root/drivers/media/i2c/aptina-pll.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. aptina_pll_calculate

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Aptina Sensor PLL Configuration
   4  *
   5  * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   6  */
   7 
   8 #include <linux/device.h>
   9 #include <linux/gcd.h>
  10 #include <linux/kernel.h>
  11 #include <linux/lcm.h>
  12 #include <linux/module.h>
  13 
  14 #include "aptina-pll.h"
  15 
  16 int aptina_pll_calculate(struct device *dev,
  17                          const struct aptina_pll_limits *limits,
  18                          struct aptina_pll *pll)
  19 {
  20         unsigned int mf_min;
  21         unsigned int mf_max;
  22         unsigned int p1_min;
  23         unsigned int p1_max;
  24         unsigned int p1;
  25         unsigned int div;
  26 
  27         dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
  28                 pll->ext_clock, pll->pix_clock);
  29 
  30         if (pll->ext_clock < limits->ext_clock_min ||
  31             pll->ext_clock > limits->ext_clock_max) {
  32                 dev_err(dev, "pll: invalid external clock frequency.\n");
  33                 return -EINVAL;
  34         }
  35 
  36         if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
  37                 dev_err(dev, "pll: invalid pixel clock frequency.\n");
  38                 return -EINVAL;
  39         }
  40 
  41         /* Compute the multiplier M and combined N*P1 divisor. */
  42         div = gcd(pll->pix_clock, pll->ext_clock);
  43         pll->m = pll->pix_clock / div;
  44         div = pll->ext_clock / div;
  45 
  46         /* We now have the smallest M and N*P1 values that will result in the
  47          * desired pixel clock frequency, but they might be out of the valid
  48          * range. Compute the factor by which we should multiply them given the
  49          * following constraints:
  50          *
  51          * - minimum/maximum multiplier
  52          * - minimum/maximum multiplier output clock frequency assuming the
  53          *   minimum/maximum N value
  54          * - minimum/maximum combined N*P1 divisor
  55          */
  56         mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
  57         mf_min = max(mf_min, limits->out_clock_min /
  58                      (pll->ext_clock / limits->n_min * pll->m));
  59         mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
  60         mf_max = limits->m_max / pll->m;
  61         mf_max = min(mf_max, limits->out_clock_max /
  62                     (pll->ext_clock / limits->n_max * pll->m));
  63         mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
  64 
  65         dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
  66         if (mf_min > mf_max) {
  67                 dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
  68                 return -EINVAL;
  69         }
  70 
  71         /*
  72          * We're looking for the highest acceptable P1 value for which a
  73          * multiplier factor MF exists that fulfills the following conditions:
  74          *
  75          * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
  76          *    even
  77          * 2. mf is in the [mf_min, mf_max] range computed above
  78          * 3. div * mf is a multiple of p1, in order to compute
  79          *      n = div * mf / p1
  80          *      m = pll->m * mf
  81          * 4. the internal clock frequency, given by ext_clock / n, is in the
  82          *    [int_clock_min, int_clock_max] range given by the limits
  83          * 5. the output clock frequency, given by ext_clock / n * m, is in the
  84          *    [out_clock_min, out_clock_max] range given by the limits
  85          *
  86          * The first naive approach is to iterate over all p1 values acceptable
  87          * according to (1) and all mf values acceptable according to (2), and
  88          * stop at the first combination that fulfills (3), (4) and (5). This
  89          * has a O(n^2) complexity.
  90          *
  91          * Instead of iterating over all mf values in the [mf_min, mf_max] range
  92          * we can compute the mf increment between two acceptable values
  93          * according to (3) with
  94          *
  95          *      mf_inc = p1 / gcd(div, p1)                      (6)
  96          *
  97          * and round the minimum up to the nearest multiple of mf_inc. This will
  98          * restrict the number of mf values to be checked.
  99          *
 100          * Furthermore, conditions (4) and (5) only restrict the range of
 101          * acceptable p1 and mf values by modifying the minimum and maximum
 102          * limits. (5) can be expressed as
 103          *
 104          *      ext_clock / (div * mf / p1) * m * mf >= out_clock_min
 105          *      ext_clock / (div * mf / p1) * m * mf <= out_clock_max
 106          *
 107          * or
 108          *
 109          *      p1 >= out_clock_min * div / (ext_clock * m)     (7)
 110          *      p1 <= out_clock_max * div / (ext_clock * m)
 111          *
 112          * Similarly, (4) can be expressed as
 113          *
 114          *      mf >= ext_clock * p1 / (int_clock_max * div)    (8)
 115          *      mf <= ext_clock * p1 / (int_clock_min * div)
 116          *
 117          * We can thus iterate over the restricted p1 range defined by the
 118          * combination of (1) and (7), and then compute the restricted mf range
 119          * defined by the combination of (2), (6) and (8). If the resulting mf
 120          * range is not empty, any value in the mf range is acceptable. We thus
 121          * select the mf lwoer bound and the corresponding p1 value.
 122          */
 123         if (limits->p1_min == 0) {
 124                 dev_err(dev, "pll: P1 minimum value must be >0.\n");
 125                 return -EINVAL;
 126         }
 127 
 128         p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
 129                      pll->ext_clock * pll->m));
 130         p1_max = min(limits->p1_max, limits->out_clock_max * div /
 131                      (pll->ext_clock * pll->m));
 132 
 133         for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
 134                 unsigned int mf_inc = p1 / gcd(div, p1);
 135                 unsigned int mf_high;
 136                 unsigned int mf_low;
 137 
 138                 mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
 139                                         limits->int_clock_max * div)), mf_inc);
 140                 mf_high = min(mf_max, pll->ext_clock * p1 /
 141                               (limits->int_clock_min * div));
 142 
 143                 if (mf_low > mf_high)
 144                         continue;
 145 
 146                 pll->n = div * mf_low / p1;
 147                 pll->m *= mf_low;
 148                 pll->p1 = p1;
 149                 dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
 150                 return 0;
 151         }
 152 
 153         dev_err(dev, "pll: no valid N and P1 divisors found.\n");
 154         return -EINVAL;
 155 }
 156 EXPORT_SYMBOL_GPL(aptina_pll_calculate);
 157 
 158 MODULE_DESCRIPTION("Aptina PLL Helpers");
 159 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
 160 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */