root/drivers/media/v4l2-core/v4l2-fwnode.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_v4l2_fwnode_bus_conv_by_fwnode_bus
  2. v4l2_fwnode_bus_type_to_mbus
  3. v4l2_fwnode_bus_type_to_string
  4. get_v4l2_fwnode_bus_conv_by_mbus
  5. v4l2_fwnode_mbus_type_to_string
  6. v4l2_fwnode_endpoint_parse_csi2_bus
  7. v4l2_fwnode_endpoint_parse_parallel_bus
  8. v4l2_fwnode_endpoint_parse_csi1_bus
  9. __v4l2_fwnode_endpoint_parse
  10. v4l2_fwnode_endpoint_parse
  11. v4l2_fwnode_endpoint_free
  12. v4l2_fwnode_endpoint_alloc_parse
  13. v4l2_fwnode_parse_link
  14. v4l2_fwnode_put_link
  15. v4l2_async_notifier_fwnode_parse_endpoint
  16. __v4l2_async_notifier_parse_fwnode_ep
  17. v4l2_async_notifier_parse_fwnode_endpoints
  18. v4l2_async_notifier_parse_fwnode_endpoints_by_port
  19. v4l2_fwnode_reference_parse
  20. v4l2_fwnode_reference_get_int_prop
  21. v4l2_fwnode_reference_parse_int_props
  22. v4l2_async_notifier_parse_fwnode_sensor_common
  23. v4l2_async_register_subdev_sensor_common
  24. v4l2_async_register_fwnode_subdev

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * V4L2 fwnode binding parsing library
   4  *
   5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
   6  * formerly was located in v4l2-of.c.
   7  *
   8  * Copyright (c) 2016 Intel Corporation.
   9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
  10  *
  11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
  12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
  13  *
  14  * Copyright (C) 2012 Renesas Electronics Corp.
  15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  16  */
  17 #include <linux/acpi.h>
  18 #include <linux/kernel.h>
  19 #include <linux/mm.h>
  20 #include <linux/module.h>
  21 #include <linux/of.h>
  22 #include <linux/property.h>
  23 #include <linux/slab.h>
  24 #include <linux/string.h>
  25 #include <linux/types.h>
  26 
  27 #include <media/v4l2-async.h>
  28 #include <media/v4l2-fwnode.h>
  29 #include <media/v4l2-subdev.h>
  30 
  31 enum v4l2_fwnode_bus_type {
  32         V4L2_FWNODE_BUS_TYPE_GUESS = 0,
  33         V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
  34         V4L2_FWNODE_BUS_TYPE_CSI1,
  35         V4L2_FWNODE_BUS_TYPE_CCP2,
  36         V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
  37         V4L2_FWNODE_BUS_TYPE_PARALLEL,
  38         V4L2_FWNODE_BUS_TYPE_BT656,
  39         NR_OF_V4L2_FWNODE_BUS_TYPE,
  40 };
  41 
  42 static const struct v4l2_fwnode_bus_conv {
  43         enum v4l2_fwnode_bus_type fwnode_bus_type;
  44         enum v4l2_mbus_type mbus_type;
  45         const char *name;
  46 } buses[] = {
  47         {
  48                 V4L2_FWNODE_BUS_TYPE_GUESS,
  49                 V4L2_MBUS_UNKNOWN,
  50                 "not specified",
  51         }, {
  52                 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
  53                 V4L2_MBUS_CSI2_CPHY,
  54                 "MIPI CSI-2 C-PHY",
  55         }, {
  56                 V4L2_FWNODE_BUS_TYPE_CSI1,
  57                 V4L2_MBUS_CSI1,
  58                 "MIPI CSI-1",
  59         }, {
  60                 V4L2_FWNODE_BUS_TYPE_CCP2,
  61                 V4L2_MBUS_CCP2,
  62                 "compact camera port 2",
  63         }, {
  64                 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
  65                 V4L2_MBUS_CSI2_DPHY,
  66                 "MIPI CSI-2 D-PHY",
  67         }, {
  68                 V4L2_FWNODE_BUS_TYPE_PARALLEL,
  69                 V4L2_MBUS_PARALLEL,
  70                 "parallel",
  71         }, {
  72                 V4L2_FWNODE_BUS_TYPE_BT656,
  73                 V4L2_MBUS_BT656,
  74                 "Bt.656",
  75         }
  76 };
  77 
  78 static const struct v4l2_fwnode_bus_conv *
  79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
  80 {
  81         unsigned int i;
  82 
  83         for (i = 0; i < ARRAY_SIZE(buses); i++)
  84                 if (buses[i].fwnode_bus_type == type)
  85                         return &buses[i];
  86 
  87         return NULL;
  88 }
  89 
  90 static enum v4l2_mbus_type
  91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
  92 {
  93         const struct v4l2_fwnode_bus_conv *conv =
  94                 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
  95 
  96         return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
  97 }
  98 
  99 static const char *
 100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
 101 {
 102         const struct v4l2_fwnode_bus_conv *conv =
 103                 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
 104 
 105         return conv ? conv->name : "not found";
 106 }
 107 
 108 static const struct v4l2_fwnode_bus_conv *
 109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
 110 {
 111         unsigned int i;
 112 
 113         for (i = 0; i < ARRAY_SIZE(buses); i++)
 114                 if (buses[i].mbus_type == type)
 115                         return &buses[i];
 116 
 117         return NULL;
 118 }
 119 
 120 static const char *
 121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
 122 {
 123         const struct v4l2_fwnode_bus_conv *conv =
 124                 get_v4l2_fwnode_bus_conv_by_mbus(type);
 125 
 126         return conv ? conv->name : "not found";
 127 }
 128 
 129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
 130                                                struct v4l2_fwnode_endpoint *vep,
 131                                                enum v4l2_mbus_type bus_type)
 132 {
 133         struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
 134         bool have_clk_lane = false, have_data_lanes = false,
 135                 have_lane_polarities = false;
 136         unsigned int flags = 0, lanes_used = 0;
 137         u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
 138         u32 clock_lane = 0;
 139         unsigned int num_data_lanes = 0;
 140         bool use_default_lane_mapping = false;
 141         unsigned int i;
 142         u32 v;
 143         int rval;
 144 
 145         if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 146             bus_type == V4L2_MBUS_CSI2_CPHY) {
 147                 use_default_lane_mapping = true;
 148 
 149                 num_data_lanes = min_t(u32, bus->num_data_lanes,
 150                                        V4L2_FWNODE_CSI2_MAX_DATA_LANES);
 151 
 152                 clock_lane = bus->clock_lane;
 153                 if (clock_lane)
 154                         use_default_lane_mapping = false;
 155 
 156                 for (i = 0; i < num_data_lanes; i++) {
 157                         array[i] = bus->data_lanes[i];
 158                         if (array[i])
 159                                 use_default_lane_mapping = false;
 160                 }
 161 
 162                 if (use_default_lane_mapping)
 163                         pr_debug("no lane mapping given, using defaults\n");
 164         }
 165 
 166         rval = fwnode_property_count_u32(fwnode, "data-lanes");
 167         if (rval > 0) {
 168                 num_data_lanes =
 169                         min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
 170 
 171                 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
 172                                                num_data_lanes);
 173 
 174                 have_data_lanes = true;
 175                 if (use_default_lane_mapping) {
 176                         pr_debug("data-lanes property exists; disabling default mapping\n");
 177                         use_default_lane_mapping = false;
 178                 }
 179         }
 180 
 181         for (i = 0; i < num_data_lanes; i++) {
 182                 if (lanes_used & BIT(array[i])) {
 183                         if (have_data_lanes || !use_default_lane_mapping)
 184                                 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
 185                                         array[i]);
 186                         use_default_lane_mapping = true;
 187                 }
 188                 lanes_used |= BIT(array[i]);
 189 
 190                 if (have_data_lanes)
 191                         pr_debug("lane %u position %u\n", i, array[i]);
 192         }
 193 
 194         rval = fwnode_property_count_u32(fwnode, "lane-polarities");
 195         if (rval > 0) {
 196                 if (rval != 1 + num_data_lanes /* clock+data */) {
 197                         pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
 198                                 1 + num_data_lanes, rval);
 199                         return -EINVAL;
 200                 }
 201 
 202                 have_lane_polarities = true;
 203         }
 204 
 205         if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 206                 clock_lane = v;
 207                 pr_debug("clock lane position %u\n", v);
 208                 have_clk_lane = true;
 209         }
 210 
 211         if (have_clk_lane && lanes_used & BIT(clock_lane) &&
 212             !use_default_lane_mapping) {
 213                 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
 214                         v);
 215                 use_default_lane_mapping = true;
 216         }
 217 
 218         if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
 219                 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
 220                 pr_debug("non-continuous clock\n");
 221         } else {
 222                 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
 223         }
 224 
 225         if (bus_type == V4L2_MBUS_CSI2_DPHY ||
 226             bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
 227             have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
 228                 /* Only D-PHY has a clock lane. */
 229                 unsigned int dfl_data_lane_index =
 230                         bus_type == V4L2_MBUS_CSI2_DPHY;
 231 
 232                 bus->flags = flags;
 233                 if (bus_type == V4L2_MBUS_UNKNOWN)
 234                         vep->bus_type = V4L2_MBUS_CSI2_DPHY;
 235                 bus->num_data_lanes = num_data_lanes;
 236 
 237                 if (use_default_lane_mapping) {
 238                         bus->clock_lane = 0;
 239                         for (i = 0; i < num_data_lanes; i++)
 240                                 bus->data_lanes[i] = dfl_data_lane_index + i;
 241                 } else {
 242                         bus->clock_lane = clock_lane;
 243                         for (i = 0; i < num_data_lanes; i++)
 244                                 bus->data_lanes[i] = array[i];
 245                 }
 246 
 247                 if (have_lane_polarities) {
 248                         fwnode_property_read_u32_array(fwnode,
 249                                                        "lane-polarities", array,
 250                                                        1 + num_data_lanes);
 251 
 252                         for (i = 0; i < 1 + num_data_lanes; i++) {
 253                                 bus->lane_polarities[i] = array[i];
 254                                 pr_debug("lane %u polarity %sinverted",
 255                                          i, array[i] ? "" : "not ");
 256                         }
 257                 } else {
 258                         pr_debug("no lane polarities defined, assuming not inverted\n");
 259                 }
 260         }
 261 
 262         return 0;
 263 }
 264 
 265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |      \
 266                              V4L2_MBUS_HSYNC_ACTIVE_LOW |       \
 267                              V4L2_MBUS_VSYNC_ACTIVE_HIGH |      \
 268                              V4L2_MBUS_VSYNC_ACTIVE_LOW |       \
 269                              V4L2_MBUS_FIELD_EVEN_HIGH |        \
 270                              V4L2_MBUS_FIELD_EVEN_LOW)
 271 
 272 static void
 273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
 274                                         struct v4l2_fwnode_endpoint *vep,
 275                                         enum v4l2_mbus_type bus_type)
 276 {
 277         struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
 278         unsigned int flags = 0;
 279         u32 v;
 280 
 281         if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
 282                 flags = bus->flags;
 283 
 284         if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
 285                 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
 286                            V4L2_MBUS_HSYNC_ACTIVE_LOW);
 287                 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
 288                         V4L2_MBUS_HSYNC_ACTIVE_LOW;
 289                 pr_debug("hsync-active %s\n", v ? "high" : "low");
 290         }
 291 
 292         if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
 293                 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
 294                            V4L2_MBUS_VSYNC_ACTIVE_LOW);
 295                 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
 296                         V4L2_MBUS_VSYNC_ACTIVE_LOW;
 297                 pr_debug("vsync-active %s\n", v ? "high" : "low");
 298         }
 299 
 300         if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
 301                 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
 302                            V4L2_MBUS_FIELD_EVEN_LOW);
 303                 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
 304                         V4L2_MBUS_FIELD_EVEN_LOW;
 305                 pr_debug("field-even-active %s\n", v ? "high" : "low");
 306         }
 307 
 308         if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
 309                 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
 310                            V4L2_MBUS_PCLK_SAMPLE_FALLING);
 311                 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
 312                         V4L2_MBUS_PCLK_SAMPLE_FALLING;
 313                 pr_debug("pclk-sample %s\n", v ? "high" : "low");
 314         }
 315 
 316         if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
 317                 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
 318                            V4L2_MBUS_DATA_ACTIVE_LOW);
 319                 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
 320                         V4L2_MBUS_DATA_ACTIVE_LOW;
 321                 pr_debug("data-active %s\n", v ? "high" : "low");
 322         }
 323 
 324         if (fwnode_property_present(fwnode, "slave-mode")) {
 325                 pr_debug("slave mode\n");
 326                 flags &= ~V4L2_MBUS_MASTER;
 327                 flags |= V4L2_MBUS_SLAVE;
 328         } else {
 329                 flags &= ~V4L2_MBUS_SLAVE;
 330                 flags |= V4L2_MBUS_MASTER;
 331         }
 332 
 333         if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
 334                 bus->bus_width = v;
 335                 pr_debug("bus-width %u\n", v);
 336         }
 337 
 338         if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
 339                 bus->data_shift = v;
 340                 pr_debug("data-shift %u\n", v);
 341         }
 342 
 343         if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
 344                 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
 345                            V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
 346                 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
 347                         V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
 348                 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
 349         }
 350 
 351         if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
 352                 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
 353                            V4L2_MBUS_DATA_ENABLE_LOW);
 354                 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
 355                         V4L2_MBUS_DATA_ENABLE_LOW;
 356                 pr_debug("data-enable-active %s\n", v ? "high" : "low");
 357         }
 358 
 359         switch (bus_type) {
 360         default:
 361                 bus->flags = flags;
 362                 if (flags & PARALLEL_MBUS_FLAGS)
 363                         vep->bus_type = V4L2_MBUS_PARALLEL;
 364                 else
 365                         vep->bus_type = V4L2_MBUS_BT656;
 366                 break;
 367         case V4L2_MBUS_PARALLEL:
 368                 vep->bus_type = V4L2_MBUS_PARALLEL;
 369                 bus->flags = flags;
 370                 break;
 371         case V4L2_MBUS_BT656:
 372                 vep->bus_type = V4L2_MBUS_BT656;
 373                 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
 374                 break;
 375         }
 376 }
 377 
 378 static void
 379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
 380                                     struct v4l2_fwnode_endpoint *vep,
 381                                     enum v4l2_mbus_type bus_type)
 382 {
 383         struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
 384         u32 v;
 385 
 386         if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
 387                 bus->clock_inv = v;
 388                 pr_debug("clock-inv %u\n", v);
 389         }
 390 
 391         if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
 392                 bus->strobe = v;
 393                 pr_debug("strobe %u\n", v);
 394         }
 395 
 396         if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
 397                 bus->data_lane = v;
 398                 pr_debug("data-lanes %u\n", v);
 399         }
 400 
 401         if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
 402                 bus->clock_lane = v;
 403                 pr_debug("clock-lanes %u\n", v);
 404         }
 405 
 406         if (bus_type == V4L2_MBUS_CCP2)
 407                 vep->bus_type = V4L2_MBUS_CCP2;
 408         else
 409                 vep->bus_type = V4L2_MBUS_CSI1;
 410 }
 411 
 412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 413                                         struct v4l2_fwnode_endpoint *vep)
 414 {
 415         u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
 416         enum v4l2_mbus_type mbus_type;
 417         int rval;
 418 
 419         if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
 420                 /* Zero fields from bus union to until the end */
 421                 memset(&vep->bus, 0,
 422                        sizeof(*vep) - offsetof(typeof(*vep), bus));
 423         }
 424 
 425         pr_debug("===== begin V4L2 endpoint properties\n");
 426 
 427         /*
 428          * Zero the fwnode graph endpoint memory in case we don't end up parsing
 429          * the endpoint.
 430          */
 431         memset(&vep->base, 0, sizeof(vep->base));
 432 
 433         fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
 434         pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
 435                  v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
 436                  v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 437                  vep->bus_type);
 438         mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
 439 
 440         if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
 441                 if (mbus_type != V4L2_MBUS_UNKNOWN &&
 442                     vep->bus_type != mbus_type) {
 443                         pr_debug("expecting bus type %s\n",
 444                                  v4l2_fwnode_mbus_type_to_string(vep->bus_type));
 445                         return -ENXIO;
 446                 }
 447         } else {
 448                 vep->bus_type = mbus_type;
 449         }
 450 
 451         switch (vep->bus_type) {
 452         case V4L2_MBUS_UNKNOWN:
 453                 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 454                                                            V4L2_MBUS_UNKNOWN);
 455                 if (rval)
 456                         return rval;
 457 
 458                 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
 459                         v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 460                                                                 V4L2_MBUS_UNKNOWN);
 461 
 462                 pr_debug("assuming media bus type %s (%u)\n",
 463                          v4l2_fwnode_mbus_type_to_string(vep->bus_type),
 464                          vep->bus_type);
 465 
 466                 break;
 467         case V4L2_MBUS_CCP2:
 468         case V4L2_MBUS_CSI1:
 469                 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
 470 
 471                 break;
 472         case V4L2_MBUS_CSI2_DPHY:
 473         case V4L2_MBUS_CSI2_CPHY:
 474                 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
 475                                                            vep->bus_type);
 476                 if (rval)
 477                         return rval;
 478 
 479                 break;
 480         case V4L2_MBUS_PARALLEL:
 481         case V4L2_MBUS_BT656:
 482                 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
 483                                                         vep->bus_type);
 484 
 485                 break;
 486         default:
 487                 pr_warn("unsupported bus type %u\n", mbus_type);
 488                 return -EINVAL;
 489         }
 490 
 491         fwnode_graph_parse_endpoint(fwnode, &vep->base);
 492 
 493         return 0;
 494 }
 495 
 496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
 497                                struct v4l2_fwnode_endpoint *vep)
 498 {
 499         int ret;
 500 
 501         ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 502 
 503         pr_debug("===== end V4L2 endpoint properties\n");
 504 
 505         return ret;
 506 }
 507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
 508 
 509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
 510 {
 511         if (IS_ERR_OR_NULL(vep))
 512                 return;
 513 
 514         kfree(vep->link_frequencies);
 515 }
 516 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
 517 
 518 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
 519                                      struct v4l2_fwnode_endpoint *vep)
 520 {
 521         int rval;
 522 
 523         rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
 524         if (rval < 0)
 525                 return rval;
 526 
 527         rval = fwnode_property_count_u64(fwnode, "link-frequencies");
 528         if (rval > 0) {
 529                 unsigned int i;
 530 
 531                 vep->link_frequencies =
 532                         kmalloc_array(rval, sizeof(*vep->link_frequencies),
 533                                       GFP_KERNEL);
 534                 if (!vep->link_frequencies)
 535                         return -ENOMEM;
 536 
 537                 vep->nr_of_link_frequencies = rval;
 538 
 539                 rval = fwnode_property_read_u64_array(fwnode,
 540                                                       "link-frequencies",
 541                                                       vep->link_frequencies,
 542                                                       vep->nr_of_link_frequencies);
 543                 if (rval < 0) {
 544                         v4l2_fwnode_endpoint_free(vep);
 545                         return rval;
 546                 }
 547 
 548                 for (i = 0; i < vep->nr_of_link_frequencies; i++)
 549                         pr_info("link-frequencies %u value %llu\n", i,
 550                                 vep->link_frequencies[i]);
 551         }
 552 
 553         pr_debug("===== end V4L2 endpoint properties\n");
 554 
 555         return 0;
 556 }
 557 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
 558 
 559 int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
 560                            struct v4l2_fwnode_link *link)
 561 {
 562         const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
 563         struct fwnode_handle *fwnode;
 564 
 565         memset(link, 0, sizeof(*link));
 566 
 567         fwnode = fwnode_get_parent(__fwnode);
 568         fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
 569         fwnode = fwnode_get_next_parent(fwnode);
 570         if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
 571                 fwnode = fwnode_get_next_parent(fwnode);
 572         link->local_node = fwnode;
 573 
 574         fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
 575         if (!fwnode) {
 576                 fwnode_handle_put(fwnode);
 577                 return -ENOLINK;
 578         }
 579 
 580         fwnode = fwnode_get_parent(fwnode);
 581         fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
 582         fwnode = fwnode_get_next_parent(fwnode);
 583         if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
 584                 fwnode = fwnode_get_next_parent(fwnode);
 585         link->remote_node = fwnode;
 586 
 587         return 0;
 588 }
 589 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
 590 
 591 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
 592 {
 593         fwnode_handle_put(link->local_node);
 594         fwnode_handle_put(link->remote_node);
 595 }
 596 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
 597 
 598 static int
 599 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
 600                                           struct v4l2_async_notifier *notifier,
 601                                           struct fwnode_handle *endpoint,
 602                                           unsigned int asd_struct_size,
 603                                           parse_endpoint_func parse_endpoint)
 604 {
 605         struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
 606         struct v4l2_async_subdev *asd;
 607         int ret;
 608 
 609         asd = kzalloc(asd_struct_size, GFP_KERNEL);
 610         if (!asd)
 611                 return -ENOMEM;
 612 
 613         asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
 614         asd->match.fwnode =
 615                 fwnode_graph_get_remote_port_parent(endpoint);
 616         if (!asd->match.fwnode) {
 617                 dev_dbg(dev, "no remote endpoint found\n");
 618                 ret = -ENOTCONN;
 619                 goto out_err;
 620         }
 621 
 622         ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
 623         if (ret) {
 624                 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
 625                          ret);
 626                 goto out_err;
 627         }
 628 
 629         ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
 630         if (ret == -ENOTCONN)
 631                 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
 632                         vep.base.id);
 633         else if (ret < 0)
 634                 dev_warn(dev,
 635                          "driver could not parse port@%u/endpoint@%u (%d)\n",
 636                          vep.base.port, vep.base.id, ret);
 637         v4l2_fwnode_endpoint_free(&vep);
 638         if (ret < 0)
 639                 goto out_err;
 640 
 641         ret = v4l2_async_notifier_add_subdev(notifier, asd);
 642         if (ret < 0) {
 643                 /* not an error if asd already exists */
 644                 if (ret == -EEXIST)
 645                         ret = 0;
 646                 goto out_err;
 647         }
 648 
 649         return 0;
 650 
 651 out_err:
 652         fwnode_handle_put(asd->match.fwnode);
 653         kfree(asd);
 654 
 655         return ret == -ENOTCONN ? 0 : ret;
 656 }
 657 
 658 static int
 659 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
 660                                       struct v4l2_async_notifier *notifier,
 661                                       size_t asd_struct_size,
 662                                       unsigned int port,
 663                                       bool has_port,
 664                                       parse_endpoint_func parse_endpoint)
 665 {
 666         struct fwnode_handle *fwnode;
 667         int ret = 0;
 668 
 669         if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
 670                 return -EINVAL;
 671 
 672         fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
 673                 struct fwnode_handle *dev_fwnode;
 674                 bool is_available;
 675 
 676                 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
 677                 is_available = fwnode_device_is_available(dev_fwnode);
 678                 fwnode_handle_put(dev_fwnode);
 679                 if (!is_available)
 680                         continue;
 681 
 682                 if (has_port) {
 683                         struct fwnode_endpoint ep;
 684 
 685                         ret = fwnode_graph_parse_endpoint(fwnode, &ep);
 686                         if (ret)
 687                                 break;
 688 
 689                         if (ep.port != port)
 690                                 continue;
 691                 }
 692 
 693                 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
 694                                                                 notifier,
 695                                                                 fwnode,
 696                                                                 asd_struct_size,
 697                                                                 parse_endpoint);
 698                 if (ret < 0)
 699                         break;
 700         }
 701 
 702         fwnode_handle_put(fwnode);
 703 
 704         return ret;
 705 }
 706 
 707 int
 708 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
 709                                            struct v4l2_async_notifier *notifier,
 710                                            size_t asd_struct_size,
 711                                            parse_endpoint_func parse_endpoint)
 712 {
 713         return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
 714                                                      asd_struct_size, 0,
 715                                                      false, parse_endpoint);
 716 }
 717 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
 718 
 719 int
 720 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
 721                                                    struct v4l2_async_notifier *notifier,
 722                                                    size_t asd_struct_size,
 723                                                    unsigned int port,
 724                                                    parse_endpoint_func parse_endpoint)
 725 {
 726         return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
 727                                                      asd_struct_size,
 728                                                      port, true,
 729                                                      parse_endpoint);
 730 }
 731 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
 732 
 733 /*
 734  * v4l2_fwnode_reference_parse - parse references for async sub-devices
 735  * @dev: the device node the properties of which are parsed for references
 736  * @notifier: the async notifier where the async subdevs will be added
 737  * @prop: the name of the property
 738  *
 739  * Return: 0 on success
 740  *         -ENOENT if no entries were found
 741  *         -ENOMEM if memory allocation failed
 742  *         -EINVAL if property parsing failed
 743  */
 744 static int v4l2_fwnode_reference_parse(struct device *dev,
 745                                        struct v4l2_async_notifier *notifier,
 746                                        const char *prop)
 747 {
 748         struct fwnode_reference_args args;
 749         unsigned int index;
 750         int ret;
 751 
 752         for (index = 0;
 753              !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
 754                                                         prop, NULL, 0,
 755                                                         index, &args));
 756              index++)
 757                 fwnode_handle_put(args.fwnode);
 758 
 759         if (!index)
 760                 return -ENOENT;
 761 
 762         /*
 763          * Note that right now both -ENODATA and -ENOENT may signal
 764          * out-of-bounds access. Return the error in cases other than that.
 765          */
 766         if (ret != -ENOENT && ret != -ENODATA)
 767                 return ret;
 768 
 769         for (index = 0;
 770              !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
 771                                                  0, index, &args);
 772              index++) {
 773                 struct v4l2_async_subdev *asd;
 774 
 775                 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
 776                                                             args.fwnode,
 777                                                             sizeof(*asd));
 778                 fwnode_handle_put(args.fwnode);
 779                 if (IS_ERR(asd)) {
 780                         /* not an error if asd already exists */
 781                         if (PTR_ERR(asd) == -EEXIST)
 782                                 continue;
 783 
 784                         return PTR_ERR(asd);
 785                 }
 786         }
 787 
 788         return 0;
 789 }
 790 
 791 /*
 792  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
 793  *                                      arguments
 794  * @fwnode: fwnode to read @prop from
 795  * @notifier: notifier for @dev
 796  * @prop: the name of the property
 797  * @index: the index of the reference to get
 798  * @props: the array of integer property names
 799  * @nprops: the number of integer property names in @nprops
 800  *
 801  * First find an fwnode referred to by the reference at @index in @prop.
 802  *
 803  * Then under that fwnode, @nprops times, for each property in @props,
 804  * iteratively follow child nodes starting from fwnode such that they have the
 805  * property in @props array at the index of the child node distance from the
 806  * root node and the value of that property matching with the integer argument
 807  * of the reference, at the same index.
 808  *
 809  * The child fwnode reached at the end of the iteration is then returned to the
 810  * caller.
 811  *
 812  * The core reason for this is that you cannot refer to just any node in ACPI.
 813  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
 814  * provide a list of (property name, property value) tuples where each tuple
 815  * uniquely identifies a child node. The first tuple identifies a child directly
 816  * underneath the device fwnode, the next tuple identifies a child node
 817  * underneath the fwnode identified by the previous tuple, etc. until you
 818  * reached the fwnode you need.
 819  *
 820  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
 821  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
 822  * Documentation/acpi/dsd instead and especially graph.txt,
 823  * data-node-references.txt and leds.txt .
 824  *
 825  *      Scope (\_SB.PCI0.I2C2)
 826  *      {
 827  *              Device (CAM0)
 828  *              {
 829  *                      Name (_DSD, Package () {
 830  *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 831  *                              Package () {
 832  *                                      Package () {
 833  *                                              "compatible",
 834  *                                              Package () { "nokia,smia" }
 835  *                                      },
 836  *                              },
 837  *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 838  *                              Package () {
 839  *                                      Package () { "port0", "PRT0" },
 840  *                              }
 841  *                      })
 842  *                      Name (PRT0, Package() {
 843  *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 844  *                              Package () {
 845  *                                      Package () { "port", 0 },
 846  *                              },
 847  *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 848  *                              Package () {
 849  *                                      Package () { "endpoint0", "EP00" },
 850  *                              }
 851  *                      })
 852  *                      Name (EP00, Package() {
 853  *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 854  *                              Package () {
 855  *                                      Package () { "endpoint", 0 },
 856  *                                      Package () {
 857  *                                              "remote-endpoint",
 858  *                                              Package() {
 859  *                                                      \_SB.PCI0.ISP, 4, 0
 860  *                                              }
 861  *                                      },
 862  *                              }
 863  *                      })
 864  *              }
 865  *      }
 866  *
 867  *      Scope (\_SB.PCI0)
 868  *      {
 869  *              Device (ISP)
 870  *              {
 871  *                      Name (_DSD, Package () {
 872  *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 873  *                              Package () {
 874  *                                      Package () { "port4", "PRT4" },
 875  *                              }
 876  *                      })
 877  *
 878  *                      Name (PRT4, Package() {
 879  *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 880  *                              Package () {
 881  *                                      Package () { "port", 4 },
 882  *                              },
 883  *                              ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
 884  *                              Package () {
 885  *                                      Package () { "endpoint0", "EP40" },
 886  *                              }
 887  *                      })
 888  *
 889  *                      Name (EP40, Package() {
 890  *                              ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 891  *                              Package () {
 892  *                                      Package () { "endpoint", 0 },
 893  *                                      Package () {
 894  *                                              "remote-endpoint",
 895  *                                              Package () {
 896  *                                                      \_SB.PCI0.I2C2.CAM0,
 897  *                                                      0, 0
 898  *                                              }
 899  *                                      },
 900  *                              }
 901  *                      })
 902  *              }
 903  *      }
 904  *
 905  * From the EP40 node under ISP device, you could parse the graph remote
 906  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
 907  *
 908  *  @fwnode: fwnode referring to EP40 under ISP.
 909  *  @prop: "remote-endpoint"
 910  *  @index: 0
 911  *  @props: "port", "endpoint"
 912  *  @nprops: 2
 913  *
 914  * And you'd get back fwnode referring to EP00 under CAM0.
 915  *
 916  * The same works the other way around: if you use EP00 under CAM0 as the
 917  * fwnode, you'll get fwnode referring to EP40 under ISP.
 918  *
 919  * The same example in DT syntax would look like this:
 920  *
 921  * cam: cam0 {
 922  *      compatible = "nokia,smia";
 923  *
 924  *      port {
 925  *              port = <0>;
 926  *              endpoint {
 927  *                      endpoint = <0>;
 928  *                      remote-endpoint = <&isp 4 0>;
 929  *              };
 930  *      };
 931  * };
 932  *
 933  * isp: isp {
 934  *      ports {
 935  *              port@4 {
 936  *                      port = <4>;
 937  *                      endpoint {
 938  *                              endpoint = <0>;
 939  *                              remote-endpoint = <&cam 0 0>;
 940  *                      };
 941  *              };
 942  *      };
 943  * };
 944  *
 945  * Return: 0 on success
 946  *         -ENOENT if no entries (or the property itself) were found
 947  *         -EINVAL if property parsing otherwise failed
 948  *         -ENOMEM if memory allocation failed
 949  */
 950 static struct fwnode_handle *
 951 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
 952                                    const char *prop,
 953                                    unsigned int index,
 954                                    const char * const *props,
 955                                    unsigned int nprops)
 956 {
 957         struct fwnode_reference_args fwnode_args;
 958         u64 *args = fwnode_args.args;
 959         struct fwnode_handle *child;
 960         int ret;
 961 
 962         /*
 963          * Obtain remote fwnode as well as the integer arguments.
 964          *
 965          * Note that right now both -ENODATA and -ENOENT may signal
 966          * out-of-bounds access. Return -ENOENT in that case.
 967          */
 968         ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
 969                                                  index, &fwnode_args);
 970         if (ret)
 971                 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
 972 
 973         /*
 974          * Find a node in the tree under the referred fwnode corresponding to
 975          * the integer arguments.
 976          */
 977         fwnode = fwnode_args.fwnode;
 978         while (nprops--) {
 979                 u32 val;
 980 
 981                 /* Loop over all child nodes under fwnode. */
 982                 fwnode_for_each_child_node(fwnode, child) {
 983                         if (fwnode_property_read_u32(child, *props, &val))
 984                                 continue;
 985 
 986                         /* Found property, see if its value matches. */
 987                         if (val == *args)
 988                                 break;
 989                 }
 990 
 991                 fwnode_handle_put(fwnode);
 992 
 993                 /* No property found; return an error here. */
 994                 if (!child) {
 995                         fwnode = ERR_PTR(-ENOENT);
 996                         break;
 997                 }
 998 
 999                 props++;
1000                 args++;
1001                 fwnode = child;
1002         }
1003 
1004         return fwnode;
1005 }
1006 
1007 struct v4l2_fwnode_int_props {
1008         const char *name;
1009         const char * const *props;
1010         unsigned int nprops;
1011 };
1012 
1013 /*
1014  * v4l2_fwnode_reference_parse_int_props - parse references for async
1015  *                                         sub-devices
1016  * @dev: struct device pointer
1017  * @notifier: notifier for @dev
1018  * @prop: the name of the property
1019  * @props: the array of integer property names
1020  * @nprops: the number of integer properties
1021  *
1022  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1023  * property @prop with integer arguments with child nodes matching in properties
1024  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1025  * accordingly.
1026  *
1027  * While it is technically possible to use this function on DT, it is only
1028  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1029  * on ACPI the references are limited to devices.
1030  *
1031  * Return: 0 on success
1032  *         -ENOENT if no entries (or the property itself) were found
1033  *         -EINVAL if property parsing otherwisefailed
1034  *         -ENOMEM if memory allocation failed
1035  */
1036 static int
1037 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1038                                       struct v4l2_async_notifier *notifier,
1039                                       const struct v4l2_fwnode_int_props *p)
1040 {
1041         struct fwnode_handle *fwnode;
1042         unsigned int index;
1043         int ret;
1044         const char *prop = p->name;
1045         const char * const *props = p->props;
1046         unsigned int nprops = p->nprops;
1047 
1048         index = 0;
1049         do {
1050                 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1051                                                             prop, index,
1052                                                             props, nprops);
1053                 if (IS_ERR(fwnode)) {
1054                         /*
1055                          * Note that right now both -ENODATA and -ENOENT may
1056                          * signal out-of-bounds access. Return the error in
1057                          * cases other than that.
1058                          */
1059                         if (PTR_ERR(fwnode) != -ENOENT &&
1060                             PTR_ERR(fwnode) != -ENODATA)
1061                                 return PTR_ERR(fwnode);
1062                         break;
1063                 }
1064                 fwnode_handle_put(fwnode);
1065                 index++;
1066         } while (1);
1067 
1068         for (index = 0;
1069              !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1070                                                                   prop, index,
1071                                                                   props,
1072                                                                   nprops)));
1073              index++) {
1074                 struct v4l2_async_subdev *asd;
1075 
1076                 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1077                                                             sizeof(*asd));
1078                 fwnode_handle_put(fwnode);
1079                 if (IS_ERR(asd)) {
1080                         ret = PTR_ERR(asd);
1081                         /* not an error if asd already exists */
1082                         if (ret == -EEXIST)
1083                                 continue;
1084 
1085                         return PTR_ERR(asd);
1086                 }
1087         }
1088 
1089         return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1090 }
1091 
1092 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1093                                                    struct v4l2_async_notifier *notifier)
1094 {
1095         static const char * const led_props[] = { "led" };
1096         static const struct v4l2_fwnode_int_props props[] = {
1097                 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1098                 { "lens-focus", NULL, 0 },
1099         };
1100         unsigned int i;
1101 
1102         for (i = 0; i < ARRAY_SIZE(props); i++) {
1103                 int ret;
1104 
1105                 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1106                         ret = v4l2_fwnode_reference_parse_int_props(dev,
1107                                                                     notifier,
1108                                                                     &props[i]);
1109                 else
1110                         ret = v4l2_fwnode_reference_parse(dev, notifier,
1111                                                           props[i].name);
1112                 if (ret && ret != -ENOENT) {
1113                         dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1114                                  props[i].name, ret);
1115                         return ret;
1116                 }
1117         }
1118 
1119         return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1122 
1123 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1124 {
1125         struct v4l2_async_notifier *notifier;
1126         int ret;
1127 
1128         if (WARN_ON(!sd->dev))
1129                 return -ENODEV;
1130 
1131         notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1132         if (!notifier)
1133                 return -ENOMEM;
1134 
1135         v4l2_async_notifier_init(notifier);
1136 
1137         ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1138                                                              notifier);
1139         if (ret < 0)
1140                 goto out_cleanup;
1141 
1142         ret = v4l2_async_subdev_notifier_register(sd, notifier);
1143         if (ret < 0)
1144                 goto out_cleanup;
1145 
1146         ret = v4l2_async_register_subdev(sd);
1147         if (ret < 0)
1148                 goto out_unregister;
1149 
1150         sd->subdev_notifier = notifier;
1151 
1152         return 0;
1153 
1154 out_unregister:
1155         v4l2_async_notifier_unregister(notifier);
1156 
1157 out_cleanup:
1158         v4l2_async_notifier_cleanup(notifier);
1159         kfree(notifier);
1160 
1161         return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1164 
1165 int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd,
1166                                       size_t asd_struct_size,
1167                                       unsigned int *ports,
1168                                       unsigned int num_ports,
1169                                       parse_endpoint_func parse_endpoint)
1170 {
1171         struct v4l2_async_notifier *notifier;
1172         struct device *dev = sd->dev;
1173         struct fwnode_handle *fwnode;
1174         int ret;
1175 
1176         if (WARN_ON(!dev))
1177                 return -ENODEV;
1178 
1179         fwnode = dev_fwnode(dev);
1180         if (!fwnode_device_is_available(fwnode))
1181                 return -ENODEV;
1182 
1183         notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1184         if (!notifier)
1185                 return -ENOMEM;
1186 
1187         v4l2_async_notifier_init(notifier);
1188 
1189         if (!ports) {
1190                 ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier,
1191                                                                  asd_struct_size,
1192                                                                  parse_endpoint);
1193                 if (ret < 0)
1194                         goto out_cleanup;
1195         } else {
1196                 unsigned int i;
1197 
1198                 for (i = 0; i < num_ports; i++) {
1199                         ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint);
1200                         if (ret < 0)
1201                                 goto out_cleanup;
1202                 }
1203         }
1204 
1205         ret = v4l2_async_subdev_notifier_register(sd, notifier);
1206         if (ret < 0)
1207                 goto out_cleanup;
1208 
1209         ret = v4l2_async_register_subdev(sd);
1210         if (ret < 0)
1211                 goto out_unregister;
1212 
1213         sd->subdev_notifier = notifier;
1214 
1215         return 0;
1216 
1217 out_unregister:
1218         v4l2_async_notifier_unregister(notifier);
1219 out_cleanup:
1220         v4l2_async_notifier_cleanup(notifier);
1221         kfree(notifier);
1222 
1223         return ret;
1224 }
1225 EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev);
1226 
1227 MODULE_LICENSE("GPL");
1228 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1229 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1230 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");

/* [<][>][^][v][top][bottom][index][help] */