
1590         reg_write(lanai, 0, ServWrite_Reg);
1591         /* ServiceStuff register contains size and address of buffer */
1592         reg_write(lanai,
1593             SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1594             SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1595             ServiceStuff_Reg);
1596         return 0;
1597 }
1598 
1599 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1600 {
1601         lanai_buf_deallocate(&lanai->service, lanai->pci);
1602 }
1603 
1604 /* Bitfields in service list */
1605 #define SERVICE_TX      (0x80000000)    /* Was from transmission */
1606 #define SERVICE_TRASH   (0x40000000)    /* RXed PDU was trashed */
1607 #define SERVICE_CRCERR  (0x20000000)    /* RXed PDU had CRC error */
1608 #define SERVICE_CI      (0x10000000)    /* RXed PDU had CI set */
1609 #define SERVICE_CLP     (0x08000000)    /* RXed PDU had CLP set */
1610 #define SERVICE_STREAM  (0x04000000)    /* RX Stream mode */
1611 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1612 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1613 
1614 /* Handle one thing from the service list - returns true if it marked a
1615  * VCC ready for xmit
1616  */
1617 static int handle_service(struct lanai_dev *lanai, u32 s)
1618 {
1619         vci_t vci = SERVICE_GET_VCI(s);
1620         struct lanai_vcc *lvcc;
1621         read_lock(&vcc_sklist_lock);
1622         lvcc = lanai->vccs[vci];
1623         if (unlikely(lvcc == NULL)) {
1624                 read_unlock(&vcc_sklist_lock);
1625                 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1626                     "vcc %d\n", lanai->number, (unsigned int) s, vci);
1627                 if (s & SERVICE_TX)
1628                         lanai->stats.service_notx++;
1629                 else
1630                         lanai->stats.service_norx++;
1631                 return 0;
1632         }
1633         if (s & SERVICE_TX) {                   /* segmentation interrupt */
1634                 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1635                         read_unlock(&vcc_sklist_lock);
1636                         DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1637                             "vcc %d\n", lanai->number, (unsigned int) s, vci);
1638                         lanai->stats.service_notx++;
1639                         return 0;
1640                 }
1641                 __set_bit(vci, lanai->transmit_ready);
1642                 lvcc->tx.endptr = SERVICE_GET_END(s);
1643                 read_unlock(&vcc_sklist_lock);
1644                 return 1;
1645         }
1646         if (unlikely(lvcc->rx.atmvcc == NULL)) {
1647                 read_unlock(&vcc_sklist_lock);
1648                 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1649                     "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650                 lanai->stats.service_norx++;
1651                 return 0;
1652         }
1653         if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1654                 read_unlock(&vcc_sklist_lock);
1655                 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1656                     "vcc %d\n", lanai->number, (unsigned int) s, vci);
1657                 lanai->stats.service_rxnotaal5++;
1658                 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1659                 return 0;
1660         }
1661         if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1662                 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1663                 read_unlock(&vcc_sklist_lock);
1664                 return 0;
1665         }
1666         if (s & SERVICE_TRASH) {
1667                 int bytes;
1668                 read_unlock(&vcc_sklist_lock);
1669                 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1670                 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671                 lvcc->stats.x.aal5.service_trash++;
1672                 bytes = (SERVICE_GET_END(s) * 16) -
1673                     (((unsigned long) lvcc->rx.buf.ptr) -
1674                     ((unsigned long) lvcc->rx.buf.start)) + 47;
1675                 if (bytes < 0)
1676                         bytes += lanai_buf_size(&lvcc->rx.buf);
1677                 lanai->stats.ovfl_trash += (bytes / 48);
1678                 return 0;
1679         }
1680         if (s & SERVICE_STREAM) {
1681                 read_unlock(&vcc_sklist_lock);
1682                 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683                 lvcc->stats.x.aal5.service_stream++;
1684                 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1685                     "PDU on VCI %d!\n", lanai->number, vci);
1686                 lanai_reset(lanai);
1687                 return 0;
1688         }
1689         DPRINTK("got rx crc error on vci %d\n", vci);
1690         atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1691         lvcc->stats.x.aal5.service_rxcrc++;
1692         lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1693         cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1694         read_unlock(&vcc_sklist_lock);
1695         return 0;
1696 }
1697 
1698 /* Try transmitting on all VCIs that we marked ready to serve */
1699 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1700 {
1701         struct lanai_vcc *lvcc = lanai->vccs[vci];
1702         if (vcc_is_backlogged(lvcc))
1703                 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1704 }
1705 
1706 /* Run service queue -- called from interrupt context or with
1707  * interrupts otherwise disabled and with the lanai->servicelock
1708  * lock held
1709  */
1710 static void run_service(struct lanai_dev *lanai)
1711 {
1712         int ntx = 0;
1713         u32 wreg = reg_read(lanai, ServWrite_Reg);
1714         const u32 *end = lanai->service.start + wreg;
1715         while (lanai->service.ptr != end) {
1716                 ntx += handle_service(lanai,
1717                     le32_to_cpup(lanai->service.ptr++));
1718                 if (lanai->service.ptr >= lanai->service.end)
1719                         lanai->service.ptr = lanai->service.start;
1720         }
1721         reg_write(lanai, wreg, ServRead_Reg);
1722         if (ntx != 0) {
1723                 read_lock(&vcc_sklist_lock);
1724                 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1725                     iter_transmit);
1726                 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1727                 read_unlock(&vcc_sklist_lock);
1728         }
1729 }
1730 
1731 /* -------------------- GATHER STATISTICS: */
1732 
1733 static void get_statistics(struct lanai_dev *lanai)
1734 {
1735         u32 statreg = reg_read(lanai, Statistics_Reg);
1736         lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1737         lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1738         lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1739         lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1740 }
1741 
1742 /* -------------------- POLLING TIMER: */
1743 
1744 #ifndef DEBUG_RW
1745 /* Try to undequeue 1 backlogged vcc */
1746 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1747 {
1748         struct lanai_vcc *lvcc = lanai->vccs[vci];
1749         int endptr;
1750         if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1751             !vcc_is_backlogged(lvcc)) {
1752                 __clear_bit(vci, lanai->backlog_vccs);
1753                 return;
1754         }
1755         endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1756         lvcc->tx.unqueue(lanai, lvcc, endptr);
1757 }
1758 #endif /* !DEBUG_RW */
1759 
1760 static void lanai_timed_poll(struct timer_list *t)
1761 {
1762         struct lanai_dev *lanai = from_timer(lanai, t, timer);
1763 #ifndef DEBUG_RW
1764         unsigned long flags;
1765 #ifdef USE_POWERDOWN
1766         if (lanai->conf1 & CONFIG1_POWERDOWN)
1767                 return;
1768 #endif /* USE_POWERDOWN */
1769         local_irq_save(flags);
1770         /* If we can grab the spinlock, check if any services need to be run */
1771         if (spin_trylock(&lanai->servicelock)) {
1772                 run_service(lanai);
1773                 spin_unlock(&lanai->servicelock);
1774         }
1775         /* ...and see if any backlogged VCs can make progress */
1776         /* unfortunately linux has no read_trylock() currently */
1777         read_lock(&vcc_sklist_lock);
1778         vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1779         read_unlock(&vcc_sklist_lock);
1780         local_irq_restore(flags);
1781 
1782         get_statistics(lanai);
1783 #endif /* !DEBUG_RW */
1784         mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1785 }
1786 
1787 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1788 {
1789         timer_setup(&lanai->timer, lanai_timed_poll, 0);
1790         lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1791         add_timer(&lanai->timer);
1792 }
1793 
1794 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1795 {
1796         del_timer_sync(&lanai->timer);
1797 }
1798 
1799 /* -------------------- INTERRUPT SERVICE: */
1800 
1801 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1802 {
1803         u32 ack = 0;
1804         if (reason & INT_SERVICE) {
1805                 ack = INT_SERVICE;
1806                 spin_lock(&lanai->servicelock);
1807                 run_service(lanai);
1808                 spin_unlock(&lanai->servicelock);
1809         }
1810         if (reason & (INT_AAL0_STR | INT_AAL0)) {
1811                 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1812                 vcc_rx_aal0(lanai);
1813         }
1814         /* The rest of the interrupts are pretty rare */
1815         if (ack == reason)
1816                 goto done;
1817         if (reason & INT_STATS) {
1818                 reason &= ~INT_STATS;   /* No need to ack */
1819                 get_statistics(lanai);
1820         }
1821         if (reason & INT_STATUS) {
1822                 ack |= reason & INT_STATUS;
1823                 lanai_check_status(lanai);
1824         }
1825         if (unlikely(reason & INT_DMASHUT)) {
1826                 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1827                     "shutdown, reason=0x%08X, address=0x%08X\n",
1828                     lanai->number, (unsigned int) (reason & INT_DMASHUT),
1829                     (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1830                 if (reason & INT_TABORTBM) {
1831                         lanai_reset(lanai);
1832                         return;
1833                 }
1834                 ack |= (reason & INT_DMASHUT);
1835                 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1836                     lanai->number);
1837                 conf1_write(lanai);
1838                 lanai->stats.dma_reenable++;
1839                 pcistatus_check(lanai, 0);
1840         }
1841         if (unlikely(reason & INT_TABORTSENT)) {
1842                 ack |= (reason & INT_TABORTSENT);
1843                 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1844                     lanai->number);
1845                 pcistatus_check(lanai, 0);
1846         }
1847         if (unlikely(reason & INT_SEGSHUT)) {
1848                 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1849                     "segmentation shutdown, reason=0x%08X\n", lanai->number,
1850                     (unsigned int) (reason & INT_SEGSHUT));
1851                 lanai_reset(lanai);
1852                 return;
1853         }
1854         if (unlikely(reason & (INT_PING | INT_WAKE))) {
1855                 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1856                     "unexpected interrupt 0x%08X, resetting\n",
1857                     lanai->number,
1858                     (unsigned int) (reason & (INT_PING | INT_WAKE)));
1859                 lanai_reset(lanai);
1860                 return;
1861         }
1862 #ifdef DEBUG
1863         if (unlikely(ack != reason)) {
1864                 DPRINTK("unacked ints: 0x%08X\n",
1865                     (unsigned int) (reason & ~ack));
1866                 ack = reason;
1867         }
1868 #endif
1869    done:
1870         if (ack != 0)
1871                 reg_write(lanai, ack, IntAck_Reg);
1872 }
1873 
1874 static irqreturn_t lanai_int(int irq, void *devid)
1875 {
1876         struct lanai_dev *lanai = devid;
1877         u32 reason;
1878 
1879 #ifdef USE_POWERDOWN
1880         /*
1881          * If we're powered down we shouldn't be generating any interrupts -
1882          * so assume that this is a shared interrupt line and it's for someone
1883          * else
1884          */
1885         if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1886                 return IRQ_NONE;
1887 #endif
1888 
1889         reason = intr_pending(lanai);
1890         if (reason == 0)
1891                 return IRQ_NONE;        /* Must be for someone else */
1892 
1893         do {
1894                 if (unlikely(reason == 0xFFFFFFFF))
1895                         break;          /* Maybe we've been unplugged? */
1896                 lanai_int_1(lanai, reason);
1897                 reason = intr_pending(lanai);
1898         } while (reason != 0);
1899 
1900         return IRQ_HANDLED;
1901 }
1902 
1903 /* TODO - it would be nice if we could use the "delayed interrupt" system
1904  *   to some advantage
1905  */
1906 
1907 /* -------------------- CHECK BOARD ID/REV: */
1908 
1909 /*
1910  * The board id and revision are stored both in the reset register and
1911  * in the PCI configuration space - the documentation says to check
1912  * each of them.  If revp!=NULL we store the revision there
1913  */
1914 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1915 {
1916         DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1917                 (int) RESET_GET_BOARD_ID(val),
1918                 (int) RESET_GET_BOARD_REV(val));
1919         if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1920                 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1921                     "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1922                 return -ENODEV;
1923         }
1924         if (revp != NULL)
1925                 *revp = RESET_GET_BOARD_REV(val);
1926         return 0;
1927 }
1928 
1929 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1930 
1931 static int lanai_pci_start(struct lanai_dev *lanai)
1932 {
1933         struct pci_dev *pci = lanai->pci;
1934         int result;
1935 
1936         if (pci_enable_device(pci) != 0) {
1937                 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1938                     "PCI device", lanai->number);
1939                 return -ENXIO;
1940         }
1941         pci_set_master(pci);
1942         if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1943                 printk(KERN_WARNING DEV_LABEL
1944                     "(itf %d): No suitable DMA available.\n", lanai->number);
1945                 return -EBUSY;
1946         }
1947         result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1948         if (result != 0)
1949                 return result;
1950         /* Set latency timer to zero as per lanai docs */
1951         result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1952         if (result != PCIBIOS_SUCCESSFUL) {
1953                 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1954                     "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1955                 return -EINVAL;
1956         }
1957         pcistatus_check(lanai, 1);
1958         pcistatus_check(lanai, 0);
1959         return 0;
1960 }
1961 
1962 /* -------------------- VPI/VCI ALLOCATION: */
1963 
1964 /*
1965  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1966  * get a CBRZERO interrupt), and we can use it only if no one is receiving
1967  * AAL0 traffic (since they will use the same queue) - according to the
1968  * docs we shouldn't even use it for AAL0 traffic
1969  */
1970 static inline int vci0_is_ok(struct lanai_dev *lanai,
1971         const struct atm_qos *qos)
1972 {
1973         if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1974                 return 0;
1975         if (qos->rxtp.traffic_class != ATM_NONE) {
1976                 if (lanai->naal0 != 0)
1977                         return 0;
1978                 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1979                 conf2_write_if_powerup(lanai);
1980         }
1981         return 1;
1982 }
1983 
1984 /* return true if vci is currently unused, or if requested qos is
1985  * compatible
1986  */
1987 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1988         const struct atm_vcc *atmvcc)
1989 {
1990         const struct atm_qos *qos = &atmvcc->qos;
1991         const struct lanai_vcc *lvcc = lanai->vccs[vci];
1992         if (vci == 0 && !vci0_is_ok(lanai, qos))
1993                 return 0;
1994         if (unlikely(lvcc != NULL)) {
1995                 if (qos->rxtp.traffic_class != ATM_NONE &&
1996                     lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1997                         return 0;
1998                 if (qos->txtp.traffic_class != ATM_NONE &&
1999                     lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2000                         return 0;
2001                 if (qos->txtp.traffic_class == ATM_CBR &&
2002                     lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2003                         return 0;
2004         }
2005         if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2006             qos->rxtp.traffic_class != ATM_NONE) {
2007                 const struct lanai_vcc *vci0 = lanai->vccs[0];
2008                 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2009                         return 0;
2010                 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2011                 conf2_write_if_powerup(lanai);
2012         }
2013         return 1;
2014 }
2015 
2016 static int lanai_normalize_ci(struct lanai_dev *lanai,
2017         const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2018 {
2019         switch (*vpip) {
2020                 case ATM_VPI_ANY:
2021                         *vpip = 0;
2022                         /* FALLTHROUGH */
2023                 case 0:
2024                         break;
2025                 default:
2026                         return -EADDRINUSE;
2027         }
2028         switch (*vcip) {
2029                 case ATM_VCI_ANY:
2030                         for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2031                             (*vcip)++)
2032                                 if (vci_is_ok(lanai, *vcip, atmvcc))
2033                                         return 0;
2034                         return -EADDRINUSE;
2035                 default:
2036                         if (*vcip >= lanai->num_vci || *vcip < 0 ||
2037                             !vci_is_ok(lanai, *vcip, atmvcc))
2038                                 return -EADDRINUSE;
2039         }
2040         return 0;
2041 }
2042 
2043 /* -------------------- MANAGE CBR: */
2044 
2045 /*
2046  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2047  * Note that storing a number greater than 2046.0 will result in
2048  * incorrect shaping
2049  */
2050 #define CBRICG_FRAC_BITS        (4)
2051 #define CBRICG_MAX              (2046 << CBRICG_FRAC_BITS)
2052 
2053 /*
2054  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2055  * where MAXPCR is (according to the docs) 25600000/(54*8),
2056  * which is equal to (3125<<9)/27.
2057  *
2058  * Solving for ICG, we get:
2059  *    ICG = MAXPCR/PCR - 1
2060  *    ICG = (3125<<9)/(27*PCR) - 1
2061  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2062  *
2063  * The end result is supposed to be a fixed-point number with FRAC_BITS
2064  * bits of a fractional part, so we keep everything in the numerator
2065  * shifted by that much as we compute
2066  *
2067  */
2068 static int pcr_to_cbricg(const struct atm_qos *qos)
2069 {
2070         int rounddown = 0;      /* 1 = Round PCR down, i.e. round ICG _up_ */
2071         int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2072         if (pcr == 0)           /* Use maximum bandwidth */
2073                 return 0;
2074         if (pcr < 0) {
2075                 rounddown = 1;
2076                 pcr = -pcr;
2077         }
2078         x = pcr * 27;
2079         icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2080         if (rounddown)
2081                 icg += x - 1;
2082         icg /= x;
2083         if (icg > CBRICG_MAX)
2084                 icg = CBRICG_MAX;
2085         DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2086             pcr, rounddown ? 'Y' : 'N', icg);
2087         return icg;
2088 }
2089 
2090 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2091 {
2092         reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2093         reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2094         lanai->conf2 |= CONFIG2_CBR_ENABLE;
2095         conf2_write(lanai);
2096 }
2097 
2098 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2099 {
2100         lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2101         conf2_write(lanai);
2102 }
2103 
2104 /* -------------------- OPERATIONS: */
2105 
2106 /* setup a newly detected device */
2107 static int lanai_dev_open(struct atm_dev *atmdev)
2108 {
2109         struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2110         unsigned long raw_base;
2111         int result;
2112 
2113         DPRINTK("In lanai_dev_open()\n");
2114         /* Basic device fields */
2115         lanai->number = atmdev->number;
2116         lanai->num_vci = NUM_VCI;
2117         bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2118         bitmap_zero(lanai->transmit_ready, NUM_VCI);
2119         lanai->naal0 = 0;
2120 #ifdef USE_POWERDOWN
2121         lanai->nbound = 0;
2122 #endif
2123         lanai->cbrvcc = NULL;
2124         memset(&lanai->stats, 0, sizeof lanai->stats);
2125         spin_lock_init(&lanai->endtxlock);
2126         spin_lock_init(&lanai->servicelock);
2127         atmdev->ci_range.vpi_bits = 0;
2128         atmdev->ci_range.vci_bits = 0;
2129         while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2130                 atmdev->ci_range.vci_bits++;
2131         atmdev->link_rate = ATM_25_PCR;
2132 
2133         /* 3.2: PCI initialization */
2134         if ((result = lanai_pci_start(lanai)) != 0)
2135                 goto error;
2136         raw_base = lanai->pci->resource[0].start;
2137         lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2138         if (lanai->base == NULL) {
2139                 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2140                 result = -ENOMEM;
2141                 goto error_pci;
2142         }
2143         /* 3.3: Reset lanai and PHY */
2144         reset_board(lanai);
2145         lanai->conf1 = reg_read(lanai, Config1_Reg);
2146         lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2147             CONFIG1_MASK_LEDMODE);
2148         lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2149         reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2150         udelay(1000);
2151         conf1_write(lanai);
2152 
2153         /*
2154          * 3.4: Turn on endian mode for big-endian hardware
2155          *   We don't actually want to do this - the actual bit fields
2156          *   in the endian register are not documented anywhere.
2157          *   Instead we do the bit-flipping ourselves on big-endian
2158          *   hardware.
2159          *
2160          * 3.5: get the board ID/rev by reading the reset register
2161          */
2162         result = check_board_id_and_rev("register",
2163             reg_read(lanai, Reset_Reg), &lanai->board_rev);
2164         if (result != 0)
2165                 goto error_unmap;
2166 
2167         /* 3.6: read EEPROM */
2168         if ((result = eeprom_read(lanai)) != 0)
2169                 goto error_unmap;
2170         if ((result = eeprom_validate(lanai)) != 0)
2171                 goto error_unmap;
2172 
2173         /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2174         reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2175         udelay(1000);
2176         conf1_write(lanai);
2177         /* TODO - loopback tests */
2178         lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2179         conf1_write(lanai);
2180 
2181         /* 3.8/3.9: test and initialize card SRAM */
2182         if ((result = sram_test_and_clear(lanai)) != 0)
2183                 goto error_unmap;
2184 
2185         /* 3.10: initialize lanai registers */
2186         lanai->conf1 |= CONFIG1_DMA_ENABLE;
2187         conf1_write(lanai);
2188         if ((result = service_buffer_allocate(lanai)) != 0)
2189                 goto error_unmap;
2190         if ((result = vcc_table_allocate(lanai)) != 0)
2191                 goto error_service;
2192         lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2193             CONFIG2_HEC_DROP |  /* ??? */ CONFIG2_PTI7_MODE;
2194         conf2_write(lanai);
2195         reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2196         reg_write(lanai, 0, CBR_ICG_Reg);       /* CBR defaults to no limit */
2197         if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2198             DEV_LABEL, lanai)) != 0) {
2199                 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2200                 goto error_vcctable;
2201         }
2202         mb();                           /* Make sure that all that made it */
2203         intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2204         /* 3.11: initialize loop mode (i.e. turn looping off) */
2205         lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2206             CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2207             CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2208         conf1_write(lanai);
2209         lanai->status = reg_read(lanai, Status_Reg);
2210         /* We're now done initializing this card */
2211 #ifdef USE_POWERDOWN
2212         lanai->conf1 |= CONFIG1_POWERDOWN;
2213         conf1_write(lanai);
2214 #endif
2215         memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2216         lanai_timed_poll_start(lanai);
2217         printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2218                 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2219                 lanai->base, lanai->pci->irq, atmdev->esi);
2220         printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2221             "board_rev=%d\n", lanai->number,
2222             lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2223             (unsigned int) lanai->serialno, lanai->board_rev);
2224         return 0;
2225 
2226     error_vcctable:
2227         vcc_table_deallocate(lanai);
2228     error_service:
2229         service_buffer_deallocate(lanai);
2230     error_unmap:
2231         reset_board(lanai);
2232 #ifdef USE_POWERDOWN
2233         lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2234         conf1_write(lanai);
2235 #endif
2236         iounmap(lanai->base);
2237     error_pci:
2238         pci_disable_device(lanai->pci);
2239     error:
2240         return result;
2241 }
2242 
2243 /* called when device is being shutdown, and all vcc's are gone - higher
2244  * levels will deallocate the atm device for us
2245  */
2246 static void lanai_dev_close(struct atm_dev *atmdev)
2247 {
2248         struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249         printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2250             lanai->number);
2251         lanai_timed_poll_stop(lanai);
2252 #ifdef USE_POWERDOWN
2253         lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2254         conf1_write(lanai);
2255 #endif
2256         intr_disable(lanai, INT_ALL);
2257         free_irq(lanai->pci->irq, lanai);
2258         reset_board(lanai);
2259 #ifdef USE_POWERDOWN
2260         lanai->conf1 |= CONFIG1_POWERDOWN;
2261         conf1_write(lanai);
2262 #endif
2263         pci_disable_device(lanai->pci);
2264         vcc_table_deallocate(lanai);
2265         service_buffer_deallocate(lanai);
2266         iounmap(lanai->base);
2267         kfree(lanai);
2268 }
2269 
2270 /* close a vcc */
2271 static void lanai_close(struct atm_vcc *atmvcc)
2272 {
2273         struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2274         struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2275         if (lvcc == NULL)
2276                 return;
2277         clear_bit(ATM_VF_READY, &atmvcc->flags);
2278         clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2279         if (lvcc->rx.atmvcc == atmvcc) {
2280                 lanai_shutdown_rx_vci(lvcc);
2281                 if (atmvcc->qos.aal == ATM_AAL0) {
2282                         if (--lanai->naal0 <= 0)
2283                                 aal0_buffer_free(lanai);
2284                 } else
2285                         lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2286                 lvcc->rx.atmvcc = NULL;
2287         }
2288         if (lvcc->tx.atmvcc == atmvcc) {
2289                 if (atmvcc == lanai->cbrvcc) {
2290                         if (lvcc->vbase != NULL)
2291                                 lanai_cbr_shutdown(lanai);
2292                         lanai->cbrvcc = NULL;
2293                 }
2294                 lanai_shutdown_tx_vci(lanai, lvcc);
2295                 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2296                 lvcc->tx.atmvcc = NULL;
2297         }
2298         if (--lvcc->nref == 0) {
2299                 host_vcc_unbind(lanai, lvcc);
2300                 kfree(lvcc);
2301         }
2302         atmvcc->dev_data = NULL;
2303         clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2304 }
2305 
2306 /* open a vcc on the card to vpi/vci */
2307 static int lanai_open(struct atm_vcc *atmvcc)
2308 {
2309         struct lanai_dev *lanai;
2310         struct lanai_vcc *lvcc;
2311         int result = 0;
2312         int vci = atmvcc->vci;
2313         short vpi = atmvcc->vpi;
2314         /* we don't support partial open - it's not really useful anyway */
2315         if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2316             (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2317                 return -EINVAL;
2318         lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2319         result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2320         if (unlikely(result != 0))
2321                 goto out;
2322         set_bit(ATM_VF_ADDR, &atmvcc->flags);
2323         if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2324                 return -EINVAL;
2325         DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2326             (int) vpi, vci);
2327         lvcc = lanai->vccs[vci];
2328         if (lvcc == NULL) {
2329                 lvcc = new_lanai_vcc();
2330                 if (unlikely(lvcc == NULL))
2331                         return -ENOMEM;
2332                 atmvcc->dev_data = lvcc;
2333         }
2334         lvcc->nref++;
2335         if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2336                 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2337                     vci);
2338                 if (atmvcc->qos.aal == ATM_AAL0) {
2339                         if (lanai->naal0 == 0)
2340                                 result = aal0_buffer_allocate(lanai);
2341                 } else
2342                         result = lanai_setup_rx_vci_aal5(
2343                             lanai, lvcc, &atmvcc->qos);
2344                 if (unlikely(result != 0))
2345                         goto out_free;
2346                 lvcc->rx.atmvcc = atmvcc;
2347                 lvcc->stats.rx_nomem = 0;
2348                 lvcc->stats.x.aal5.rx_badlen = 0;
2349                 lvcc->stats.x.aal5.service_trash = 0;
2350                 lvcc->stats.x.aal5.service_stream = 0;
2351                 lvcc->stats.x.aal5.service_rxcrc = 0;
2352                 if (atmvcc->qos.aal == ATM_AAL0)
2353                         lanai->naal0++;
2354         }
2355         if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2356                 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2357                     vci);
2358                 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2359                 if (unlikely(result != 0))
