root/drivers/atm/ambassador.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. show_version
  2. wr_plain
  3. rd_plain
  4. wr_mem
  5. rd_mem
  6. dump_registers
  7. dump_loader_block
  8. dump_command
  9. dump_skb
  10. check_area
  11. amb_kfree_skb
  12. tx_complete
  13. rx_complete
  14. command_do
  15. tx_give
  16. tx_take
  17. rx_give
  18. rx_take
  19. drain_rx_pool
  20. drain_rx_pools
  21. fill_rx_pool
  22. fill_rx_pools
  23. interrupts_on
  24. interrupts_off
  25. interrupt_handler
  26. make_rate
  27. amb_open
  28. amb_close
  29. amb_send
  30. amb_free_rx_skb
  31. amb_proc_read
  32. do_housekeeping
  33. create_queues
  34. destroy_queues
  35. decode_loader_result
  36. do_loader_command
  37. get_loader_version
  38. loader_write
  39. loader_verify
  40. loader_start
  41. sf
  42. amb_reset
  43. ucode_init
  44. bus_addr
  45. amb_talk
  46. amb_ucode_version
  47. amb_esi
  48. fixup_plx_window
  49. amb_init
  50. setup_dev
  51. setup_pci_dev
  52. amb_probe
  53. amb_remove_one
  54. amb_check_args
  55. amb_module_init
  56. amb_module_exit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3   Madge Ambassador ATM Adapter driver.
   4   Copyright (C) 1995-1999  Madge Networks Ltd.
   5 
   6 */
   7 
   8 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
   9 
  10 #include <linux/module.h>
  11 #include <linux/types.h>
  12 #include <linux/pci.h>
  13 #include <linux/kernel.h>
  14 #include <linux/init.h>
  15 #include <linux/ioport.h>
  16 #include <linux/atmdev.h>
  17 #include <linux/delay.h>
  18 #include <linux/interrupt.h>
  19 #include <linux/poison.h>
  20 #include <linux/bitrev.h>
  21 #include <linux/mutex.h>
  22 #include <linux/firmware.h>
  23 #include <linux/ihex.h>
  24 #include <linux/slab.h>
  25 
  26 #include <linux/atomic.h>
  27 #include <asm/io.h>
  28 #include <asm/byteorder.h>
  29 
  30 #include "ambassador.h"
  31 
  32 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  33 #define description_string "Madge ATM Ambassador driver"
  34 #define version_string "1.2.4"
  35 
  36 static inline void __init show_version (void) {
  37   printk ("%s version %s\n", description_string, version_string);
  38 }
  39 
  40 /*
  41   
  42   Theory of Operation
  43   
  44   I Hardware, detection, initialisation and shutdown.
  45   
  46   1. Supported Hardware
  47   
  48   This driver is for the PCI ATMizer-based Ambassador card (except
  49   very early versions). It is not suitable for the similar EISA "TR7"
  50   card. Commercially, both cards are known as Collage Server ATM
  51   adapters.
  52   
  53   The loader supports image transfer to the card, image start and few
  54   other miscellaneous commands.
  55   
  56   Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
  57   
  58   The cards are big-endian.
  59   
  60   2. Detection
  61   
  62   Standard PCI stuff, the early cards are detected and rejected.
  63   
  64   3. Initialisation
  65   
  66   The cards are reset and the self-test results are checked. The
  67   microcode image is then transferred and started. This waits for a
  68   pointer to a descriptor containing details of the host-based queues
  69   and buffers and various parameters etc. Once they are processed
  70   normal operations may begin. The BIA is read using a microcode
  71   command.
  72   
  73   4. Shutdown
  74   
  75   This may be accomplished either by a card reset or via the microcode
  76   shutdown command. Further investigation required.
  77   
  78   5. Persistent state
  79   
  80   The card reset does not affect PCI configuration (good) or the
  81   contents of several other "shared run-time registers" (bad) which
  82   include doorbell and interrupt control as well as EEPROM and PCI
  83   control. The driver must be careful when modifying these registers
  84   not to touch bits it does not use and to undo any changes at exit.
  85   
  86   II Driver software
  87   
  88   0. Generalities
  89   
  90   The adapter is quite intelligent (fast) and has a simple interface
  91   (few features). VPI is always zero, 1024 VCIs are supported. There
  92   is limited cell rate support. UBR channels can be capped and ABR
  93   (explicit rate, but not EFCI) is supported. There is no CBR or VBR
  94   support.
  95   
  96   1. Driver <-> Adapter Communication
  97   
  98   Apart from the basic loader commands, the driver communicates
  99   through three entities: the command queue (CQ), the transmit queue
 100   pair (TXQ) and the receive queue pairs (RXQ). These three entities
 101   are set up by the host and passed to the microcode just after it has
 102   been started.
 103   
 104   All queues are host-based circular queues. They are contiguous and
 105   (due to hardware limitations) have some restrictions as to their
 106   locations in (bus) memory. They are of the "full means the same as
 107   empty so don't do that" variety since the adapter uses pointers
 108   internally.
 109   
 110   The queue pairs work as follows: one queue is for supply to the
 111   adapter, items in it are pending and are owned by the adapter; the
 112   other is the queue for return from the adapter, items in it have
 113   been dealt with by the adapter. The host adds items to the supply
 114   (TX descriptors and free RX buffer descriptors) and removes items
 115   from the return (TX and RX completions). The adapter deals with out
 116   of order completions.
 117   
 118   Interrupts (card to host) and the doorbell (host to card) are used
 119   for signalling.
 120   
 121   1. CQ
 122   
 123   This is to communicate "open VC", "close VC", "get stats" etc. to
 124   the adapter. At most one command is retired every millisecond by the
 125   card. There is no out of order completion or notification. The
 126   driver needs to check the return code of the command, waiting as
 127   appropriate.
 128   
 129   2. TXQ
 130   
 131   TX supply items are of variable length (scatter gather support) and
 132   so the queue items are (more or less) pointers to the real thing.
 133   Each TX supply item contains a unique, host-supplied handle (the skb
 134   bus address seems most sensible as this works for Alphas as well,
 135   there is no need to do any endian conversions on the handles).
 136   
 137   TX return items consist of just the handles above.
 138   
 139   3. RXQ (up to 4 of these with different lengths and buffer sizes)
 140   
 141   RX supply items consist of a unique, host-supplied handle (the skb
 142   bus address again) and a pointer to the buffer data area.
 143   
 144   RX return items consist of the handle above, the VC, length and a
 145   status word. This just screams "oh so easy" doesn't it?
 146 
 147   Note on RX pool sizes:
 148    
 149   Each pool should have enough buffers to handle a back-to-back stream
 150   of minimum sized frames on a single VC. For example:
 151   
 152     frame spacing = 3us (about right)
 153     
 154     delay = IRQ lat + RX handling + RX buffer replenish = 20 (us)  (a guess)
 155     
 156     min number of buffers for one VC = 1 + delay/spacing (buffers)
 157 
 158     delay/spacing = latency = (20+2)/3 = 7 (buffers)  (rounding up)
 159     
 160   The 20us delay assumes that there is no need to sleep; if we need to
 161   sleep to get buffers we are going to drop frames anyway.
 162   
 163   In fact, each pool should have enough buffers to support the
 164   simultaneous reassembly of a separate frame on each VC and cope with
 165   the case in which frames complete in round robin cell fashion on
 166   each VC.
 167   
 168   Only one frame can complete at each cell arrival, so if "n" VCs are
 169   open, the worst case is to have them all complete frames together
 170   followed by all starting new frames together.
 171   
 172     desired number of buffers = n + delay/spacing
 173     
 174   These are the extreme requirements, however, they are "n+k" for some
 175   "k" so we have only the constant to choose. This is the argument
 176   rx_lats which current defaults to 7.
 177   
 178   Actually, "n ? n+k : 0" is better and this is what is implemented,
 179   subject to the limit given by the pool size.
 180   
 181   4. Driver locking
 182   
 183   Simple spinlocks are used around the TX and RX queue mechanisms.
 184   Anyone with a faster, working method is welcome to implement it.
 185   
 186   The adapter command queue is protected with a spinlock. We always
 187   wait for commands to complete.
 188   
 189   A more complex form of locking is used around parts of the VC open
 190   and close functions. There are three reasons for a lock: 1. we need
 191   to do atomic rate reservation and release (not used yet), 2. Opening
 192   sometimes involves two adapter commands which must not be separated
 193   by another command on the same VC, 3. the changes to RX pool size
 194   must be atomic. The lock needs to work over context switches, so we
 195   use a semaphore.
 196   
 197   III Hardware Features and Microcode Bugs
 198   
 199   1. Byte Ordering
 200   
 201   *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
 202   
 203   2. Memory access
 204   
 205   All structures that are not accessed using DMA must be 4-byte
 206   aligned (not a problem) and must not cross 4MB boundaries.
 207   
 208   There is a DMA memory hole at E0000000-E00000FF (groan).
 209   
 210   TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
 211   but for a hardware bug).
 212   
 213   RX buffers (DMA write) must not cross 16MB boundaries and must
 214   include spare trailing bytes up to the next 4-byte boundary; they
 215   will be written with rubbish.
 216   
 217   The PLX likes to prefetch; if reading up to 4 u32 past the end of
 218   each TX fragment is not a problem, then TX can be made to go a
 219   little faster by passing a flag at init that disables a prefetch
 220   workaround. We do not pass this flag. (new microcode only)
 221   
 222   Now we:
 223   . Note that alloc_skb rounds up size to a 16byte boundary.  
 224   . Ensure all areas do not traverse 4MB boundaries.
 225   . Ensure all areas do not start at a E00000xx bus address.
 226   (I cannot be certain, but this may always hold with Linux)
 227   . Make all failures cause a loud message.
 228   . Discard non-conforming SKBs (causes TX failure or RX fill delay).
 229   . Discard non-conforming TX fragment descriptors (the TX fails).
 230   In the future we could:
 231   . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
 232   . Segment TX areas into some/more fragments, when necessary.
 233   . Relax checks for non-DMA items (ignore hole).
 234   . Give scatter-gather (iovec) requirements using ???. (?)
 235   
 236   3. VC close is broken (only for new microcode)
 237   
 238   The VC close adapter microcode command fails to do anything if any
 239   frames have been received on the VC but none have been transmitted.
 240   Frames continue to be reassembled and passed (with IRQ) to the
 241   driver.
 242   
 243   IV To Do List
 244   
 245   . Fix bugs!
 246   
 247   . Timer code may be broken.
 248   
 249   . Deal with buggy VC close (somehow) in microcode 12.
 250   
 251   . Handle interrupted and/or non-blocking writes - is this a job for
 252     the protocol layer?
 253   
 254   . Add code to break up TX fragments when they span 4MB boundaries.
 255   
 256   . Add SUNI phy layer (need to know where SUNI lives on card).
 257   
 258   . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
 259     leave extra headroom space for Ambassador TX descriptors.
 260   
 261   . Understand these elements of struct atm_vcc: recvq (proto?),
 262     sleep, callback, listenq, backlog_quota, reply and user_back.
 263   
 264   . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
 265   
 266   . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
 267   
 268   . Decide whether RX buffer recycling is or can be made completely safe;
 269     turn it back on. It looks like Werner is going to axe this.
 270   
 271   . Implement QoS changes on open VCs (involves extracting parts of VC open
 272     and close into separate functions and using them to make changes).
 273   
 274   . Hack on command queue so that someone can issue multiple commands and wait
 275     on the last one (OR only "no-op" or "wait" commands are waited for).
 276   
 277   . Eliminate need for while-schedule around do_command.
 278   
 279 */
 280 
 281 static void do_housekeeping (struct timer_list *t);
 282 /********** globals **********/
 283 
 284 static unsigned short debug = 0;
 285 static unsigned int cmds = 8;
 286 static unsigned int txs = 32;
 287 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
 288 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
 289 static unsigned int rx_lats = 7;
 290 static unsigned char pci_lat = 0;
 291 
 292 static const unsigned long onegigmask = -1 << 30;
 293 
 294 /********** access to adapter **********/
 295 
 296 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
 297   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
 298 #ifdef AMB_MMIO
 299   dev->membase[addr / sizeof(u32)] = data;
 300 #else
 301   outl (data, dev->iobase + addr);
 302 #endif
 303 }
 304 
 305 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
 306 #ifdef AMB_MMIO
 307   u32 data = dev->membase[addr / sizeof(u32)];
 308 #else
 309   u32 data = inl (dev->iobase + addr);
 310 #endif
 311   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
 312   return data;
 313 }
 314 
 315 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
 316   __be32 be = cpu_to_be32 (data);
 317   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
 318 #ifdef AMB_MMIO
 319   dev->membase[addr / sizeof(u32)] = be;
 320 #else
 321   outl (be, dev->iobase + addr);
 322 #endif
 323 }
 324 
 325 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
 326 #ifdef AMB_MMIO
 327   __be32 be = dev->membase[addr / sizeof(u32)];
 328 #else
 329   __be32 be = inl (dev->iobase + addr);
 330 #endif
 331   u32 data = be32_to_cpu (be);
 332   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
 333   return data;
 334 }
 335 
 336 /********** dump routines **********/
 337 
 338 static inline void dump_registers (const amb_dev * dev) {
 339 #ifdef DEBUG_AMBASSADOR
 340   if (debug & DBG_REGS) {
 341     size_t i;
 342     PRINTD (DBG_REGS, "reading PLX control: ");
 343     for (i = 0x00; i < 0x30; i += sizeof(u32))
 344       rd_mem (dev, i);
 345     PRINTD (DBG_REGS, "reading mailboxes: ");
 346     for (i = 0x40; i < 0x60; i += sizeof(u32))
 347       rd_mem (dev, i);
 348     PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
 349     for (i = 0x60; i < 0x70; i += sizeof(u32))
 350       rd_mem (dev, i);
 351   }
 352 #else
 353   (void) dev;
 354 #endif
 355   return;
 356 }
 357 
 358 static inline void dump_loader_block (volatile loader_block * lb) {
 359 #ifdef DEBUG_AMBASSADOR
 360   unsigned int i;
 361   PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
 362            lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
 363   for (i = 0; i < MAX_COMMAND_DATA; ++i)
 364     PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
 365   PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
 366 #else
 367   (void) lb;
 368 #endif
 369   return;
 370 }
 371 
 372 static inline void dump_command (command * cmd) {
 373 #ifdef DEBUG_AMBASSADOR
 374   unsigned int i;
 375   PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
 376            cmd, /*be32_to_cpu*/ (cmd->request));
 377   for (i = 0; i < 3; ++i)
 378     PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
 379   PRINTDE (DBG_CMD, "");
 380 #else
 381   (void) cmd;
 382 #endif
 383   return;
 384 }
 385 
 386 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 387 #ifdef DEBUG_AMBASSADOR
 388   unsigned int i;
 389   unsigned char * data = skb->data;
 390   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 391   for (i=0; i<skb->len && i < 256;i++)
 392     PRINTDM (DBG_DATA, "%02x ", data[i]);
 393   PRINTDE (DBG_DATA,"");
 394 #else
 395   (void) prefix;
 396   (void) vc;
 397   (void) skb;
 398 #endif
 399   return;
 400 }
 401 
 402 /********** check memory areas for use by Ambassador **********/
 403 
 404 /* see limitations under Hardware Features */
 405 
 406 static int check_area (void * start, size_t length) {
 407   // assumes length > 0
 408   const u32 fourmegmask = -1 << 22;
 409   const u32 twofivesixmask = -1 << 8;
 410   const u32 starthole = 0xE0000000;
 411   u32 startaddress = virt_to_bus (start);
 412   u32 lastaddress = startaddress+length-1;
 413   if ((startaddress ^ lastaddress) & fourmegmask ||
 414       (startaddress & twofivesixmask) == starthole) {
 415     PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
 416             startaddress, lastaddress);
 417     return -1;
 418   } else {
 419     return 0;
 420   }
 421 }
 422 
 423 /********** free an skb (as per ATM device driver documentation) **********/
 424 
 425 static void amb_kfree_skb (struct sk_buff * skb) {
 426   if (ATM_SKB(skb)->vcc->pop) {
 427     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 428   } else {
 429     dev_kfree_skb_any (skb);
 430   }
 431 }
 432 
 433 /********** TX completion **********/
 434 
 435 static void tx_complete (amb_dev * dev, tx_out * tx) {
 436   tx_simple * tx_descr = bus_to_virt (tx->handle);
 437   struct sk_buff * skb = tx_descr->skb;
 438   
 439   PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
 440   
 441   // VC layer stats
 442   atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 443   
 444   // free the descriptor
 445   kfree (tx_descr);
 446   
 447   // free the skb
 448   amb_kfree_skb (skb);
 449   
 450   dev->stats.tx_ok++;
 451   return;
 452 }
 453 
 454 /********** RX completion **********/
 455 
 456 static void rx_complete (amb_dev * dev, rx_out * rx) {
 457   struct sk_buff * skb = bus_to_virt (rx->handle);
 458   u16 vc = be16_to_cpu (rx->vc);
 459   // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
 460   u16 status = be16_to_cpu (rx->status);
 461   u16 rx_len = be16_to_cpu (rx->length);
 462   
 463   PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
 464   
 465   // XXX move this in and add to VC stats ???
 466   if (!status) {
 467     struct atm_vcc * atm_vcc = dev->rxer[vc];
 468     dev->stats.rx.ok++;
 469     
 470     if (atm_vcc) {
 471       
 472       if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
 473         
 474         if (atm_charge (atm_vcc, skb->truesize)) {
 475           
 476           // prepare socket buffer
 477           ATM_SKB(skb)->vcc = atm_vcc;
 478           skb_put (skb, rx_len);
 479           
 480           dump_skb ("<<<", vc, skb);
 481           
 482           // VC layer stats
 483           atomic_inc(&atm_vcc->stats->rx);
 484           __net_timestamp(skb);
 485           // end of our responsibility
 486           atm_vcc->push (atm_vcc, skb);
 487           return;
 488           
 489         } else {
 490           // someone fix this (message), please!
 491           PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
 492           // drop stats incremented in atm_charge
 493         }
 494         
 495       } else {
 496         PRINTK (KERN_INFO, "dropped over-size frame");
 497         // should we count this?
 498         atomic_inc(&atm_vcc->stats->rx_drop);
 499       }
 500       
 501     } else {
 502       PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
 503       // this is an adapter bug, only in new version of microcode
 504     }
 505     
 506   } else {
 507     dev->stats.rx.error++;
 508     if (status & CRC_ERR)
 509       dev->stats.rx.badcrc++;
 510     if (status & LEN_ERR)
 511       dev->stats.rx.toolong++;
 512     if (status & ABORT_ERR)
 513       dev->stats.rx.aborted++;
 514     if (status & UNUSED_ERR)
 515       dev->stats.rx.unused++;
 516   }
 517   
 518   dev_kfree_skb_any (skb);
 519   return;
 520 }
 521 
 522 /*
 523   
 524   Note on queue handling.
 525   
 526   Here "give" and "take" refer to queue entries and a queue (pair)
 527   rather than frames to or from the host or adapter. Empty frame
 528   buffers are given to the RX queue pair and returned unused or
 529   containing RX frames. TX frames (well, pointers to TX fragment
 530   lists) are given to the TX queue pair, completions are returned.
 531   
 532 */
 533 
 534 /********** command queue **********/
 535 
 536 // I really don't like this, but it's the best I can do at the moment
 537 
 538 // also, the callers are responsible for byte order as the microcode
 539 // sometimes does 16-bit accesses (yuk yuk yuk)
 540 
 541 static int command_do (amb_dev * dev, command * cmd) {
 542   amb_cq * cq = &dev->cq;
 543   volatile amb_cq_ptrs * ptrs = &cq->ptrs;
 544   command * my_slot;
 545   
 546   PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
 547   
 548   if (test_bit (dead, &dev->flags))
 549     return 0;
 550   
 551   spin_lock (&cq->lock);
 552   
 553   // if not full...
 554   if (cq->pending < cq->maximum) {
 555     // remember my slot for later
 556     my_slot = ptrs->in;
 557     PRINTD (DBG_CMD, "command in slot %p", my_slot);
 558     
 559     dump_command (cmd);
 560     
 561     // copy command in
 562     *ptrs->in = *cmd;
 563     cq->pending++;
 564     ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
 565     
 566     // mail the command
 567     wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
 568     
 569     if (cq->pending > cq->high)
 570       cq->high = cq->pending;
 571     spin_unlock (&cq->lock);
 572     
 573     // these comments were in a while-loop before, msleep removes the loop
 574     // go to sleep
 575     // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
 576     msleep(cq->pending);
 577     
 578     // wait for my slot to be reached (all waiters are here or above, until...)
 579     while (ptrs->out != my_slot) {
 580       PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
 581       set_current_state(TASK_UNINTERRUPTIBLE);
 582       schedule();
 583     }
 584     
 585     // wait on my slot (... one gets to its slot, and... )
 586     while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
 587       PRINTD (DBG_CMD, "wait: command slot completion");
 588       set_current_state(TASK_UNINTERRUPTIBLE);
 589       schedule();
 590     }
 591     
 592     PRINTD (DBG_CMD, "command complete");
 593     // update queue (... moves the queue along to the next slot)
 594     spin_lock (&cq->lock);
 595     cq->pending--;
 596     // copy command out
 597     *cmd = *ptrs->out;
 598     ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
 599     spin_unlock (&cq->lock);
 600     
 601     return 0;
 602   } else {
 603     cq->filled++;
 604     spin_unlock (&cq->lock);
 605     return -EAGAIN;
 606   }
 607   
 608 }
 609 
 610 /********** TX queue pair **********/
 611 
 612 static int tx_give (amb_dev * dev, tx_in * tx) {
 613   amb_txq * txq = &dev->txq;
 614   unsigned long flags;
 615   
 616   PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
 617 
 618   if (test_bit (dead, &dev->flags))
 619     return 0;
 620   
 621   spin_lock_irqsave (&txq->lock, flags);
 622   
 623   if (txq->pending < txq->maximum) {
 624     PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
 625 
 626     *txq->in.ptr = *tx;
 627     txq->pending++;
 628     txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
 629     // hand over the TX and ring the bell
 630     wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
 631     wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
 632     
 633     if (txq->pending > txq->high)
 634       txq->high = txq->pending;
 635     spin_unlock_irqrestore (&txq->lock, flags);
 636     return 0;
 637   } else {
 638     txq->filled++;
 639     spin_unlock_irqrestore (&txq->lock, flags);
 640     return -EAGAIN;
 641   }
 642 }
 643 
 644 static int tx_take (amb_dev * dev) {
 645   amb_txq * txq = &dev->txq;
 646   unsigned long flags;
 647   
 648   PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
 649   
 650   spin_lock_irqsave (&txq->lock, flags);
 651   
 652   if (txq->pending && txq->out.ptr->handle) {
 653     // deal with TX completion
 654     tx_complete (dev, txq->out.ptr);
 655     // mark unused again
 656     txq->out.ptr->handle = 0;
 657     // remove item
 658     txq->pending--;
 659     txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
 660     
 661     spin_unlock_irqrestore (&txq->lock, flags);
 662     return 0;
 663   } else {
 664     
 665     spin_unlock_irqrestore (&txq->lock, flags);
 666     return -1;
 667   }
 668 }
 669 
 670 /********** RX queue pairs **********/
 671 
 672 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
 673   amb_rxq * rxq = &dev->rxq[pool];
 674   unsigned long flags;
 675   
 676   PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
 677   
 678   spin_lock_irqsave (&rxq->lock, flags);
 679   
 680   if (rxq->pending < rxq->maximum) {
 681     PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
 682 
 683     *rxq->in.ptr = *rx;
 684     rxq->pending++;
 685     rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
 686     // hand over the RX buffer
 687     wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
 688     
 689     spin_unlock_irqrestore (&rxq->lock, flags);
 690     return 0;
 691   } else {
 692     spin_unlock_irqrestore (&rxq->lock, flags);
 693     return -1;
 694   }
 695 }
 696 
 697 static int rx_take (amb_dev * dev, unsigned char pool) {
 698   amb_rxq * rxq = &dev->rxq[pool];
 699   unsigned long flags;
 700   
 701   PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
 702   
 703   spin_lock_irqsave (&rxq->lock, flags);
 704   
 705   if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
 706     // deal with RX completion
 707     rx_complete (dev, rxq->out.ptr);
 708     // mark unused again
 709     rxq->out.ptr->status = 0;
 710     rxq->out.ptr->length = 0;
 711     // remove item
 712     rxq->pending--;
 713     rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
 714     
 715     if (rxq->pending < rxq->low)
 716       rxq->low = rxq->pending;
 717     spin_unlock_irqrestore (&rxq->lock, flags);
 718     return 0;
 719   } else {
 720     if (!rxq->pending && rxq->buffers_wanted)
 721       rxq->emptied++;
 722     spin_unlock_irqrestore (&rxq->lock, flags);
 723     return -1;
 724   }
 725 }
 726 
 727 /********** RX Pool handling **********/
 728 
 729 /* pre: buffers_wanted = 0, post: pending = 0 */
 730 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
 731   amb_rxq * rxq = &dev->rxq[pool];
 732   
 733   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
 734   
 735   if (test_bit (dead, &dev->flags))
 736     return;
 737   
 738   /* we are not quite like the fill pool routines as we cannot just
 739      remove one buffer, we have to remove all of them, but we might as
 740      well pretend... */
 741   if (rxq->pending > rxq->buffers_wanted) {
 742     command cmd;
 743     cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
 744     cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
 745     while (command_do (dev, &cmd))
 746       schedule();
 747     /* the pool may also be emptied via the interrupt handler */
 748     while (rxq->pending > rxq->buffers_wanted)
 749       if (rx_take (dev, pool))
 750         schedule();
 751   }
 752   
 753   return;
 754 }
 755 
 756 static void drain_rx_pools (amb_dev * dev) {
 757   unsigned char pool;
 758   
 759   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
 760   
 761   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
 762     drain_rx_pool (dev, pool);
 763 }
 764 
 765 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
 766                                  gfp_t priority)
 767 {
 768   rx_in rx;
 769   amb_rxq * rxq;
 770   
 771   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
 772   
 773   if (test_bit (dead, &dev->flags))
 774     return;
 775   
 776   rxq = &dev->rxq[pool];
 777   while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
 778     
 779     struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
 780     if (!skb) {
 781       PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
 782       return;
 783     }
 784     if (check_area (skb->data, skb->truesize)) {
 785       dev_kfree_skb_any (skb);
 786       return;
 787     }
 788     // cast needed as there is no %? for pointer differences
 789     PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
 790             skb, skb->head, (long) skb_end_offset(skb));
 791     rx.handle = virt_to_bus (skb);
 792     rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
 793     if (rx_give (dev, &rx, pool))
 794       dev_kfree_skb_any (skb);
 795     
 796   }
 797   
 798   return;
 799 }
 800 
 801 // top up all RX pools
 802 static void fill_rx_pools (amb_dev * dev) {
 803   unsigned char pool;
 804   
 805   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
 806   
 807   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
 808     fill_rx_pool (dev, pool, GFP_ATOMIC);
 809   
 810   return;
 811 }
 812 
 813 /********** enable host interrupts **********/
 814 
 815 static void interrupts_on (amb_dev * dev) {
 816   wr_plain (dev, offsetof(amb_mem, interrupt_control),
 817             rd_plain (dev, offsetof(amb_mem, interrupt_control))
 818             | AMB_INTERRUPT_BITS);
 819 }
 820 
 821 /********** disable host interrupts **********/
 822 
 823 static void interrupts_off (amb_dev * dev) {
 824   wr_plain (dev, offsetof(amb_mem, interrupt_control),
 825             rd_plain (dev, offsetof(amb_mem, interrupt_control))
 826             &~ AMB_INTERRUPT_BITS);
 827 }
 828 
 829 /********** interrupt handling **********/
 830 
 831 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
 832   amb_dev * dev = dev_id;
 833   
 834   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
 835   
 836   {
 837     u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
 838   
 839     // for us or someone else sharing the same interrupt
 840     if (!interrupt) {
 841       PRINTD (DBG_IRQ, "irq not for me: %d", irq);
 842       return IRQ_NONE;
 843     }
 844     
 845     // definitely for us
 846     PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
 847     wr_plain (dev, offsetof(amb_mem, interrupt), -1);
 848   }
 849   
 850   {
 851     unsigned int irq_work = 0;
 852     unsigned char pool;
 853     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
 854       while (!rx_take (dev, pool))
 855         ++irq_work;
 856     while (!tx_take (dev))
 857       ++irq_work;
 858   
 859     if (irq_work) {
 860       fill_rx_pools (dev);
 861 
 862       PRINTD (DBG_IRQ, "work done: %u", irq_work);
 863     } else {
 864       PRINTD (DBG_IRQ|DBG_WARN, "no work done");
 865     }
 866   }
 867   
 868   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
 869   return IRQ_HANDLED;
 870 }
 871 
 872 /********** make rate (not quite as much fun as Horizon) **********/
 873 
 874 static int make_rate (unsigned int rate, rounding r,
 875                       u16 * bits, unsigned int * actual) {
 876   unsigned char exp = -1; // hush gcc
 877   unsigned int man = -1;  // hush gcc
 878   
 879   PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
 880   
 881   // rates in cells per second, ITU format (nasty 16-bit floating-point)
 882   // given 5-bit e and 9-bit m:
 883   // rate = EITHER (1+m/2^9)*2^e    OR 0
 884   // bits = EITHER 1<<14 | e<<9 | m OR 0
 885   // (bit 15 is "reserved", bit 14 "non-zero")
 886   // smallest rate is 0 (special representation)
 887   // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
 888   // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
 889   // simple algorithm:
 890   // find position of top bit, this gives e
 891   // remove top bit and shift (rounding if feeling clever) by 9-e
 892   
 893   // ucode bug: please don't set bit 14! so 0 rate not representable
 894   
 895   if (rate > 0xffc00000U) {
 896     // larger than largest representable rate
 897     
 898     if (r == round_up) {
 899         return -EINVAL;
 900     } else {
 901       exp = 31;
 902       man = 511;
 903     }
 904     
 905   } else if (rate) {
 906     // representable rate
 907     
 908     exp = 31;
 909     man = rate;
 910     
 911     // invariant: rate = man*2^(exp-31)
 912     while (!(man & (1<<31))) {
 913       exp = exp - 1;
 914       man = man<<1;
 915     }
 916     
 917     // man has top bit set
 918     // rate = (2^31+(man-2^31))*2^(exp-31)
 919     // rate = (1+(man-2^31)/2^31)*2^exp
 920     man = man<<1;
 921     man &= 0xffffffffU; // a nop on 32-bit systems
 922     // rate = (1+man/2^32)*2^exp
 923     
 924     // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
 925     // time to lose significance... we want m in the range 0 to 2^9-1
 926     // rounding presents a minor problem... we first decide which way
 927     // we are rounding (based on given rounding direction and possibly
 928     // the bits of the mantissa that are to be discarded).
 929     
 930     switch (r) {
 931       case round_down: {
 932         // just truncate
 933         man = man>>(32-9);
 934         break;
 935       }
 936       case round_up: {
 937         // check all bits that we are discarding
 938         if (man & (~0U>>9)) {
 939           man = (man>>(32-9)) + 1;
 940           if (man == (1<<9)) {
 941             // no need to check for round up outside of range
 942             man = 0;
 943             exp += 1;
 944           }
 945         } else {
 946           man = (man>>(32-9));
 947         }
 948         break;
 949       }
 950       case round_nearest: {
 951         // check msb that we are discarding
 952         if (man & (1<<(32-9-1))) {
 953           man = (man>>(32-9)) + 1;
 954           if (man == (1<<9)) {
 955             // no need to check for round up outside of range
 956             man = 0;
 957             exp += 1;
 958           }
 959         } else {
 960           man = (man>>(32-9));
 961         }
 962         break;
 963       }
 964     }
 965     
 966   } else {
 967     // zero rate - not representable
 968     
 969     if (r == round_down) {
 970       return -EINVAL;
 971     } else {
 972       exp = 0;
 973       man = 0;
 974     }
 975     
 976   }
 977   
 978   PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
 979   
 980   if (bits)
 981     *bits = /* (1<<14) | */ (exp<<9) | man;
 982   
 983   if (actual)
 984     *actual = (exp >= 9)
 985       ? (1 << exp) + (man << (exp-9))
 986       : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
 987   
 988   return 0;
 989 }
 990 
 991 /********** Linux ATM Operations **********/
 992 
 993 // some are not yet implemented while others do not make sense for
 994 // this device
 995 
 996 /********** Open a VC **********/
 997 
 998 static int amb_open (struct atm_vcc * atm_vcc)
 999 {
1000   int error;
1001   
1002   struct atm_qos * qos;
1003   struct atm_trafprm * txtp;
1004   struct atm_trafprm * rxtp;
1005   u16 tx_rate_bits = -1; // hush gcc
1006   u16 tx_vc_bits = -1; // hush gcc
1007   u16 tx_frame_bits = -1; // hush gcc
1008   
1009   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1010   amb_vcc * vcc;
1011   unsigned char pool = -1; // hush gcc
1012   short vpi = atm_vcc->vpi;
1013   int vci = atm_vcc->vci;
1014   
1015   PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1016   
1017 #ifdef ATM_VPI_UNSPEC
1018   // UNSPEC is deprecated, remove this code eventually
1019   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1020     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1021     return -EINVAL;
1022   }
1023 #endif
1024   
1025   if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1026         0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1027     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1028     return -EINVAL;
1029   }
1030   
1031   qos = &atm_vcc->qos;
1032   
1033   if (qos->aal != ATM_AAL5) {
1034     PRINTD (DBG_QOS, "AAL not supported");
1035     return -EINVAL;
1036   }
1037   
1038   // traffic parameters
1039   
1040   PRINTD (DBG_QOS, "TX:");
1041   txtp = &qos->txtp;
1042   if (txtp->traffic_class != ATM_NONE) {
1043     switch (txtp->traffic_class) {
1044       case ATM_UBR: {
1045         // we take "the PCR" as a rate-cap
1046         int pcr = atm_pcr_goal (txtp);
1047         if (!pcr) {
1048           // no rate cap
1049           tx_rate_bits = 0;
1050           tx_vc_bits = TX_UBR;
1051           tx_frame_bits = TX_FRAME_NOTCAP;
1052         } else {
1053           rounding r;
1054           if (pcr < 0) {
1055             r = round_down;
1056             pcr = -pcr;
1057           } else {
1058             r = round_up;
1059           }
1060           error = make_rate (pcr, r, &tx_rate_bits, NULL);
1061           if (error)
1062             return error;
1063           tx_vc_bits = TX_UBR_CAPPED;
1064           tx_frame_bits = TX_FRAME_CAPPED;
1065         }
1066         break;
1067       }
1068 #if 0
1069       case ATM_ABR: {
1070         pcr = atm_pcr_goal (txtp);
1071         PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1072         break;
1073       }
1074 #endif
1075       default: {
1076         // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1077         PRINTD (DBG_QOS, "request for non-UBR denied");
1078         return -EINVAL;
1079       }
1080     }
1081     PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1082             tx_rate_bits, tx_vc_bits);
1083   }
1084   
1085   PRINTD (DBG_QOS, "RX:");
1086   rxtp = &qos->rxtp;
1087   if (rxtp->traffic_class == ATM_NONE) {
1088     // do nothing
1089   } else {
1090     // choose an RX pool (arranged in increasing size)
1091     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1092       if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1093         PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1094                 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1095         break;
1096       }
1097     if (pool == NUM_RX_POOLS) {
1098       PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1099               "no pool suitable for VC (RX max_sdu %d is too large)",
1100               rxtp->max_sdu);
1101       return -EINVAL;
1102     }
1103     
1104     switch (rxtp->traffic_class) {
1105       case ATM_UBR: {
1106         break;
1107       }
1108 #if 0
1109       case ATM_ABR: {
1110         pcr = atm_pcr_goal (rxtp);
1111         PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1112         break;
1113       }
1114 #endif
1115       default: {
1116         // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1117         PRINTD (DBG_QOS, "request for non-UBR denied");
1118         return -EINVAL;
1119       }
1120     }
1121   }
1122   
1123   // get space for our vcc stuff
1124   vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1125   if (!vcc) {
1126     PRINTK (KERN_ERR, "out of memory!");
1127     return -ENOMEM;
1128   }
1129   atm_vcc->dev_data = (void *) vcc;
1130   
1131   // no failures beyond this point
1132   
1133   // we are not really "immediately before allocating the connection
1134   // identifier in hardware", but it will just have to do!
1135   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1136   
1137   if (txtp->traffic_class != ATM_NONE) {
1138     command cmd;
1139     
1140     vcc->tx_frame_bits = tx_frame_bits;
1141     
1142     mutex_lock(&dev->vcc_sf);
1143     if (dev->rxer[vci]) {
1144       // RXer on the channel already, just modify rate...
1145       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1146       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1147       cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1148       while (command_do (dev, &cmd))
1149         schedule();
1150       // ... and TX flags, preserving the RX pool
1151       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1152       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1153       cmd.args.modify_flags.flags = cpu_to_be32
1154         ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1155           | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1156       while (command_do (dev, &cmd))
1157         schedule();
1158     } else {
1159       // no RXer on the channel, just open (with pool zero)
1160       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1161       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1162       cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1163       cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1164       while (command_do (dev, &cmd))
1165         schedule();
1166     }
1167     dev->txer[vci].tx_present = 1;
1168     mutex_unlock(&dev->vcc_sf);
1169   }
1170   
1171   if (rxtp->traffic_class != ATM_NONE) {
1172     command cmd;
1173     
1174     vcc->rx_info.pool = pool;
1175     
1176     mutex_lock(&dev->vcc_sf);
1177     /* grow RX buffer pool */
1178     if (!dev->rxq[pool].buffers_wanted)
1179       dev->rxq[pool].buffers_wanted = rx_lats;
1180     dev->rxq[pool].buffers_wanted += 1;
1181     fill_rx_pool (dev, pool, GFP_KERNEL);
1182     
1183     if (dev->txer[vci].tx_present) {
1184       // TXer on the channel already
1185       // switch (from pool zero) to this pool, preserving the TX bits
1186       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1187       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1188       cmd.args.modify_flags.flags = cpu_to_be32
1189         ( (pool << SRB_POOL_SHIFT)
1190           | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1191     } else {
1192       // no TXer on the channel, open the VC (with no rate info)
1193       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1194       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1195       cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1196       cmd.args.open.rate = cpu_to_be32 (0);
1197     }
1198     while (command_do (dev, &cmd))
1199       schedule();
1200     // this link allows RX frames through
1201     dev->rxer[vci] = atm_vcc;
1202     mutex_unlock(&dev->vcc_sf);
1203   }
1204   
1205   // indicate readiness
1206   set_bit(ATM_VF_READY,&atm_vcc->flags);
1207   
1208   return 0;
1209 }
1210 
1211 /********** Close a VC **********/
1212 
1213 static void amb_close (struct atm_vcc * atm_vcc) {
1214   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1215   amb_vcc * vcc = AMB_VCC (atm_vcc);
1216   u16 vci = atm_vcc->vci;
1217   
1218   PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1219   
1220   // indicate unreadiness
1221   clear_bit(ATM_VF_READY,&atm_vcc->flags);
1222   
1223   // disable TXing
1224   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1225     command cmd;
1226     
1227     mutex_lock(&dev->vcc_sf);
1228     if (dev->rxer[vci]) {
1229       // RXer still on the channel, just modify rate... XXX not really needed
1230       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1231       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1232       cmd.args.modify_rate.rate = cpu_to_be32 (0);
1233       // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1234     } else {
1235       // no RXer on the channel, close channel
1236       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1237       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1238     }
1239     dev->txer[vci].tx_present = 0;
1240     while (command_do (dev, &cmd))
1241       schedule();
1242     mutex_unlock(&dev->vcc_sf);
1243   }
1244   
1245   // disable RXing
1246   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1247     command cmd;
1248     
1249     // this is (the?) one reason why we need the amb_vcc struct
1250     unsigned char pool = vcc->rx_info.pool;
1251     
1252     mutex_lock(&dev->vcc_sf);
1253     if (dev->txer[vci].tx_present) {
1254       // TXer still on the channel, just go to pool zero XXX not really needed
1255       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1256       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1257       cmd.args.modify_flags.flags = cpu_to_be32
1258         (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1259     } else {
1260       // no TXer on the channel, close the VC
1261       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1262       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1263     }
1264     // forget the rxer - no more skbs will be pushed
1265     if (atm_vcc != dev->rxer[vci])
1266       PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1267               "arghhh! we're going to die!",
1268               vcc, dev->rxer[vci]);
1269     dev->rxer[vci] = NULL;
1270     while (command_do (dev, &cmd))
1271       schedule();
1272     
1273     /* shrink RX buffer pool */
1274     dev->rxq[pool].buffers_wanted -= 1;
1275     if (dev->rxq[pool].buffers_wanted == rx_lats) {
1276       dev->rxq[pool].buffers_wanted = 0;
1277       drain_rx_pool (dev, pool);
1278     }
1279     mutex_unlock(&dev->vcc_sf);
1280   }
1281   
1282   // free our structure
1283   kfree (vcc);
1284   
1285   // say the VPI/VCI is free again
1286   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1287 
1288   return;
1289 }
1290 
1291 /********** Send **********/
1292 
1293 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1294   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1295   amb_vcc * vcc = AMB_VCC(atm_vcc);
1296   u16 vc = atm_vcc->vci;
1297   unsigned int tx_len = skb->len;
1298   unsigned char * tx_data = skb->data;
1299   tx_simple * tx_descr;
1300   tx_in tx;
1301   
1302   if (test_bit (dead, &dev->flags))
1303     return -EIO;
1304   
1305   PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1306           vc, tx_data, tx_len);
1307   
1308   dump_skb (">>>", vc, skb);
1309   
1310   if (!dev->txer[vc].tx_present) {
1311     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1312     return -EBADFD;
1313   }
1314   
1315   // this is a driver private field so we have to set it ourselves,
1316   // despite the fact that we are _required_ to use it to check for a
1317   // pop function
1318   ATM_SKB(skb)->vcc = atm_vcc;
1319   
1320   if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1321     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1322     return -EIO;
1323   }
1324   
1325   if (check_area (skb->data, skb->len)) {
1326     atomic_inc(&atm_vcc->stats->tx_err);
1327     return -ENOMEM; // ?
1328   }
1329   
1330   // allocate memory for fragments
1331   tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1332   if (!tx_descr) {
1333     PRINTK (KERN_ERR, "could not allocate TX descriptor");
1334     return -ENOMEM;
1335   }
1336   if (check_area (tx_descr, sizeof(tx_simple))) {
1337     kfree (tx_descr);
1338     return -ENOMEM;
1339   }
1340   PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1341   
1342   tx_descr->skb = skb;
1343   
1344   tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1345   tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1346   
1347   tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1348   tx_descr->tx_frag_end.vc = 0;
1349   tx_descr->tx_frag_end.next_descriptor_length = 0;
1350   tx_descr->tx_frag_end.next_descriptor = 0;
1351 #ifdef AMB_NEW_MICROCODE
1352   tx_descr->tx_frag_end.cpcs_uu = 0;
1353   tx_descr->tx_frag_end.cpi = 0;
1354   tx_descr->tx_frag_end.pad = 0;
1355 #endif
1356   
1357   tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1358   tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1359   tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1360   
1361   while (tx_give (dev, &tx))
1362     schedule();
1363   return 0;
1364 }
1365 
1366 /********** Change QoS on a VC **********/
1367 
1368 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1369 
1370 /********** Free RX Socket Buffer **********/
1371 
1372 #if 0
1373 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1374   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1375   amb_vcc * vcc = AMB_VCC (atm_vcc);
1376   unsigned char pool = vcc->rx_info.pool;
1377   rx_in rx;
1378   
1379   // This may be unsafe for various reasons that I cannot really guess
1380   // at. However, I note that the ATM layer calls kfree_skb rather
1381   // than dev_kfree_skb at this point so we are least covered as far
1382   // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1383 
1384   PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1385           skb, atm_vcc, vcc);
1386   
1387   rx.handle = virt_to_bus (skb);
1388   rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1389   
1390   skb->data = skb->head;
1391   skb_reset_tail_pointer(skb);
1392   skb->len = 0;
1393   
1394   if (!rx_give (dev, &rx, pool)) {
1395     // success
1396     PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1397     return;
1398   }
1399   
1400   // just do what the ATM layer would have done
1401   dev_kfree_skb_any (skb);
1402   
1403   return;
1404 }
1405 #endif
1406 
1407 /********** Proc File Output **********/
1408 
1409 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1410   amb_dev * dev = AMB_DEV (atm_dev);
1411   int left = *pos;
1412   unsigned char pool;
1413   
1414   PRINTD (DBG_FLOW, "amb_proc_read");
1415   
1416   /* more diagnostics here? */
1417   
1418   if (!left--) {
1419     amb_stats * s = &dev->stats;
1420     return sprintf (page,
1421                     "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1422                     "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1423                     s->tx_ok, s->rx.ok, s->rx.error,
1424                     s->rx.badcrc, s->rx.toolong,
1425                     s->rx.aborted, s->rx.unused);
1426   }
1427   
1428   if (!left--) {
1429     amb_cq * c = &dev->cq;
1430     return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1431                     c->pending, c->high, c->maximum);
1432   }
1433   
1434   if (!left--) {
1435     amb_txq * t = &dev->txq;
1436     return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1437                     t->pending, t->maximum, t->high, t->filled);
1438   }
1439   
1440   if (!left--) {
1441     unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1442     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1443       amb_rxq * r = &dev->rxq[pool];
1444       count += sprintf (page+count, " %u/%u/%u %u %u",
1445                         r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1446     }
1447     count += sprintf (page+count, ".\n");
1448     return count;
1449   }
1450   
1451   if (!left--) {
1452     unsigned int count = sprintf (page, "RX buffer sizes:");
1453     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1454       amb_rxq * r = &dev->rxq[pool];
1455       count += sprintf (page+count, " %u", r->buffer_size);
1456     }
1457     count += sprintf (page+count, ".\n");
1458     return count;
1459   }
1460   
1461 #if 0
1462   if (!left--) {
1463     // suni block etc?
1464   }
1465 #endif
1466   
1467   return 0;
1468 }
1469 
1470 /********** Operation Structure **********/
1471 
1472 static const struct atmdev_ops amb_ops = {
1473   .open         = amb_open,
1474   .close        = amb_close,
1475   .send         = amb_send,
1476   .proc_read    = amb_proc_read,
1477   .owner        = THIS_MODULE,
1478 };
1479 
1480 /********** housekeeping **********/
1481 static void do_housekeeping (struct timer_list *t) {
1482   amb_dev * dev = from_timer(dev, t, housekeeping);
1483   
1484   // could collect device-specific (not driver/atm-linux) stats here
1485       
1486   // last resort refill once every ten seconds
1487   fill_rx_pools (dev);
1488   mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1489   
1490   return;
1491 }
1492 
1493 /********** creation of communication queues **********/
1494 
1495 static int create_queues(amb_dev *dev, unsigned int cmds, unsigned int txs,
1496                          unsigned int *rxs, unsigned int *rx_buffer_sizes)
1497 {
1498   unsigned char pool;
1499   size_t total = 0;
1500   void * memory;
1501   void * limit;
1502   
1503   PRINTD (DBG_FLOW, "create_queues %p", dev);
1504   
1505   total += cmds * sizeof(command);
1506   
1507   total += txs * (sizeof(tx_in) + sizeof(tx_out));
1508   
1509   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1510     total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1511   
1512   memory = kmalloc (total, GFP_KERNEL);
1513   if (!memory) {
1514     PRINTK (KERN_ERR, "could not allocate queues");
1515     return -ENOMEM;
1516   }
1517   if (check_area (memory, total)) {
1518     PRINTK (KERN_ERR, "queues allocated in nasty area");
1519     kfree (memory);
1520     return -ENOMEM;
1521   }
1522   
1523   limit = memory + total;
1524   PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1525   
1526   PRINTD (DBG_CMD, "command queue at %p", memory);
1527   
1528   {
1529     command * cmd = memory;
1530     amb_cq * cq = &dev->cq;
1531     
1532     cq->pending = 0;
1533     cq->high = 0;
1534     cq->maximum = cmds - 1;
1535     
1536     cq->ptrs.start = cmd;
1537     cq->ptrs.in = cmd;
1538     cq->ptrs.out = cmd;
1539     cq->ptrs.limit = cmd + cmds;
1540     
1541     memory = cq->ptrs.limit;
1542   }
1543   
1544   PRINTD (DBG_TX, "TX queue pair at %p", memory);
1545   
1546   {
1547     tx_in * in = memory;
1548     tx_out * out;
1549     amb_txq * txq = &dev->txq;
1550     
1551     txq->pending = 0;
1552     txq->high = 0;
1553     txq->filled = 0;
1554     txq->maximum = txs - 1;
1555     
1556     txq->in.start = in;
1557     txq->in.ptr = in;
1558     txq->in.limit = in + txs;
1559     
1560     memory = txq->in.limit;
1561     out = memory;
1562     
1563     txq->out.start = out;
1564     txq->out.ptr = out;
1565     txq->out.limit = out + txs;
1566     
1567     memory = txq->out.limit;
1568   }
1569   
1570   PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1571   
1572   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1573     rx_in * in = memory;
1574     rx_out * out;
1575     amb_rxq * rxq = &dev->rxq[pool];
1576     
1577     rxq->buffer_size = rx_buffer_sizes[pool];
1578     rxq->buffers_wanted = 0;
1579     
1580     rxq->pending = 0;
1581     rxq->low = rxs[pool] - 1;
1582     rxq->emptied = 0;
1583     rxq->maximum = rxs[pool] - 1;
1584     
1585     rxq->in.start = in;
1586     rxq->in.ptr = in;
1587     rxq->in.limit = in + rxs[pool];
1588     
1589     memory = rxq->in.limit;
1590     out = memory;
1591     
1592     rxq->out.start = out;
1593     rxq->out.ptr = out;
1594     rxq->out.limit = out + rxs[pool];
1595     
1596     memory = rxq->out.limit;
1597   }
1598   
1599   if (memory == limit) {
1600     return 0;
1601   } else {
1602     PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1603     kfree (limit - total);
1604     return -ENOMEM;
1605   }
1606   
1607 }
1608 
1609 /********** destruction of communication queues **********/
1610 
1611 static void destroy_queues (amb_dev * dev) {
1612   // all queues assumed empty
1613   void * memory = dev->cq.ptrs.start;
1614   // includes txq.in, txq.out, rxq[].in and rxq[].out
1615   
1616   PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1617   
1618   PRINTD (DBG_INIT, "freeing queues at %p", memory);
1619   kfree (memory);
1620   
1621   return;
1622 }
1623 
1624 /********** basic loader commands and error handling **********/
1625 // centisecond timeouts - guessing away here
1626 static unsigned int command_timeouts [] = {
1627         [host_memory_test]     = 15,
1628         [read_adapter_memory]  = 2,
1629         [write_adapter_memory] = 2,
1630         [adapter_start]        = 50,
1631         [get_version_number]   = 10,
1632         [interrupt_host]       = 1,
1633         [flash_erase_sector]   = 1,
1634         [adap_download_block]  = 1,
1635         [adap_erase_flash]     = 1,
1636         [adap_run_in_iram]     = 1,
1637         [adap_end_download]    = 1
1638 };
1639 
1640 
1641 static unsigned int command_successes [] = {
1642         [host_memory_test]     = COMMAND_PASSED_TEST,
1643         [read_adapter_memory]  = COMMAND_READ_DATA_OK,
1644         [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1645         [adapter_start]        = COMMAND_COMPLETE,
1646         [get_version_number]   = COMMAND_COMPLETE,
1647         [interrupt_host]       = COMMAND_COMPLETE,
1648         [flash_erase_sector]   = COMMAND_COMPLETE,
1649         [adap_download_block]  = COMMAND_COMPLETE,
1650         [adap_erase_flash]     = COMMAND_COMPLETE,
1651         [adap_run_in_iram]     = COMMAND_COMPLETE,
1652         [adap_end_download]    = COMMAND_COMPLETE
1653 };
1654   
1655 static  int decode_loader_result (loader_command cmd, u32 result)
1656 {
1657         int res;
1658         const char *msg;
1659 
1660         if (result == command_successes[cmd])
1661                 return 0;
1662 
1663         switch (result) {
1664                 case BAD_COMMAND:
1665                         res = -EINVAL;
1666                         msg = "bad command";
1667                         break;
1668                 case COMMAND_IN_PROGRESS:
1669                         res = -ETIMEDOUT;
1670                         msg = "command in progress";
1671                         break;
1672                 case COMMAND_PASSED_TEST:
1673                         res = 0;
1674                         msg = "command passed test";
1675                         break;
1676                 case COMMAND_FAILED_TEST:
1677                         res = -EIO;
1678                         msg = "command failed test";
1679                         break;
1680                 case COMMAND_READ_DATA_OK:
1681                         res = 0;
1682                         msg = "command read data ok";
1683                         break;
1684                 case COMMAND_READ_BAD_ADDRESS:
1685                         res = -EINVAL;
1686                         msg = "command read bad address";
1687                         break;
1688                 case COMMAND_WRITE_DATA_OK:
1689                         res = 0;
1690                         msg = "command write data ok";
1691                         break;
1692                 case COMMAND_WRITE_BAD_ADDRESS:
1693                         res = -EINVAL;
1694                         msg = "command write bad address";
1695                         break;
1696                 case COMMAND_WRITE_FLASH_FAILURE:
1697                         res = -EIO;
1698                         msg = "command write flash failure";
1699                         break;
1700                 case COMMAND_COMPLETE:
1701                         res = 0;
1702                         msg = "command complete";
1703                         break;
1704                 case COMMAND_FLASH_ERASE_FAILURE:
1705                         res = -EIO;
1706                         msg = "command flash erase failure";
1707                         break;
1708                 case COMMAND_WRITE_BAD_DATA:
1709                         res = -EINVAL;
1710                         msg = "command write bad data";
1711                         break;
1712                 default:
1713                         res = -EINVAL;
1714                         msg = "unknown error";
1715                         PRINTD (DBG_LOAD|DBG_ERR,
1716                                 "decode_loader_result got %d=%x !",
1717                                 result, result);
1718                         break;
1719         }
1720 
1721         PRINTK (KERN_ERR, "%s", msg);
1722         return res;
1723 }
1724 
1725 static int do_loader_command(volatile loader_block *lb, const amb_dev *dev,
1726                              loader_command cmd)
1727 {
1728   
1729   unsigned long timeout;
1730   
1731   PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1732   
1733   /* do a command
1734      
1735      Set the return value to zero, set the command type and set the
1736      valid entry to the right magic value. The payload is already
1737      correctly byte-ordered so we leave it alone. Hit the doorbell
1738      with the bus address of this structure.
1739      
1740   */
1741   
1742   lb->result = 0;
1743   lb->command = cpu_to_be32 (cmd);
1744   lb->valid = cpu_to_be32 (DMA_VALID);
1745   // dump_registers (dev);
1746   // dump_loader_block (lb);
1747   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1748   
1749   timeout = command_timeouts[cmd] * 10;
1750   
1751   while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1752     if (timeout) {
1753       timeout = msleep_interruptible(timeout);
1754     } else {
1755       PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1756       dump_registers (dev);
1757       dump_loader_block (lb);
1758       return -ETIMEDOUT;
1759     }
1760   
1761   if (cmd == adapter_start) {
1762     // wait for start command to acknowledge...
1763     timeout = 100;
1764     while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1765       if (timeout) {
1766         timeout = msleep_interruptible(timeout);
1767       } else {
1768         PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1769                 be32_to_cpu (lb->result));
1770         dump_registers (dev);
1771         return -ETIMEDOUT;
1772       }
1773     return 0;
1774   } else {
1775     return decode_loader_result (cmd, be32_to_cpu (lb->result));
1776   }
1777   
1778 }
1779 
1780 /* loader: determine loader version */
1781 
1782 static int get_loader_version(loader_block *lb, const amb_dev *dev,
1783                               u32 *version)
1784 {
1785   int res;
1786   
1787   PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1788   
1789   res = do_loader_command (lb, dev, get_version_number);
1790   if (res)
1791     return res;
1792   if (version)
1793     *version = be32_to_cpu (lb->payload.version);
1794   return 0;
1795 }
1796 
1797 /* loader: write memory data blocks */
1798 
1799 static int loader_write(loader_block *lb, const amb_dev *dev,
1800                         const struct ihex_binrec *rec)
1801 {
1802   transfer_block * tb = &lb->payload.transfer;
1803   
1804   PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1805 
1806   tb->address = rec->addr;
1807   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1808   memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1809   return do_loader_command (lb, dev, write_adapter_memory);
1810 }
1811 
1812 /* loader: verify memory data blocks */
1813 
1814 static int loader_verify(loader_block *lb, const amb_dev *dev,
1815                          const struct ihex_binrec *rec)
1816 {
1817   transfer_block * tb = &lb->payload.transfer;
1818   int res;
1819   
1820   PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1821   
1822   tb->address = rec->addr;
1823   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1824   res = do_loader_command (lb, dev, read_adapter_memory);
1825   if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1826     res = -EINVAL;
1827   return res;
1828 }
1829 
1830 /* loader: start microcode */
1831 
1832 static int loader_start(loader_block *lb, const amb_dev *dev, u32 address)
1833 {
1834   PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1835   
1836   lb->payload.start = cpu_to_be32 (address);
1837   return do_loader_command (lb, dev, adapter_start);
1838 }
1839 
1840 /********** reset card **********/
1841 
1842 static inline void sf (const char * msg)
1843 {
1844         PRINTK (KERN_ERR, "self-test failed: %s", msg);
1845 }
1846 
1847 static int amb_reset (amb_dev * dev, int diags) {
1848   u32 word;
1849   
1850   PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1851   
1852   word = rd_plain (dev, offsetof(amb_mem, reset_control));
1853   // put card into reset state
1854   wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1855   // wait a short while
1856   udelay (10);
1857 #if 1
1858   // put card into known good state
1859   wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1860   // clear all interrupts just in case
1861   wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1862 #endif
1863   // clear self-test done flag
1864   wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1865   // take card out of reset state
1866   wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1867   
1868   if (diags) { 
1869     unsigned long timeout;
1870     // 4.2 second wait
1871     msleep(4200);
1872     // half second time-out
1873     timeout = 500;
1874     while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1875       if (timeout) {
1876         timeout = msleep_interruptible(timeout);
1877       } else {
1878         PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1879         return -ETIMEDOUT;
1880       }
1881     
1882     // get results of self-test
1883     // XXX double check byte-order
1884     word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1885     if (word & SELF_TEST_FAILURE) {
1886       if (word & GPINT_TST_FAILURE)
1887         sf ("interrupt");
1888       if (word & SUNI_DATA_PATTERN_FAILURE)
1889         sf ("SUNI data pattern");
1890       if (word & SUNI_DATA_BITS_FAILURE)
1891         sf ("SUNI data bits");
1892       if (word & SUNI_UTOPIA_FAILURE)
1893         sf ("SUNI UTOPIA interface");
1894       if (word & SUNI_FIFO_FAILURE)
1895         sf ("SUNI cell buffer FIFO");
1896       if (word & SRAM_FAILURE)
1897         sf ("bad SRAM");
1898       // better return value?
1899       return -EIO;
1900     }
1901     
1902   }
1903   return 0;
1904 }
1905 
1906 /********** transfer and start the microcode **********/
1907 
1908 static int ucode_init(loader_block *lb, amb_dev *dev)
1909 {
1910   const struct firmware *fw;
1911   unsigned long start_address;
1912   const struct ihex_binrec *rec;
1913   const char *errmsg = NULL;
1914   int res;
1915 
1916   res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1917   if (res) {
1918     PRINTK (KERN_ERR, "Cannot load microcode data");
1919     return res;
1920   }
1921 
1922   /* First record contains just the start address */
1923   rec = (const struct ihex_binrec *)fw->data;
1924   if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1925     errmsg = "no start record";
1926     goto fail;
1927   }
1928   start_address = be32_to_cpup((__be32 *)rec->data);
1929 
1930   rec = ihex_next_binrec(rec);
1931 
1932   PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1933 
1934   while (rec) {
1935     PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1936             be16_to_cpu(rec->len));
1937     if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1938             errmsg = "record too long";
1939             goto fail;
1940     }
1941     if (be16_to_cpu(rec->len) & 3) {
1942             errmsg = "odd number of bytes";
1943             goto fail;
1944     }
1945     res = loader_write(lb, dev, rec);
1946     if (res)
1947       break;
1948 
1949     res = loader_verify(lb, dev, rec);
1950     if (res)
1951       break;
1952     rec = ihex_next_binrec(rec);
1953   }
1954   release_firmware(fw);
1955   if (!res)
1956     res = loader_start(lb, dev, start_address);
1957 
1958   return res;
1959 fail:
1960   release_firmware(fw);
1961   PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg);
1962   return -EINVAL;
1963 }
1964 
1965 /********** give adapter parameters **********/
1966   
1967 static inline __be32 bus_addr(void * addr) {
1968     return cpu_to_be32 (virt_to_bus (addr));
1969 }
1970 
1971 static int amb_talk(amb_dev *dev)
1972 {
1973   adap_talk_block a;
1974   unsigned char pool;
1975   unsigned long timeout;
1976   
1977   PRINTD (DBG_FLOW, "amb_talk %p", dev);
1978   
1979   a.command_start = bus_addr (dev->cq.ptrs.start);
1980   a.command_end   = bus_addr (dev->cq.ptrs.limit);
1981   a.tx_start      = bus_addr (dev->txq.in.start);
1982   a.tx_end        = bus_addr (dev->txq.in.limit);
1983   a.txcom_start   = bus_addr (dev->txq.out.start);
1984   a.txcom_end     = bus_addr (dev->txq.out.limit);
1985   
1986   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1987     // the other "a" items are set up by the adapter
1988     a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
1989     a.rec_struct[pool].buffer_end   = bus_addr (dev->rxq[pool].in.limit);
1990     a.rec_struct[pool].rx_start     = bus_addr (dev->rxq[pool].out.start);
1991     a.rec_struct[pool].rx_end       = bus_addr (dev->rxq[pool].out.limit);
1992     a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
1993   }
1994   
1995 #ifdef AMB_NEW_MICROCODE
1996   // disable fast PLX prefetching
1997   a.init_flags = 0;
1998 #endif
1999   
2000   // pass the structure
2001   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2002   
2003   // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2004   msleep(2200);
2005   // give the adapter another half second?
2006   timeout = 500;
2007   while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2008     if (timeout) {
2009       timeout = msleep_interruptible(timeout);
2010     } else {
2011       PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2012       return -ETIMEDOUT;
2013     }
2014   
2015   return 0;
2016 }
2017 
2018 // get microcode version
2019 static void amb_ucode_version(amb_dev *dev)
2020 {
2021   u32 major;
2022   u32 minor;
2023   command cmd;
2024   cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2025   while (command_do (dev, &cmd)) {
2026     set_current_state(TASK_UNINTERRUPTIBLE);
2027     schedule();
2028   }
2029   major = be32_to_cpu (cmd.args.version.major);
2030   minor = be32_to_cpu (cmd.args.version.minor);
2031   PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2032 }
2033   
2034 // get end station address
2035 static void amb_esi(amb_dev *dev, u8 *esi)
2036 {
2037   u32 lower4;
2038   u16 upper2;
2039   command cmd;
2040   
2041   cmd.request = cpu_to_be32 (SRB_GET_BIA);
2042   while (command_do (dev, &cmd)) {
2043     set_current_state(TASK_UNINTERRUPTIBLE);
2044     schedule();
2045   }
2046   lower4 = be32_to_cpu (cmd.args.bia.lower4);
2047   upper2 = be32_to_cpu (cmd.args.bia.upper2);
2048   PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2049   
2050   if (esi) {
2051     unsigned int i;
2052     
2053     PRINTDB (DBG_INIT, "ESI:");
2054     for (i = 0; i < ESI_LEN; ++i) {
2055       if (i < 4)
2056           esi[i] = bitrev8(lower4>>(8*i));
2057       else
2058           esi[i] = bitrev8(upper2>>(8*(i-4)));
2059       PRINTDM (DBG_INIT, " %02x", esi[i]);
2060     }
2061     
2062     PRINTDE (DBG_INIT, "");
2063   }
2064   
2065   return;
2066 }
2067   
2068 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2069 {
2070         // fix up the PLX-mapped window base address to match the block
2071         unsigned long blb;
2072         u32 mapreg;
2073         blb = virt_to_bus(lb);
2074         // the kernel stack had better not ever cross a 1Gb boundary!
2075         mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2076         mapreg &= ~onegigmask;
2077         mapreg |= blb & onegigmask;
2078         wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2079         return;
2080 }
2081 
2082 static int amb_init(amb_dev *dev)
2083 {
2084   loader_block lb;
2085   
2086   u32 version;
2087   
2088   if (amb_reset (dev, 1)) {
2089     PRINTK (KERN_ERR, "card reset failed!");
2090   } else {
2091     fixup_plx_window (dev, &lb);
2092     
2093     if (get_loader_version (&lb, dev, &version)) {
2094       PRINTK (KERN_INFO, "failed to get loader version");
2095     } else {
2096       PRINTK (KERN_INFO, "loader version is %08x", version);
2097       
2098       if (ucode_init (&lb, dev)) {
2099         PRINTK (KERN_ERR, "microcode failure");
2100       } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2101         PRINTK (KERN_ERR, "failed to get memory for queues");
2102       } else {
2103         
2104         if (amb_talk (dev)) {
2105           PRINTK (KERN_ERR, "adapter did not accept queues");
2106         } else {
2107           
2108           amb_ucode_version (dev);
2109           return 0;
2110           
2111         } /* amb_talk */
2112         
2113         destroy_queues (dev);
2114       } /* create_queues, ucode_init */
2115       
2116       amb_reset (dev, 0);
2117     } /* get_loader_version */
2118     
2119   } /* amb_reset */
2120   
2121   return -EINVAL;
2122 }
2123 
2124 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev) 
2125 {
2126       unsigned char pool;
2127       
2128       // set up known dev items straight away
2129       dev->pci_dev = pci_dev; 
2130       pci_set_drvdata(pci_dev, dev);
2131       
2132       dev->iobase = pci_resource_start (pci_dev, 1);
2133       dev->irq = pci_dev->irq; 
2134       dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2135       
2136       // flags (currently only dead)
2137       dev->flags = 0;
2138       
2139       // Allocate cell rates (fibre)
2140       // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2141       // to be really pedantic, this should be ATM_OC3c_PCR
2142       dev->tx_avail = ATM_OC3_PCR;
2143       dev->rx_avail = ATM_OC3_PCR;
2144       
2145       // semaphore for txer/rxer modifications - we cannot use a
2146       // spinlock as the critical region needs to switch processes
2147       mutex_init(&dev->vcc_sf);
2148       // queue manipulation spinlocks; we want atomic reads and
2149       // writes to the queue descriptors (handles IRQ and SMP)
2150       // consider replacing "int pending" -> "atomic_t available"
2151       // => problem related to who gets to move queue pointers
2152       spin_lock_init (&dev->cq.lock);
2153       spin_lock_init (&dev->txq.lock);
2154       for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2155         spin_lock_init (&dev->rxq[pool].lock);
2156 }
2157 
2158 static void setup_pci_dev(struct pci_dev *pci_dev)
2159 {
2160         unsigned char lat;
2161       
2162         // enable bus master accesses
2163         pci_set_master(pci_dev);
2164 
2165         // frobnicate latency (upwards, usually)
2166         pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2167 
2168         if (!pci_lat)
2169                 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2170 
2171         if (lat != pci_lat) {
2172                 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2173                         lat, pci_lat);
2174                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2175         }
2176 }
2177 
2178 static int amb_probe(struct pci_dev *pci_dev,
2179                      const struct pci_device_id *pci_ent)
2180 {
2181         amb_dev * dev;
2182         int err;
2183         unsigned int irq;
2184       
2185         err = pci_enable_device(pci_dev);
2186         if (err < 0) {
2187                 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2188                 goto out;
2189         }
2190 
2191         // read resources from PCI configuration space
2192         irq = pci_dev->irq;
2193 
2194         if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2195                 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2196                 err = -EINVAL;
2197                 goto out_disable;
2198         }
2199 
2200         PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2201                 " IO %llx, IRQ %u, MEM %p",
2202                 (unsigned long long)pci_resource_start(pci_dev, 1),
2203                 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2204 
2205         // check IO region
2206         err = pci_request_region(pci_dev, 1, DEV_LABEL);
2207         if (err < 0) {
2208                 PRINTK (KERN_ERR, "IO range already in use!");
2209                 goto out_disable;
2210         }
2211 
2212         dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2213         if (!dev) {
2214                 PRINTK (KERN_ERR, "out of memory!");
2215                 err = -ENOMEM;
2216                 goto out_release;
2217         }
2218 
2219         setup_dev(dev, pci_dev);
2220 
2221         err = amb_init(dev);
2222         if (err < 0) {
2223                 PRINTK (KERN_ERR, "adapter initialisation failure");
2224                 goto out_free;
2225         }
2226 
2227         setup_pci_dev(pci_dev);
2228 
2229         // grab (but share) IRQ and install handler
2230         err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2231         if (err < 0) {
2232                 PRINTK (KERN_ERR, "request IRQ failed!");
2233                 goto out_reset;
2234         }
2235 
2236         dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1,
2237                                          NULL);
2238         if (!dev->atm_dev) {
2239                 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2240                 err = -EINVAL;
2241                 goto out_free_irq;
2242         }
2243 
2244         PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2245                 dev->atm_dev->number, dev, dev->atm_dev);
2246         dev->atm_dev->dev_data = (void *) dev;
2247 
2248         // register our address
2249         amb_esi (dev, dev->atm_dev->esi);
2250 
2251         // 0 bits for vpi, 10 bits for vci
2252         dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2253         dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2254 
2255         timer_setup(&dev->housekeeping, do_housekeeping, 0);
2256         mod_timer(&dev->housekeeping, jiffies);
2257 
2258         // enable host interrupts
2259         interrupts_on (dev);
2260 
2261 out:
2262         return err;
2263 
2264 out_free_irq:
2265         free_irq(irq, dev);
2266 out_reset:
2267         amb_reset(dev, 0);
2268 out_free:
2269         kfree(dev);
2270 out_release:
2271         pci_release_region(pci_dev, 1);
2272 out_disable:
2273         pci_disable_device(pci_dev);
2274         goto out;
2275 }
2276 
2277 
2278 static void amb_remove_one(struct pci_dev *pci_dev)
2279 {
2280         struct amb_dev *dev;
2281 
2282         dev = pci_get_drvdata(pci_dev);
2283 
2284         PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2285         del_timer_sync(&dev->housekeeping);
2286         // the drain should not be necessary
2287         drain_rx_pools(dev);
2288         interrupts_off(dev);
2289         amb_reset(dev, 0);
2290         free_irq(dev->irq, dev);
2291         pci_disable_device(pci_dev);
2292         destroy_queues(dev);
2293         atm_dev_deregister(dev->atm_dev);
2294         kfree(dev);
2295         pci_release_region(pci_dev, 1);
2296 }
2297 
2298 static void __init amb_check_args (void) {
2299   unsigned char pool;
2300   unsigned int max_rx_size;
2301   
2302 #ifdef DEBUG_AMBASSADOR
2303   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2304 #else
2305   if (debug)
2306     PRINTK (KERN_NOTICE, "no debugging support");
2307 #endif
2308   
2309   if (cmds < MIN_QUEUE_SIZE)
2310     PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2311             cmds = MIN_QUEUE_SIZE);
2312   
2313   if (txs < MIN_QUEUE_SIZE)
2314     PRINTK (KERN_NOTICE, "txs has been raised to %u",
2315             txs = MIN_QUEUE_SIZE);
2316   
2317   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2318     if (rxs[pool] < MIN_QUEUE_SIZE)
2319       PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2320               pool, rxs[pool] = MIN_QUEUE_SIZE);
2321   
2322   // buffers sizes should be greater than zero and strictly increasing
2323   max_rx_size = 0;
2324   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2325     if (rxs_bs[pool] <= max_rx_size)
2326       PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2327               pool, rxs_bs[pool]);
2328     else
2329       max_rx_size = rxs_bs[pool];
2330   
2331   if (rx_lats < MIN_RX_BUFFERS)
2332     PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2333             rx_lats = MIN_RX_BUFFERS);
2334   
2335   return;
2336 }
2337 
2338 /********** module stuff **********/
2339 
2340 MODULE_AUTHOR(maintainer_string);
2341 MODULE_DESCRIPTION(description_string);
2342 MODULE_LICENSE("GPL");
2343 MODULE_FIRMWARE("atmsar11.fw");
2344 module_param(debug,   ushort, 0644);
2345 module_param(cmds,    uint, 0);
2346 module_param(txs,     uint, 0);
2347 module_param_array(rxs,     uint, NULL, 0);
2348 module_param_array(rxs_bs,  uint, NULL, 0);
2349 module_param(rx_lats, uint, 0);
2350 module_param(pci_lat, byte, 0);
2351 MODULE_PARM_DESC(debug,   "debug bitmap, see .h file");
2352 MODULE_PARM_DESC(cmds,    "number of command queue entries");
2353 MODULE_PARM_DESC(txs,     "number of TX queue entries");
2354 MODULE_PARM_DESC(rxs,     "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2355 MODULE_PARM_DESC(rxs_bs,  "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2356 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2357 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2358 
2359 /********** module entry **********/
2360 
2361 static const struct pci_device_id amb_pci_tbl[] = {
2362         { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2363         { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2364         { 0, }
2365 };
2366 
2367 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2368 
2369 static struct pci_driver amb_driver = {
2370         .name =         "amb",
2371         .probe =        amb_probe,
2372         .remove =       amb_remove_one,
2373         .id_table =     amb_pci_tbl,
2374 };
2375 
2376 static int __init amb_module_init (void)
2377 {
2378   PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2379   
2380   BUILD_BUG_ON(sizeof(amb_mem) != 4*16 + 4*12);
2381   
2382   show_version();
2383   
2384   amb_check_args();
2385   
2386   // get the juice
2387   return pci_register_driver(&amb_driver);
2388 }
2389 
2390 /********** module exit **********/
2391 
2392 static void __exit amb_module_exit (void)
2393 {
2394   PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2395 
2396   pci_unregister_driver(&amb_driver);
2397 }
2398 
2399 module_init(amb_module_init);
2400 module_exit(amb_module_exit);

/* [<][>][^][v][top][bottom][index][help] */