This source file includes following definitions.
- cx22702_writereg
- cx22702_readreg
- cx22702_set_inversion
- cx22702_get_tps
- cx22702_i2c_gate_ctrl
- cx22702_set_tps
- cx22702_init
- cx22702_read_status
- cx22702_read_ber
- cx22702_read_signal_strength
- cx22702_read_snr
- cx22702_read_ucblocks
- cx22702_get_frontend
- cx22702_get_tune_settings
- cx22702_release
- cx22702_attach
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <media/dvb_frontend.h>
23 #include "cx22702.h"
24
25 struct cx22702_state {
26
27 struct i2c_adapter *i2c;
28
29
30 const struct cx22702_config *config;
31
32 struct dvb_frontend frontend;
33
34
35 u8 prevUCBlocks;
36 };
37
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "Enable verbose debug messages");
41
42 #define dprintk if (debug) printk
43
44
45 static const u8 init_tab[] = {
46 0x00, 0x00,
47 0x0B, 0x06,
48 0x09, 0x01,
49 0x0D, 0x41,
50 0x16, 0x32,
51 0x20, 0x0A,
52 0x21, 0x17,
53 0x24, 0x3e,
54 0x26, 0xff,
55 0x27, 0x10,
56 0x28, 0x00,
57 0x29, 0x00,
58 0x2a, 0x10,
59 0x2b, 0x00,
60 0x2c, 0x10,
61 0x2d, 0x00,
62 0x48, 0xd4,
63 0x49, 0x56,
64 0x6b, 0x1e,
65 0xc8, 0x02,
66 0xf9, 0x00,
67 0xfa, 0x00,
68 0xfb, 0x00,
69 0xfc, 0x00,
70 0xfd, 0x00,
71 };
72
73 static int cx22702_writereg(struct cx22702_state *state, u8 reg, u8 data)
74 {
75 int ret;
76 u8 buf[] = { reg, data };
77 struct i2c_msg msg = {
78 .addr = state->config->demod_address, .flags = 0,
79 .buf = buf, .len = 2 };
80
81 ret = i2c_transfer(state->i2c, &msg, 1);
82
83 if (unlikely(ret != 1)) {
84 printk(KERN_ERR
85 "%s: error (reg == 0x%02x, val == 0x%02x, ret == %i)\n",
86 __func__, reg, data, ret);
87 return -1;
88 }
89
90 return 0;
91 }
92
93 static u8 cx22702_readreg(struct cx22702_state *state, u8 reg)
94 {
95 int ret;
96 u8 data;
97
98 struct i2c_msg msg[] = {
99 { .addr = state->config->demod_address, .flags = 0,
100 .buf = ®, .len = 1 },
101 { .addr = state->config->demod_address, .flags = I2C_M_RD,
102 .buf = &data, .len = 1 } };
103
104 ret = i2c_transfer(state->i2c, msg, 2);
105
106 if (unlikely(ret != 2)) {
107 printk(KERN_ERR "%s: error (reg == 0x%02x, ret == %i)\n",
108 __func__, reg, ret);
109 return 0;
110 }
111
112 return data;
113 }
114
115 static int cx22702_set_inversion(struct cx22702_state *state, int inversion)
116 {
117 u8 val;
118
119 val = cx22702_readreg(state, 0x0C);
120 switch (inversion) {
121 case INVERSION_AUTO:
122 return -EOPNOTSUPP;
123 case INVERSION_ON:
124 val |= 0x01;
125 break;
126 case INVERSION_OFF:
127 val &= 0xfe;
128 break;
129 default:
130 return -EINVAL;
131 }
132 return cx22702_writereg(state, 0x0C, val);
133 }
134
135
136 static int cx22702_get_tps(struct cx22702_state *state,
137 struct dtv_frontend_properties *p)
138 {
139 u8 val;
140
141
142 if (!(cx22702_readreg(state, 0x0A) & 0x20))
143 return -EAGAIN;
144
145 val = cx22702_readreg(state, 0x01);
146 switch ((val & 0x18) >> 3) {
147 case 0:
148 p->modulation = QPSK;
149 break;
150 case 1:
151 p->modulation = QAM_16;
152 break;
153 case 2:
154 p->modulation = QAM_64;
155 break;
156 }
157 switch (val & 0x07) {
158 case 0:
159 p->hierarchy = HIERARCHY_NONE;
160 break;
161 case 1:
162 p->hierarchy = HIERARCHY_1;
163 break;
164 case 2:
165 p->hierarchy = HIERARCHY_2;
166 break;
167 case 3:
168 p->hierarchy = HIERARCHY_4;
169 break;
170 }
171
172
173 val = cx22702_readreg(state, 0x02);
174 switch ((val & 0x38) >> 3) {
175 case 0:
176 p->code_rate_HP = FEC_1_2;
177 break;
178 case 1:
179 p->code_rate_HP = FEC_2_3;
180 break;
181 case 2:
182 p->code_rate_HP = FEC_3_4;
183 break;
184 case 3:
185 p->code_rate_HP = FEC_5_6;
186 break;
187 case 4:
188 p->code_rate_HP = FEC_7_8;
189 break;
190 }
191 switch (val & 0x07) {
192 case 0:
193 p->code_rate_LP = FEC_1_2;
194 break;
195 case 1:
196 p->code_rate_LP = FEC_2_3;
197 break;
198 case 2:
199 p->code_rate_LP = FEC_3_4;
200 break;
201 case 3:
202 p->code_rate_LP = FEC_5_6;
203 break;
204 case 4:
205 p->code_rate_LP = FEC_7_8;
206 break;
207 }
208
209 val = cx22702_readreg(state, 0x03);
210 switch ((val & 0x0c) >> 2) {
211 case 0:
212 p->guard_interval = GUARD_INTERVAL_1_32;
213 break;
214 case 1:
215 p->guard_interval = GUARD_INTERVAL_1_16;
216 break;
217 case 2:
218 p->guard_interval = GUARD_INTERVAL_1_8;
219 break;
220 case 3:
221 p->guard_interval = GUARD_INTERVAL_1_4;
222 break;
223 }
224 switch (val & 0x03) {
225 case 0:
226 p->transmission_mode = TRANSMISSION_MODE_2K;
227 break;
228 case 1:
229 p->transmission_mode = TRANSMISSION_MODE_8K;
230 break;
231 }
232
233 return 0;
234 }
235
236 static int cx22702_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
237 {
238 struct cx22702_state *state = fe->demodulator_priv;
239 u8 val;
240
241 dprintk("%s(%d)\n", __func__, enable);
242 val = cx22702_readreg(state, 0x0D);
243 if (enable)
244 val &= 0xfe;
245 else
246 val |= 0x01;
247 return cx22702_writereg(state, 0x0D, val);
248 }
249
250
251 static int cx22702_set_tps(struct dvb_frontend *fe)
252 {
253 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
254 u8 val;
255 struct cx22702_state *state = fe->demodulator_priv;
256
257 if (fe->ops.tuner_ops.set_params) {
258 fe->ops.tuner_ops.set_params(fe);
259 if (fe->ops.i2c_gate_ctrl)
260 fe->ops.i2c_gate_ctrl(fe, 0);
261 }
262
263
264 cx22702_set_inversion(state, p->inversion);
265
266
267 val = cx22702_readreg(state, 0x0C) & 0xcf;
268 switch (p->bandwidth_hz) {
269 case 6000000:
270 val |= 0x20;
271 break;
272 case 7000000:
273 val |= 0x10;
274 break;
275 case 8000000:
276 break;
277 default:
278 dprintk("%s: invalid bandwidth\n", __func__);
279 return -EINVAL;
280 }
281 cx22702_writereg(state, 0x0C, val);
282
283 p->code_rate_LP = FEC_AUTO;
284
285
286 if ((p->hierarchy == HIERARCHY_AUTO) ||
287 (p->modulation == QAM_AUTO) ||
288 (p->code_rate_HP == FEC_AUTO) ||
289 (p->code_rate_LP == FEC_AUTO) ||
290 (p->guard_interval == GUARD_INTERVAL_AUTO) ||
291 (p->transmission_mode == TRANSMISSION_MODE_AUTO)) {
292
293
294 cx22702_writereg(state, 0x06, 0x10);
295 cx22702_writereg(state, 0x07, 0x9);
296 cx22702_writereg(state, 0x08, 0xC1);
297 cx22702_writereg(state, 0x0B, cx22702_readreg(state, 0x0B)
298 & 0xfc);
299 cx22702_writereg(state, 0x0C,
300 (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40);
301 cx22702_writereg(state, 0x00, 0x01);
302 dprintk("%s: Autodetecting\n", __func__);
303 return 0;
304 }
305
306
307 switch (p->modulation) {
308 case QPSK:
309 val = 0x00;
310 break;
311 case QAM_16:
312 val = 0x08;
313 break;
314 case QAM_64:
315 val = 0x10;
316 break;
317 default:
318 dprintk("%s: invalid modulation\n", __func__);
319 return -EINVAL;
320 }
321 switch (p->hierarchy) {
322 case HIERARCHY_NONE:
323 break;
324 case HIERARCHY_1:
325 val |= 0x01;
326 break;
327 case HIERARCHY_2:
328 val |= 0x02;
329 break;
330 case HIERARCHY_4:
331 val |= 0x03;
332 break;
333 default:
334 dprintk("%s: invalid hierarchy\n", __func__);
335 return -EINVAL;
336 }
337 cx22702_writereg(state, 0x06, val);
338
339 switch (p->code_rate_HP) {
340 case FEC_NONE:
341 case FEC_1_2:
342 val = 0x00;
343 break;
344 case FEC_2_3:
345 val = 0x08;
346 break;
347 case FEC_3_4:
348 val = 0x10;
349 break;
350 case FEC_5_6:
351 val = 0x18;
352 break;
353 case FEC_7_8:
354 val = 0x20;
355 break;
356 default:
357 dprintk("%s: invalid code_rate_HP\n", __func__);
358 return -EINVAL;
359 }
360 switch (p->code_rate_LP) {
361 case FEC_NONE:
362 case FEC_1_2:
363 break;
364 case FEC_2_3:
365 val |= 0x01;
366 break;
367 case FEC_3_4:
368 val |= 0x02;
369 break;
370 case FEC_5_6:
371 val |= 0x03;
372 break;
373 case FEC_7_8:
374 val |= 0x04;
375 break;
376 default:
377 dprintk("%s: invalid code_rate_LP\n", __func__);
378 return -EINVAL;
379 }
380 cx22702_writereg(state, 0x07, val);
381
382 switch (p->guard_interval) {
383 case GUARD_INTERVAL_1_32:
384 val = 0x00;
385 break;
386 case GUARD_INTERVAL_1_16:
387 val = 0x04;
388 break;
389 case GUARD_INTERVAL_1_8:
390 val = 0x08;
391 break;
392 case GUARD_INTERVAL_1_4:
393 val = 0x0c;
394 break;
395 default:
396 dprintk("%s: invalid guard_interval\n", __func__);
397 return -EINVAL;
398 }
399 switch (p->transmission_mode) {
400 case TRANSMISSION_MODE_2K:
401 break;
402 case TRANSMISSION_MODE_8K:
403 val |= 0x1;
404 break;
405 default:
406 dprintk("%s: invalid transmission_mode\n", __func__);
407 return -EINVAL;
408 }
409 cx22702_writereg(state, 0x08, val);
410 cx22702_writereg(state, 0x0B,
411 (cx22702_readreg(state, 0x0B) & 0xfc) | 0x02);
412 cx22702_writereg(state, 0x0C,
413 (cx22702_readreg(state, 0x0C) & 0xBF) | 0x40);
414
415
416 cx22702_writereg(state, 0x00, 0x01);
417
418 return 0;
419 }
420
421
422
423 static int cx22702_init(struct dvb_frontend *fe)
424 {
425 int i;
426 struct cx22702_state *state = fe->demodulator_priv;
427
428 cx22702_writereg(state, 0x00, 0x02);
429
430 msleep(10);
431
432 for (i = 0; i < ARRAY_SIZE(init_tab); i += 2)
433 cx22702_writereg(state, init_tab[i], init_tab[i + 1]);
434
435 cx22702_writereg(state, 0xf8, (state->config->output_mode << 1)
436 & 0x02);
437
438 cx22702_i2c_gate_ctrl(fe, 0);
439
440 return 0;
441 }
442
443 static int cx22702_read_status(struct dvb_frontend *fe, enum fe_status *status)
444 {
445 struct cx22702_state *state = fe->demodulator_priv;
446 u8 reg0A;
447 u8 reg23;
448
449 *status = 0;
450
451 reg0A = cx22702_readreg(state, 0x0A);
452 reg23 = cx22702_readreg(state, 0x23);
453
454 dprintk("%s: status demod=0x%02x agc=0x%02x\n"
455 , __func__, reg0A, reg23);
456
457 if (reg0A & 0x10) {
458 *status |= FE_HAS_LOCK;
459 *status |= FE_HAS_VITERBI;
460 *status |= FE_HAS_SYNC;
461 }
462
463 if (reg0A & 0x20)
464 *status |= FE_HAS_CARRIER;
465
466 if (reg23 < 0xf0)
467 *status |= FE_HAS_SIGNAL;
468
469 return 0;
470 }
471
472 static int cx22702_read_ber(struct dvb_frontend *fe, u32 *ber)
473 {
474 struct cx22702_state *state = fe->demodulator_priv;
475
476 if (cx22702_readreg(state, 0xE4) & 0x02) {
477
478 *ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7
479 | (cx22702_readreg(state, 0xDF) & 0x7F);
480 } else {
481
482 *ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7
483 | cx22702_readreg(state, 0xDF);
484 }
485
486 return 0;
487 }
488
489 static int cx22702_read_signal_strength(struct dvb_frontend *fe,
490 u16 *signal_strength)
491 {
492 struct cx22702_state *state = fe->demodulator_priv;
493 u8 reg23;
494
495
496
497
498
499
500
501
502
503
504
505 reg23 = cx22702_readreg(state, 0x23);
506 if (reg23 & 0x80) {
507 *signal_strength = 0;
508 } else {
509 reg23 = ~reg23 & 0x7f;
510
511 *signal_strength = (reg23 << 9) | (reg23 << 2) | (reg23 >> 5);
512 }
513
514 return 0;
515 }
516
517 static int cx22702_read_snr(struct dvb_frontend *fe, u16 *snr)
518 {
519 struct cx22702_state *state = fe->demodulator_priv;
520
521 u16 rs_ber;
522 if (cx22702_readreg(state, 0xE4) & 0x02) {
523
524 rs_ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 7
525 | (cx22702_readreg(state, 0xDF) & 0x7F);
526 } else {
527
528 rs_ber = (cx22702_readreg(state, 0xDE) & 0x7F) << 8
529 | cx22702_readreg(state, 0xDF);
530 }
531 *snr = ~rs_ber;
532
533 return 0;
534 }
535
536 static int cx22702_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
537 {
538 struct cx22702_state *state = fe->demodulator_priv;
539
540 u8 _ucblocks;
541
542
543 _ucblocks = cx22702_readreg(state, 0xE3);
544 if (state->prevUCBlocks < _ucblocks)
545 *ucblocks = (_ucblocks - state->prevUCBlocks);
546 else
547 *ucblocks = state->prevUCBlocks - _ucblocks;
548 state->prevUCBlocks = _ucblocks;
549
550 return 0;
551 }
552
553 static int cx22702_get_frontend(struct dvb_frontend *fe,
554 struct dtv_frontend_properties *c)
555 {
556 struct cx22702_state *state = fe->demodulator_priv;
557
558 u8 reg0C = cx22702_readreg(state, 0x0C);
559
560 c->inversion = reg0C & 0x1 ? INVERSION_ON : INVERSION_OFF;
561 return cx22702_get_tps(state, c);
562 }
563
564 static int cx22702_get_tune_settings(struct dvb_frontend *fe,
565 struct dvb_frontend_tune_settings *tune)
566 {
567 tune->min_delay_ms = 1000;
568 return 0;
569 }
570
571 static void cx22702_release(struct dvb_frontend *fe)
572 {
573 struct cx22702_state *state = fe->demodulator_priv;
574 kfree(state);
575 }
576
577 static const struct dvb_frontend_ops cx22702_ops;
578
579 struct dvb_frontend *cx22702_attach(const struct cx22702_config *config,
580 struct i2c_adapter *i2c)
581 {
582 struct cx22702_state *state = NULL;
583
584
585 state = kzalloc(sizeof(struct cx22702_state), GFP_KERNEL);
586 if (state == NULL)
587 goto error;
588
589
590 state->config = config;
591 state->i2c = i2c;
592
593
594 if (cx22702_readreg(state, 0x1f) != 0x3)
595 goto error;
596
597
598 memcpy(&state->frontend.ops, &cx22702_ops,
599 sizeof(struct dvb_frontend_ops));
600 state->frontend.demodulator_priv = state;
601 return &state->frontend;
602
603 error:
604 kfree(state);
605 return NULL;
606 }
607 EXPORT_SYMBOL(cx22702_attach);
608
609 static const struct dvb_frontend_ops cx22702_ops = {
610 .delsys = { SYS_DVBT },
611 .info = {
612 .name = "Conexant CX22702 DVB-T",
613 .frequency_min_hz = 177 * MHz,
614 .frequency_max_hz = 858 * MHz,
615 .frequency_stepsize_hz = 166666,
616 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
617 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
618 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
619 FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
620 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER
621 },
622
623 .release = cx22702_release,
624
625 .init = cx22702_init,
626 .i2c_gate_ctrl = cx22702_i2c_gate_ctrl,
627
628 .set_frontend = cx22702_set_tps,
629 .get_frontend = cx22702_get_frontend,
630 .get_tune_settings = cx22702_get_tune_settings,
631
632 .read_status = cx22702_read_status,
633 .read_ber = cx22702_read_ber,
634 .read_signal_strength = cx22702_read_signal_strength,
635 .read_snr = cx22702_read_snr,
636 .read_ucblocks = cx22702_read_ucblocks,
637 };
638
639 MODULE_DESCRIPTION("Conexant CX22702 DVB-T Demodulator driver");
640 MODULE_AUTHOR("Steven Toth");
641 MODULE_LICENSE("GPL");