2360                         goto out_free;
2361                 lvcc->tx.atmvcc = atmvcc;
2362                 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2363                         APRINTK(lanai->cbrvcc == NULL,
2364                             "cbrvcc!=NULL, vci=%d\n", vci);
2365                         lanai->cbrvcc = atmvcc;
2366                 }
2367         }
2368         host_vcc_bind(lanai, lvcc, vci);
2369         /*
2370          * Make sure everything made it to RAM before we tell the card about
2371          * the VCC
2372          */
2373         wmb();
2374         if (atmvcc == lvcc->rx.atmvcc)
2375                 host_vcc_start_rx(lvcc);
2376         if (atmvcc == lvcc->tx.atmvcc) {
2377                 host_vcc_start_tx(lvcc);
2378                 if (lanai->cbrvcc == atmvcc)
2379                         lanai_cbr_setup(lanai);
2380         }
2381         set_bit(ATM_VF_READY, &atmvcc->flags);
2382         return 0;
2383     out_free:
2384         lanai_close(atmvcc);
2385     out:
2386         return result;
2387 }
2388 
2389 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2390 {
2391         struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2392         struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2393         unsigned long flags;
2394         if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2395               lvcc->tx.atmvcc != atmvcc))
2396                 goto einval;
2397 #ifdef DEBUG
2398         if (unlikely(skb == NULL)) {
2399                 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2400                 goto einval;
2401         }
2402         if (unlikely(lanai == NULL)) {
2403                 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2404                 goto einval;
2405         }
2406 #endif
2407         ATM_SKB(skb)->vcc = atmvcc;
2408         switch (atmvcc->qos.aal) {
2409                 case ATM_AAL5:
2410                         read_lock_irqsave(&vcc_sklist_lock, flags);
2411                         vcc_tx_aal5(lanai, lvcc, skb);
2412                         read_unlock_irqrestore(&vcc_sklist_lock, flags);
2413                         return 0;
2414                 case ATM_AAL0:
2415                         if (unlikely(skb->len != ATM_CELL_SIZE-1))
2416                                 goto einval;
2417   /* NOTE - this next line is technically invalid - we haven't unshared skb */
2418                         cpu_to_be32s((u32 *) skb->data);
2419                         read_lock_irqsave(&vcc_sklist_lock, flags);
2420                         vcc_tx_aal0(lanai, lvcc, skb);
2421                         read_unlock_irqrestore(&vcc_sklist_lock, flags);
2422                         return 0;
2423         }
2424         DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2425             atmvcc->vci);
2426     einval:
2427         lanai_free_skb(atmvcc, skb);
2428         return -EINVAL;
2429 }
2430 
2431 static int lanai_change_qos(struct atm_vcc *atmvcc,
2432         /*const*/ struct atm_qos *qos, int flags)
2433 {
2434         return -EBUSY;          /* TODO: need to write this */
2435 }
2436 
2437 #ifndef CONFIG_PROC_FS
2438 #define lanai_proc_read NULL
2439 #else
2440 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2441 {
2442         struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2443         loff_t left = *pos;
2444         struct lanai_vcc *lvcc;
2445         if (left-- == 0)
2446                 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2447                     "serial=%u, magic=0x%08X, num_vci=%d\n",
2448                     atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2449                     (unsigned int) lanai->serialno,
2450                     (unsigned int) lanai->magicno, lanai->num_vci);
2451         if (left-- == 0)
2452                 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2453                     lanai->board_rev, (int) lanai->pci->revision);
2454         if (left-- == 0)
2455                 return sprintf(page, "EEPROM ESI: %pM\n",
2456                     &lanai->eeprom[EEPROM_MAC]);
2457         if (left-- == 0)
2458                 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2459                     "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2460                     (lanai->status & STATUS_LOCD) ? 1 : 0,
2461                     (lanai->status & STATUS_LED) ? 1 : 0,
2462                     (lanai->status & STATUS_GPIN) ? 1 : 0);
2463         if (left-- == 0)
2464                 return sprintf(page, "global buffer sizes: service=%zu, "
2465                     "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2466                     lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2467         if (left-- == 0) {
2468                 get_statistics(lanai);
2469                 return sprintf(page, "cells in error: overflow=%u, "
2470                     "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2471                     lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2472                     lanai->stats.hec_err, lanai->stats.atm_ovfl);
2473         }
2474         if (left-- == 0)
2475                 return sprintf(page, "PCI errors: parity_detect=%u, "
2476                     "master_abort=%u, master_target_abort=%u,\n",
2477                     lanai->stats.pcierr_parity_detect,
2478                     lanai->stats.pcierr_serr_set,
2479                     lanai->stats.pcierr_m_target_abort);
2480         if (left-- == 0)
2481                 return sprintf(page, "            slave_target_abort=%u, "
2482                     "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2483                     lanai->stats.pcierr_master_parity);
2484         if (left-- == 0)
2485                 return sprintf(page, "                     no_tx=%u, "
2486                     "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2487                     lanai->stats.service_notx,
2488                     lanai->stats.service_rxnotaal5);
2489         if (left-- == 0)
2490                 return sprintf(page, "resets: dma=%u, card=%u\n",
2491                     lanai->stats.dma_reenable, lanai->stats.card_reset);
2492         /* At this point, "left" should be the VCI we're looking for */
2493         read_lock(&vcc_sklist_lock);
2494         for (; ; left++) {
2495                 if (left >= NUM_VCI) {
2496                         left = 0;
2497                         goto out;
2498                 }
2499                 if ((lvcc = lanai->vccs[left]) != NULL)
2500                         break;
2501                 (*pos)++;
2502         }
2503         /* Note that we re-use "left" here since we're done with it */
2504         left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2505             lvcc->nref, lvcc->stats.rx_nomem);
2506         if (lvcc->rx.atmvcc != NULL) {
2507                 left += sprintf(&page[left], ",\n          rx_AAL=%d",
2508                     lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2509                 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2510                         left += sprintf(&page[left], ", rx_buf_size=%zu, "
2511                             "rx_bad_len=%u,\n          rx_service_trash=%u, "
2512                             "rx_service_stream=%u, rx_bad_crc=%u",
2513                             lanai_buf_size(&lvcc->rx.buf),
2514                             lvcc->stats.x.aal5.rx_badlen,
2515                             lvcc->stats.x.aal5.service_trash,
2516                             lvcc->stats.x.aal5.service_stream,
2517                             lvcc->stats.x.aal5.service_rxcrc);
2518         }
2519         if (lvcc->tx.atmvcc != NULL)
2520                 left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2521                     "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2522                     lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2523                     lanai_buf_size(&lvcc->tx.buf),
2524                     lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2525                     vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2526         page[left++] = '\n';
2527         page[left] = '\0';
2528     out:
2529         read_unlock(&vcc_sklist_lock);
2530         return left;
2531 }
2532 #endif /* CONFIG_PROC_FS */
2533 
2534 /* -------------------- HOOKS: */
2535 
2536 static const struct atmdev_ops ops = {
2537         .dev_close      = lanai_dev_close,
2538         .open           = lanai_open,
2539         .close          = lanai_close,
2540         .getsockopt     = NULL,
2541         .setsockopt     = NULL,
2542         .send           = lanai_send,
2543         .phy_put        = NULL,
2544         .phy_get        = NULL,
2545         .change_qos     = lanai_change_qos,
2546         .proc_read      = lanai_proc_read,
2547         .owner          = THIS_MODULE
2548 };
2549 
2550 /* initialize one probed card */
2551 static int lanai_init_one(struct pci_dev *pci,
2552                           const struct pci_device_id *ident)
2553 {
2554         struct lanai_dev *lanai;
2555         struct atm_dev *atmdev;
2556         int result;
2557 
2558         lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2559         if (lanai == NULL) {
2560                 printk(KERN_ERR DEV_LABEL
2561                        ": couldn't allocate dev_data structure!\n");
2562                 return -ENOMEM;
2563         }
2564 
2565         atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2566         if (atmdev == NULL) {
2567                 printk(KERN_ERR DEV_LABEL
2568                     ": couldn't register atm device!\n");
2569                 kfree(lanai);
2570                 return -EBUSY;
2571         }
2572 
2573         atmdev->dev_data = lanai;
2574         lanai->pci = pci;
2575         lanai->type = (enum lanai_type) ident->device;
2576 
2577         result = lanai_dev_open(atmdev);
2578         if (result != 0) {
2579                 DPRINTK("lanai_start() failed, err=%d\n", -result);
2580                 atm_dev_deregister(atmdev);
2581                 kfree(lanai);
2582         }
2583         return result;
2584 }
2585 
2586 static const struct pci_device_id lanai_pci_tbl[] = {
2587         { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2588         { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2589         { 0, }  /* terminal entry */
2590 };
2591 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2592 
2593 static struct pci_driver lanai_driver = {
2594         .name     = DEV_LABEL,
2595         .id_table = lanai_pci_tbl,
2596         .probe    = lanai_init_one,
2597 };
2598 
2599 module_pci_driver(lanai_driver);
2600 
2601 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2602 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2603 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */