This source file includes following definitions.
- mb86a20s_i2c_writereg
- mb86a20s_i2c_writeregdata
- mb86a20s_i2c_readreg
- mb86a20s_read_status
- mb86a20s_read_signal_strength
- mb86a20s_get_modulation
- mb86a20s_get_fec
- mb86a20s_get_interleaving
- mb86a20s_get_segment_count
- mb86a20s_reset_frontend_cache
- mb86a20s_layer_bitrate
- mb86a20s_get_frontend
- mb86a20s_reset_counters
- mb86a20s_get_pre_ber
- mb86a20s_get_post_ber
- mb86a20s_get_blk_error
- interpolate_value
- mb86a20s_get_main_CNR
- mb86a20s_get_blk_error_layer_CNR
- mb86a20s_stats_not_ready
- mb86a20s_get_stats
- mb86a20s_initfe
- mb86a20s_set_frontend
- mb86a20s_read_status_and_stats
- mb86a20s_read_signal_strength_from_cache
- mb86a20s_tune
- mb86a20s_release
- mb86a20s_get_frontend_algo
- mb86a20s_attach
1
2
3
4
5
6
7
8
9 #include <linux/kernel.h>
10 #include <asm/div64.h>
11
12 #include <media/dvb_frontend.h>
13 #include "mb86a20s.h"
14
15 #define NUM_LAYERS 3
16
17 enum mb86a20s_bandwidth {
18 MB86A20S_13SEG = 0,
19 MB86A20S_13SEG_PARTIAL = 1,
20 MB86A20S_1SEG = 2,
21 MB86A20S_3SEG = 3,
22 };
23
24 static u8 mb86a20s_subchannel[] = {
25 0xb0, 0xc0, 0xd0, 0xe0,
26 0xf0, 0x00, 0x10, 0x20,
27 };
28
29 struct mb86a20s_state {
30 struct i2c_adapter *i2c;
31 const struct mb86a20s_config *config;
32 u32 last_frequency;
33
34 struct dvb_frontend frontend;
35
36 u32 if_freq;
37 enum mb86a20s_bandwidth bw;
38 bool inversion;
39 u32 subchannel;
40
41 u32 estimated_rate[NUM_LAYERS];
42 unsigned long get_strength_time;
43
44 bool need_init;
45 };
46
47 struct regdata {
48 u8 reg;
49 u8 data;
50 };
51
52 #define BER_SAMPLING_RATE 1
53
54
55
56
57
58 static struct regdata mb86a20s_init1[] = {
59 { 0x70, 0x0f },
60 { 0x70, 0xff },
61 { 0x08, 0x01 },
62 { 0x50, 0xd1 }, { 0x51, 0x20 },
63 };
64
65 static struct regdata mb86a20s_init2[] = {
66 { 0x50, 0xd1 }, { 0x51, 0x22 },
67 { 0x39, 0x01 },
68 { 0x71, 0x00 },
69 { 0x3b, 0x21 },
70 { 0x3c, 0x3a },
71 { 0x01, 0x0d },
72 { 0x04, 0x08 }, { 0x05, 0x05 },
73 { 0x04, 0x0e }, { 0x05, 0x00 },
74 { 0x04, 0x0f }, { 0x05, 0x14 },
75 { 0x04, 0x0b }, { 0x05, 0x8c },
76 { 0x04, 0x00 }, { 0x05, 0x00 },
77 { 0x04, 0x01 }, { 0x05, 0x07 },
78 { 0x04, 0x02 }, { 0x05, 0x0f },
79 { 0x04, 0x03 }, { 0x05, 0xa0 },
80 { 0x04, 0x09 }, { 0x05, 0x00 },
81 { 0x04, 0x0a }, { 0x05, 0xff },
82 { 0x04, 0x27 }, { 0x05, 0x64 },
83 { 0x04, 0x28 }, { 0x05, 0x00 },
84 { 0x04, 0x1e }, { 0x05, 0xff },
85 { 0x04, 0x29 }, { 0x05, 0x0a },
86 { 0x04, 0x32 }, { 0x05, 0x0a },
87 { 0x04, 0x14 }, { 0x05, 0x02 },
88 { 0x04, 0x04 }, { 0x05, 0x00 },
89 { 0x04, 0x05 }, { 0x05, 0x22 },
90 { 0x04, 0x06 }, { 0x05, 0x0e },
91 { 0x04, 0x07 }, { 0x05, 0xd8 },
92 { 0x04, 0x12 }, { 0x05, 0x00 },
93 { 0x04, 0x13 }, { 0x05, 0xff },
94
95
96
97
98
99
100
101
102 { 0x52, 0x01 },
103 { 0x50, 0xa7 }, { 0x51, 0x00 },
104 { 0x50, 0xa8 }, { 0x51, 0xff },
105 { 0x50, 0xa9 }, { 0x51, 0xff },
106 { 0x50, 0xaa }, { 0x51, 0x00 },
107 { 0x50, 0xab }, { 0x51, 0xff },
108 { 0x50, 0xac }, { 0x51, 0xff },
109 { 0x50, 0xad }, { 0x51, 0x00 },
110 { 0x50, 0xae }, { 0x51, 0xff },
111 { 0x50, 0xaf }, { 0x51, 0xff },
112
113
114
115
116
117
118
119
120 { 0x5e, 0x07 },
121 { 0x50, 0xdc }, { 0x51, 0x00 },
122 { 0x50, 0xdd }, { 0x51, 0x7f },
123 { 0x50, 0xde }, { 0x51, 0x00 },
124 { 0x50, 0xdf }, { 0x51, 0x7f },
125 { 0x50, 0xe0 }, { 0x51, 0x00 },
126 { 0x50, 0xe1 }, { 0x51, 0x7f },
127
128
129
130
131
132
133
134
135 { 0x50, 0xb0 }, { 0x51, 0x07 },
136 { 0x50, 0xb2 }, { 0x51, 0x00 },
137 { 0x50, 0xb3 }, { 0x51, 0x7f },
138 { 0x50, 0xb4 }, { 0x51, 0x00 },
139 { 0x50, 0xb5 }, { 0x51, 0x7f },
140 { 0x50, 0xb6 }, { 0x51, 0x00 },
141 { 0x50, 0xb7 }, { 0x51, 0x7f },
142
143 { 0x50, 0x50 }, { 0x51, 0x02 },
144 { 0x50, 0x51 }, { 0x51, 0x04 },
145 { 0x45, 0x04 },
146 { 0x48, 0x04 },
147 { 0x50, 0xd5 }, { 0x51, 0x01 },
148 { 0x50, 0xd6 }, { 0x51, 0x1f },
149 { 0x50, 0xd2 }, { 0x51, 0x03 },
150 { 0x50, 0xd7 }, { 0x51, 0x3f },
151 { 0x1c, 0x01 },
152 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
177 { 0x50, 0x1e }, { 0x51, 0x5d },
178 { 0x50, 0x22 }, { 0x51, 0x00 },
179 { 0x50, 0x23 }, { 0x51, 0xc8 },
180 { 0x50, 0x24 }, { 0x51, 0x00 },
181 { 0x50, 0x25 }, { 0x51, 0xf0 },
182 { 0x50, 0x26 }, { 0x51, 0x00 },
183 { 0x50, 0x27 }, { 0x51, 0xc3 },
184 { 0x50, 0x39 }, { 0x51, 0x02 },
185 { 0x50, 0xd5 }, { 0x51, 0x01 },
186 { 0xd0, 0x00 },
187 };
188
189 static struct regdata mb86a20s_reset_reception[] = {
190 { 0x70, 0xf0 },
191 { 0x70, 0xff },
192 { 0x08, 0x01 },
193 { 0x08, 0x00 },
194 };
195
196 static struct regdata mb86a20s_per_ber_reset[] = {
197 { 0x53, 0x00 },
198 { 0x53, 0x07 },
199
200 { 0x5f, 0x00 },
201 { 0x5f, 0x07 },
202
203 { 0x50, 0xb1 },
204 { 0x51, 0x07 },
205 { 0x51, 0x00 },
206 };
207
208
209
210
211
212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
213 u8 i2c_addr, u8 reg, u8 data)
214 {
215 u8 buf[] = { reg, data };
216 struct i2c_msg msg = {
217 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
218 };
219 int rc;
220
221 rc = i2c_transfer(state->i2c, &msg, 1);
222 if (rc != 1) {
223 dev_err(&state->i2c->dev,
224 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225 __func__, rc, reg, data);
226 return rc;
227 }
228
229 return 0;
230 }
231
232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233 u8 i2c_addr, struct regdata *rd, int size)
234 {
235 int i, rc;
236
237 for (i = 0; i < size; i++) {
238 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239 rd[i].data);
240 if (rc < 0)
241 return rc;
242 }
243 return 0;
244 }
245
246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247 u8 i2c_addr, u8 reg)
248 {
249 u8 val;
250 int rc;
251 struct i2c_msg msg[] = {
252 { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 },
253 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
254 };
255
256 rc = i2c_transfer(state->i2c, msg, 2);
257
258 if (rc != 2) {
259 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260 __func__, reg, rc);
261 return (rc < 0) ? rc : -EIO;
262 }
263
264 return val;
265 }
266
267 #define mb86a20s_readreg(state, reg) \
268 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269 #define mb86a20s_writereg(state, reg, val) \
270 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271 #define mb86a20s_writeregdata(state, regdata) \
272 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273 regdata, ARRAY_SIZE(regdata))
274
275
276
277
278
279
280
281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
282 {
283 struct mb86a20s_state *state = fe->demodulator_priv;
284 int val;
285
286 *status = 0;
287
288 val = mb86a20s_readreg(state, 0x0a);
289 if (val < 0)
290 return val;
291
292 val &= 0xf;
293 if (val >= 2)
294 *status |= FE_HAS_SIGNAL;
295
296 if (val >= 4)
297 *status |= FE_HAS_CARRIER;
298
299 if (val >= 5)
300 *status |= FE_HAS_VITERBI;
301
302 if (val >= 7)
303 *status |= FE_HAS_SYNC;
304
305
306
307
308
309 if (val >= 9)
310 *status |= FE_HAS_LOCK;
311
312 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313 __func__, *status, val);
314
315 return val;
316 }
317
318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
319 {
320 struct mb86a20s_state *state = fe->demodulator_priv;
321 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
322 int rc;
323 unsigned rf_max, rf_min, rf;
324
325 if (state->get_strength_time &&
326 (!time_after(jiffies, state->get_strength_time)))
327 return c->strength.stat[0].uvalue;
328
329
330 c->strength.stat[0].uvalue = 0;
331
332
333 rf_max = 0xfff;
334 rf_min = 0;
335 do {
336 rf = (rf_max + rf_min) / 2;
337 rc = mb86a20s_writereg(state, 0x04, 0x1f);
338 if (rc < 0)
339 return rc;
340 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341 if (rc < 0)
342 return rc;
343 rc = mb86a20s_writereg(state, 0x04, 0x20);
344 if (rc < 0)
345 return rc;
346 rc = mb86a20s_writereg(state, 0x05, rf);
347 if (rc < 0)
348 return rc;
349
350 rc = mb86a20s_readreg(state, 0x02);
351 if (rc < 0)
352 return rc;
353 if (rc & 0x08)
354 rf_min = (rf_max + rf_min) / 2;
355 else
356 rf_max = (rf_max + rf_min) / 2;
357 if (rf_max - rf_min < 4) {
358 rf = (rf_max + rf_min) / 2;
359
360
361 rf = rf << (16 - 12);
362 if (rf)
363 rf |= (1 << 12) - 1;
364
365 dev_dbg(&state->i2c->dev,
366 "%s: signal strength = %d (%d < RF=%d < %d)\n",
367 __func__, rf, rf_min, rf >> 4, rf_max);
368 c->strength.stat[0].uvalue = rf;
369 state->get_strength_time = jiffies +
370 msecs_to_jiffies(1000);
371 return 0;
372 }
373 } while (1);
374 }
375
376 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377 unsigned layer)
378 {
379 int rc;
380 static unsigned char reg[] = {
381 [0] = 0x86,
382 [1] = 0x8a,
383 [2] = 0x8e,
384 };
385
386 if (layer >= ARRAY_SIZE(reg))
387 return -EINVAL;
388 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389 if (rc < 0)
390 return rc;
391 rc = mb86a20s_readreg(state, 0x6e);
392 if (rc < 0)
393 return rc;
394 switch ((rc >> 4) & 0x07) {
395 case 0:
396 return DQPSK;
397 case 1:
398 return QPSK;
399 case 2:
400 return QAM_16;
401 case 3:
402 return QAM_64;
403 default:
404 return QAM_AUTO;
405 }
406 }
407
408 static int mb86a20s_get_fec(struct mb86a20s_state *state,
409 unsigned layer)
410 {
411 int rc;
412
413 static unsigned char reg[] = {
414 [0] = 0x87,
415 [1] = 0x8b,
416 [2] = 0x8f,
417 };
418
419 if (layer >= ARRAY_SIZE(reg))
420 return -EINVAL;
421 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422 if (rc < 0)
423 return rc;
424 rc = mb86a20s_readreg(state, 0x6e);
425 if (rc < 0)
426 return rc;
427 switch ((rc >> 4) & 0x07) {
428 case 0:
429 return FEC_1_2;
430 case 1:
431 return FEC_2_3;
432 case 2:
433 return FEC_3_4;
434 case 3:
435 return FEC_5_6;
436 case 4:
437 return FEC_7_8;
438 default:
439 return FEC_AUTO;
440 }
441 }
442
443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444 unsigned layer)
445 {
446 int rc;
447 int interleaving[] = {
448 0, 1, 2, 4, 8
449 };
450
451 static unsigned char reg[] = {
452 [0] = 0x88,
453 [1] = 0x8c,
454 [2] = 0x90,
455 };
456
457 if (layer >= ARRAY_SIZE(reg))
458 return -EINVAL;
459 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460 if (rc < 0)
461 return rc;
462 rc = mb86a20s_readreg(state, 0x6e);
463 if (rc < 0)
464 return rc;
465
466 return interleaving[(rc >> 4) & 0x07];
467 }
468
469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470 unsigned layer)
471 {
472 int rc, count;
473 static unsigned char reg[] = {
474 [0] = 0x89,
475 [1] = 0x8d,
476 [2] = 0x91,
477 };
478
479 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
480
481 if (layer >= ARRAY_SIZE(reg))
482 return -EINVAL;
483
484 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485 if (rc < 0)
486 return rc;
487 rc = mb86a20s_readreg(state, 0x6e);
488 if (rc < 0)
489 return rc;
490 count = (rc >> 4) & 0x0f;
491
492 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
493
494 return count;
495 }
496
497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
498 {
499 struct mb86a20s_state *state = fe->demodulator_priv;
500 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
501
502 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
503
504
505 c->delivery_system = SYS_ISDBT;
506 c->bandwidth_hz = 6000000;
507
508
509 c->isdbt_layer_enabled = 0;
510 c->transmission_mode = TRANSMISSION_MODE_AUTO;
511 c->guard_interval = GUARD_INTERVAL_AUTO;
512 c->isdbt_sb_mode = 0;
513 c->isdbt_sb_segment_count = 0;
514 }
515
516
517
518
519
520 static u32 isdbt_rate[3][5][4] = {
521 {
522 { 280850, 312060, 330420, 340430 },
523 { 374470, 416080, 440560, 453910 },
524 { 421280, 468090, 495630, 510650 },
525 { 468090, 520100, 550700, 567390 },
526 { 491500, 546110, 578230, 595760 },
527 }, {
528 { 561710, 624130, 660840, 680870 },
529 { 748950, 832170, 881120, 907820 },
530 { 842570, 936190, 991260, 1021300 },
531 { 936190, 1040210, 1101400, 1134780 },
532 { 983000, 1092220, 1156470, 1191520 },
533 }, {
534 { 842570, 936190, 991260, 1021300 },
535 { 1123430, 1248260, 1321680, 1361740 },
536 { 1263860, 1404290, 1486900, 1531950 },
537 { 1404290, 1560320, 1652110, 1702170 },
538 { 1474500, 1638340, 1734710, 1787280 },
539 }
540 };
541
542 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
543 u32 modulation, u32 forward_error_correction,
544 u32 guard_interval,
545 u32 segment)
546 {
547 struct mb86a20s_state *state = fe->demodulator_priv;
548 u32 rate;
549 int mod, fec, guard;
550
551
552
553
554
555
556 switch (modulation) {
557 case DQPSK:
558 case QPSK:
559 default:
560 mod = 0;
561 break;
562 case QAM_16:
563 mod = 1;
564 break;
565 case QAM_64:
566 mod = 2;
567 break;
568 }
569
570 switch (forward_error_correction) {
571 default:
572 case FEC_1_2:
573 case FEC_AUTO:
574 fec = 0;
575 break;
576 case FEC_2_3:
577 fec = 1;
578 break;
579 case FEC_3_4:
580 fec = 2;
581 break;
582 case FEC_5_6:
583 fec = 3;
584 break;
585 case FEC_7_8:
586 fec = 4;
587 break;
588 }
589
590 switch (guard_interval) {
591 default:
592 case GUARD_INTERVAL_1_4:
593 guard = 0;
594 break;
595 case GUARD_INTERVAL_1_8:
596 guard = 1;
597 break;
598 case GUARD_INTERVAL_1_16:
599 guard = 2;
600 break;
601 case GUARD_INTERVAL_1_32:
602 guard = 3;
603 break;
604 }
605
606
607 rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
608
609
610 if (rate < 256)
611 rate = 256;
612 else if (rate > (1 << 24) - 1)
613 rate = (1 << 24) - 1;
614
615 dev_dbg(&state->i2c->dev,
616 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
617 __func__, 'A' + layer,
618 segment * isdbt_rate[mod][fec][guard]/1000,
619 rate, rate);
620
621 state->estimated_rate[layer] = rate;
622 }
623
624 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
625 {
626 struct mb86a20s_state *state = fe->demodulator_priv;
627 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
628 int layer, rc;
629
630 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
631
632
633 mb86a20s_reset_frontend_cache(fe);
634
635
636 rc = mb86a20s_writereg(state, 0x6d, 0x85);
637 if (rc < 0)
638 return rc;
639 rc = mb86a20s_readreg(state, 0x6e);
640 if (rc < 0)
641 return rc;
642 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
643
644
645
646 for (layer = 0; layer < NUM_LAYERS; layer++) {
647 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
648 __func__, 'A' + layer);
649
650 rc = mb86a20s_get_segment_count(state, layer);
651 if (rc < 0)
652 goto noperlayer_error;
653 if (rc >= 0 && rc < 14) {
654 c->layer[layer].segment_count = rc;
655 } else {
656 c->layer[layer].segment_count = 0;
657 state->estimated_rate[layer] = 0;
658 continue;
659 }
660 c->isdbt_layer_enabled |= 1 << layer;
661 rc = mb86a20s_get_modulation(state, layer);
662 if (rc < 0)
663 goto noperlayer_error;
664 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
665 __func__, rc);
666 c->layer[layer].modulation = rc;
667 rc = mb86a20s_get_fec(state, layer);
668 if (rc < 0)
669 goto noperlayer_error;
670 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
671 __func__, rc);
672 c->layer[layer].fec = rc;
673 rc = mb86a20s_get_interleaving(state, layer);
674 if (rc < 0)
675 goto noperlayer_error;
676 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
677 __func__, rc);
678 c->layer[layer].interleaving = rc;
679 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
680 c->layer[layer].fec,
681 c->guard_interval,
682 c->layer[layer].segment_count);
683 }
684
685 rc = mb86a20s_writereg(state, 0x6d, 0x84);
686 if (rc < 0)
687 return rc;
688 if ((rc & 0x60) == 0x20) {
689 c->isdbt_sb_mode = 1;
690
691 if (!c->isdbt_sb_segment_count)
692 c->isdbt_sb_segment_count = 1;
693 }
694
695
696 rc = mb86a20s_readreg(state, 0x07);
697 if (rc < 0)
698 return rc;
699 c->transmission_mode = TRANSMISSION_MODE_AUTO;
700 if ((rc & 0x60) == 0x20) {
701
702 switch ((rc >> 2) & 0x03) {
703 case 1:
704 c->transmission_mode = TRANSMISSION_MODE_4K;
705 break;
706 case 2:
707 c->transmission_mode = TRANSMISSION_MODE_8K;
708 break;
709 }
710 }
711 c->guard_interval = GUARD_INTERVAL_AUTO;
712 if (!(rc & 0x10)) {
713
714 switch (rc & 0x3) {
715 case 0:
716 c->guard_interval = GUARD_INTERVAL_1_4;
717 break;
718 case 1:
719 c->guard_interval = GUARD_INTERVAL_1_8;
720 break;
721 case 2:
722 c->guard_interval = GUARD_INTERVAL_1_16;
723 break;
724 }
725 }
726 return 0;
727
728 noperlayer_error:
729
730
731 c->isdbt_layer_enabled = 0;
732
733 return rc;
734 }
735
736 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
737 {
738 struct mb86a20s_state *state = fe->demodulator_priv;
739 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
740 int rc, val;
741
742 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
743
744
745 if (state->last_frequency != c->frequency) {
746 memset(&c->cnr, 0, sizeof(c->cnr));
747 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
748 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
749 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
750 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
751 memset(&c->block_error, 0, sizeof(c->block_error));
752 memset(&c->block_count, 0, sizeof(c->block_count));
753
754 state->last_frequency = c->frequency;
755 }
756
757
758
759
760 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
761 if (rc < 0)
762 goto err;
763
764
765 rc = mb86a20s_readreg(state, 0x45);
766 if (rc < 0)
767 goto err;
768 val = rc;
769 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
770 if (rc < 0)
771 goto err;
772 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
773 if (rc < 0)
774 goto err;
775
776
777 rc = mb86a20s_writereg(state, 0x50, 0x50);
778 if (rc < 0)
779 goto err;
780 rc = mb86a20s_readreg(state, 0x51);
781 if (rc < 0)
782 goto err;
783 val = rc;
784 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
785 if (rc < 0)
786 goto err;
787 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
788 if (rc < 0)
789 goto err;
790
791 goto ok;
792 err:
793 dev_err(&state->i2c->dev,
794 "%s: Can't reset FE statistics (error %d).\n",
795 __func__, rc);
796 ok:
797 return rc;
798 }
799
800 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
801 unsigned layer,
802 u32 *error, u32 *count)
803 {
804 struct mb86a20s_state *state = fe->demodulator_priv;
805 int rc, val;
806
807 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
808
809 if (layer >= NUM_LAYERS)
810 return -EINVAL;
811
812
813 rc = mb86a20s_readreg(state, 0x54);
814 if (rc < 0)
815 return rc;
816
817
818 if (!(rc & (1 << layer))) {
819 dev_dbg(&state->i2c->dev,
820 "%s: preBER for layer %c is not available yet.\n",
821 __func__, 'A' + layer);
822 return -EBUSY;
823 }
824
825
826 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
827 if (rc < 0)
828 return rc;
829 *error = rc << 16;
830 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
831 if (rc < 0)
832 return rc;
833 *error |= rc << 8;
834 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
835 if (rc < 0)
836 return rc;
837 *error |= rc;
838
839 dev_dbg(&state->i2c->dev,
840 "%s: bit error before Viterbi for layer %c: %d.\n",
841 __func__, 'A' + layer, *error);
842
843
844 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
845 if (rc < 0)
846 return rc;
847 rc = mb86a20s_readreg(state, 0x51);
848 if (rc < 0)
849 return rc;
850 *count = rc << 16;
851 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
852 if (rc < 0)
853 return rc;
854 rc = mb86a20s_readreg(state, 0x51);
855 if (rc < 0)
856 return rc;
857 *count |= rc << 8;
858 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
859 if (rc < 0)
860 return rc;
861 rc = mb86a20s_readreg(state, 0x51);
862 if (rc < 0)
863 return rc;
864 *count |= rc;
865
866 dev_dbg(&state->i2c->dev,
867 "%s: bit count before Viterbi for layer %c: %d.\n",
868 __func__, 'A' + layer, *count);
869
870
871
872
873
874
875
876
877
878 if (state->estimated_rate[layer]
879 && state->estimated_rate[layer] != *count) {
880 dev_dbg(&state->i2c->dev,
881 "%s: updating layer %c preBER counter to %d.\n",
882 __func__, 'A' + layer, state->estimated_rate[layer]);
883
884
885 rc = mb86a20s_writereg(state, 0x52, 0x00);
886
887
888 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
889 if (rc < 0)
890 return rc;
891 rc = mb86a20s_writereg(state, 0x51,
892 state->estimated_rate[layer] >> 16);
893 if (rc < 0)
894 return rc;
895 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
896 if (rc < 0)
897 return rc;
898 rc = mb86a20s_writereg(state, 0x51,
899 state->estimated_rate[layer] >> 8);
900 if (rc < 0)
901 return rc;
902 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
903 if (rc < 0)
904 return rc;
905 rc = mb86a20s_writereg(state, 0x51,
906 state->estimated_rate[layer]);
907 if (rc < 0)
908 return rc;
909
910
911 rc = mb86a20s_writereg(state, 0x52, 0x01);
912
913
914 rc = mb86a20s_writereg(state, 0x53, 0x00);
915 if (rc < 0)
916 return rc;
917 rc = mb86a20s_writereg(state, 0x53, 0x07);
918 } else {
919
920 rc = mb86a20s_readreg(state, 0x53);
921 if (rc < 0)
922 return rc;
923 val = rc;
924 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
925 if (rc < 0)
926 return rc;
927 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
928 }
929
930 return rc;
931 }
932
933 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
934 unsigned layer,
935 u32 *error, u32 *count)
936 {
937 struct mb86a20s_state *state = fe->demodulator_priv;
938 u32 counter, collect_rate;
939 int rc, val;
940
941 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
942
943 if (layer >= NUM_LAYERS)
944 return -EINVAL;
945
946
947 rc = mb86a20s_readreg(state, 0x60);
948 if (rc < 0)
949 return rc;
950
951
952 if (!(rc & (1 << layer))) {
953 dev_dbg(&state->i2c->dev,
954 "%s: post BER for layer %c is not available yet.\n",
955 __func__, 'A' + layer);
956 return -EBUSY;
957 }
958
959
960 rc = mb86a20s_readreg(state, 0x64 + layer * 3);
961 if (rc < 0)
962 return rc;
963 *error = rc << 16;
964 rc = mb86a20s_readreg(state, 0x65 + layer * 3);
965 if (rc < 0)
966 return rc;
967 *error |= rc << 8;
968 rc = mb86a20s_readreg(state, 0x66 + layer * 3);
969 if (rc < 0)
970 return rc;
971 *error |= rc;
972
973 dev_dbg(&state->i2c->dev,
974 "%s: post bit error for layer %c: %d.\n",
975 __func__, 'A' + layer, *error);
976
977
978 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
979 if (rc < 0)
980 return rc;
981 rc = mb86a20s_readreg(state, 0x51);
982 if (rc < 0)
983 return rc;
984 counter = rc << 8;
985 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
986 if (rc < 0)
987 return rc;
988 rc = mb86a20s_readreg(state, 0x51);
989 if (rc < 0)
990 return rc;
991 counter |= rc;
992 *count = counter * 204 * 8;
993
994 dev_dbg(&state->i2c->dev,
995 "%s: post bit count for layer %c: %d.\n",
996 __func__, 'A' + layer, *count);
997
998
999
1000
1001
1002
1003
1004
1005 if (!state->estimated_rate[layer])
1006 goto reset_measurement;
1007
1008 collect_rate = state->estimated_rate[layer] / 204 / 8;
1009 if (collect_rate < 32)
1010 collect_rate = 32;
1011 if (collect_rate > 65535)
1012 collect_rate = 65535;
1013 if (collect_rate != counter) {
1014 dev_dbg(&state->i2c->dev,
1015 "%s: updating postBER counter on layer %c to %d.\n",
1016 __func__, 'A' + layer, collect_rate);
1017
1018
1019 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1020
1021
1022 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1023 if (rc < 0)
1024 return rc;
1025 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1026 if (rc < 0)
1027 return rc;
1028 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1029 if (rc < 0)
1030 return rc;
1031 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1032 if (rc < 0)
1033 return rc;
1034
1035
1036 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1037
1038
1039 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1040 if (rc < 0)
1041 return rc;
1042 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1043
1044 return rc;
1045 }
1046
1047 reset_measurement:
1048
1049 rc = mb86a20s_readreg(state, 0x5f);
1050 if (rc < 0)
1051 return rc;
1052 val = rc;
1053 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1054 if (rc < 0)
1055 return rc;
1056 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1057
1058 return rc;
1059 }
1060
1061 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1062 unsigned layer,
1063 u32 *error, u32 *count)
1064 {
1065 struct mb86a20s_state *state = fe->demodulator_priv;
1066 int rc, val;
1067 u32 collect_rate;
1068 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1069
1070 if (layer >= NUM_LAYERS)
1071 return -EINVAL;
1072
1073
1074 rc = mb86a20s_writereg(state, 0x50, 0xb8);
1075 if (rc < 0)
1076 return rc;
1077 rc = mb86a20s_readreg(state, 0x51);
1078 if (rc < 0)
1079 return rc;
1080
1081
1082
1083 if (!(rc & (1 << layer))) {
1084 dev_dbg(&state->i2c->dev,
1085 "%s: block counts for layer %c aren't available yet.\n",
1086 __func__, 'A' + layer);
1087 return -EBUSY;
1088 }
1089
1090
1091 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1092 if (rc < 0)
1093 return rc;
1094 rc = mb86a20s_readreg(state, 0x51);
1095 if (rc < 0)
1096 return rc;
1097 *error = rc << 8;
1098 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1099 if (rc < 0)
1100 return rc;
1101 rc = mb86a20s_readreg(state, 0x51);
1102 if (rc < 0)
1103 return rc;
1104 *error |= rc;
1105 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1106 __func__, 'A' + layer, *error);
1107
1108
1109 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1110 if (rc < 0)
1111 return rc;
1112 rc = mb86a20s_readreg(state, 0x51);
1113 if (rc < 0)
1114 return rc;
1115 *count = rc << 8;
1116 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1117 if (rc < 0)
1118 return rc;
1119 rc = mb86a20s_readreg(state, 0x51);
1120 if (rc < 0)
1121 return rc;
1122 *count |= rc;
1123
1124 dev_dbg(&state->i2c->dev,
1125 "%s: block count for layer %c: %d.\n",
1126 __func__, 'A' + layer, *count);
1127
1128
1129
1130
1131
1132
1133
1134
1135 if (!state->estimated_rate[layer])
1136 goto reset_measurement;
1137
1138 collect_rate = state->estimated_rate[layer] / 204 / 8;
1139 if (collect_rate < 32)
1140 collect_rate = 32;
1141 if (collect_rate > 65535)
1142 collect_rate = 65535;
1143
1144 if (collect_rate != *count) {
1145 dev_dbg(&state->i2c->dev,
1146 "%s: updating PER counter on layer %c to %d.\n",
1147 __func__, 'A' + layer, collect_rate);
1148
1149
1150 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1151 if (rc < 0)
1152 return rc;
1153 rc = mb86a20s_writereg(state, 0x51, 0x00);
1154 if (rc < 0)
1155 return rc;
1156
1157
1158 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1159 if (rc < 0)
1160 return rc;
1161 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1162 if (rc < 0)
1163 return rc;
1164 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1165 if (rc < 0)
1166 return rc;
1167 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1168 if (rc < 0)
1169 return rc;
1170
1171
1172 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1173 if (rc < 0)
1174 return rc;
1175 rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 if (rc < 0)
1177 return rc;
1178
1179
1180 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1181 if (rc < 0)
1182 return rc;
1183 rc = mb86a20s_writereg(state, 0x51, 0x07);
1184 if (rc < 0)
1185 return rc;
1186 rc = mb86a20s_writereg(state, 0x51, 0x00);
1187
1188 return rc;
1189 }
1190
1191 reset_measurement:
1192
1193 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1194 if (rc < 0)
1195 return rc;
1196 rc = mb86a20s_readreg(state, 0x51);
1197 if (rc < 0)
1198 return rc;
1199 val = rc;
1200 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1201 if (rc < 0)
1202 return rc;
1203 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1204
1205 return rc;
1206 }
1207
1208 struct linear_segments {
1209 unsigned x, y;
1210 };
1211
1212
1213
1214
1215
1216 static const struct linear_segments cnr_to_db_table[] = {
1217 { 19648, 0},
1218 { 18187, 1000},
1219 { 16534, 2000},
1220 { 14823, 3000},
1221 { 13161, 4000},
1222 { 11622, 5000},
1223 { 10279, 6000},
1224 { 9089, 7000},
1225 { 8042, 8000},
1226 { 7137, 9000},
1227 { 6342, 10000},
1228 { 5641, 11000},
1229 { 5030, 12000},
1230 { 4474, 13000},
1231 { 3988, 14000},
1232 { 3556, 15000},
1233 { 3180, 16000},
1234 { 2841, 17000},
1235 { 2541, 18000},
1236 { 2276, 19000},
1237 { 2038, 20000},
1238 { 1800, 21000},
1239 { 1625, 22000},
1240 { 1462, 23000},
1241 { 1324, 24000},
1242 { 1175, 25000},
1243 { 1063, 26000},
1244 { 980, 27000},
1245 { 907, 28000},
1246 { 840, 29000},
1247 { 788, 30000},
1248 };
1249
1250 static const struct linear_segments cnr_64qam_table[] = {
1251 { 3922688, 0},
1252 { 3920384, 1000},
1253 { 3902720, 2000},
1254 { 3894784, 3000},
1255 { 3882496, 4000},
1256 { 3872768, 5000},
1257 { 3858944, 6000},
1258 { 3851520, 7000},
1259 { 3838976, 8000},
1260 { 3829248, 9000},
1261 { 3818240, 10000},
1262 { 3806976, 11000},
1263 { 3791872, 12000},
1264 { 3767040, 13000},
1265 { 3720960, 14000},
1266 { 3637504, 15000},
1267 { 3498496, 16000},
1268 { 3296000, 17000},
1269 { 3031040, 18000},
1270 { 2715392, 19000},
1271 { 2362624, 20000},
1272 { 1963264, 21000},
1273 { 1649664, 22000},
1274 { 1366784, 23000},
1275 { 1120768, 24000},
1276 { 890880, 25000},
1277 { 723456, 26000},
1278 { 612096, 27000},
1279 { 518912, 28000},
1280 { 448256, 29000},
1281 { 388864, 30000},
1282 };
1283
1284 static const struct linear_segments cnr_16qam_table[] = {
1285 { 5314816, 0},
1286 { 5219072, 1000},
1287 { 5118720, 2000},
1288 { 4998912, 3000},
1289 { 4875520, 4000},
1290 { 4736000, 5000},
1291 { 4604160, 6000},
1292 { 4458752, 7000},
1293 { 4300288, 8000},
1294 { 4092928, 9000},
1295 { 3836160, 10000},
1296 { 3521024, 11000},
1297 { 3155968, 12000},
1298 { 2756864, 13000},
1299 { 2347008, 14000},
1300 { 1955072, 15000},
1301 { 1593600, 16000},
1302 { 1297920, 17000},
1303 { 1043968, 18000},
1304 { 839680, 19000},
1305 { 672256, 20000},
1306 { 523008, 21000},
1307 { 424704, 22000},
1308 { 345088, 23000},
1309 { 280064, 24000},
1310 { 221440, 25000},
1311 { 179712, 26000},
1312 { 151040, 27000},
1313 { 128512, 28000},
1314 { 110080, 29000},
1315 { 95744, 30000},
1316 };
1317
1318 static const struct linear_segments cnr_qpsk_table[] = {
1319 { 2834176, 0},
1320 { 2683648, 1000},
1321 { 2536960, 2000},
1322 { 2391808, 3000},
1323 { 2133248, 4000},
1324 { 1906176, 5000},
1325 { 1666560, 6000},
1326 { 1422080, 7000},
1327 { 1189632, 8000},
1328 { 976384, 9000},
1329 { 790272, 10000},
1330 { 633344, 11000},
1331 { 505600, 12000},
1332 { 402944, 13000},
1333 { 320768, 14000},
1334 { 255488, 15000},
1335 { 204032, 16000},
1336 { 163072, 17000},
1337 { 130304, 18000},
1338 { 105216, 19000},
1339 { 83456, 20000},
1340 { 65024, 21000},
1341 { 52480, 22000},
1342 { 42752, 23000},
1343 { 34560, 24000},
1344 { 27136, 25000},
1345 { 22016, 26000},
1346 { 18432, 27000},
1347 { 15616, 28000},
1348 { 13312, 29000},
1349 { 11520, 30000},
1350 };
1351
1352 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1353 unsigned len)
1354 {
1355 u64 tmp64;
1356 u32 dx, dy;
1357 int i, ret;
1358
1359 if (value >= segments[0].x)
1360 return segments[0].y;
1361 if (value < segments[len-1].x)
1362 return segments[len-1].y;
1363
1364 for (i = 1; i < len - 1; i++) {
1365
1366 if (value == segments[i].x)
1367 return segments[i].y;
1368 if (value > segments[i].x)
1369 break;
1370 }
1371
1372
1373 dy = segments[i].y - segments[i - 1].y;
1374 dx = segments[i - 1].x - segments[i].x;
1375 tmp64 = value - segments[i].x;
1376 tmp64 *= dy;
1377 do_div(tmp64, dx);
1378 ret = segments[i].y - tmp64;
1379
1380 return ret;
1381 }
1382
1383 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1384 {
1385 struct mb86a20s_state *state = fe->demodulator_priv;
1386 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1387 u32 cnr_linear, cnr;
1388 int rc, val;
1389
1390
1391 rc = mb86a20s_readreg(state, 0x45);
1392 if (rc < 0)
1393 return rc;
1394
1395 if (!(rc & 0x40)) {
1396 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1397 __func__);
1398 return -EBUSY;
1399 }
1400 val = rc;
1401
1402 rc = mb86a20s_readreg(state, 0x46);
1403 if (rc < 0)
1404 return rc;
1405 cnr_linear = rc << 8;
1406
1407 rc = mb86a20s_readreg(state, 0x46);
1408 if (rc < 0)
1409 return rc;
1410 cnr_linear |= rc;
1411
1412 cnr = interpolate_value(cnr_linear,
1413 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1414
1415 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1416 c->cnr.stat[0].svalue = cnr;
1417
1418 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1419 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1420
1421
1422 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1423 if (rc < 0)
1424 return rc;
1425 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1426
1427 return rc;
1428 }
1429
1430 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1431 {
1432 struct mb86a20s_state *state = fe->demodulator_priv;
1433 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1434 u32 mer, cnr;
1435 int rc, val, layer;
1436 const struct linear_segments *segs;
1437 unsigned segs_len;
1438
1439 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1440
1441
1442 rc = mb86a20s_writereg(state, 0x50, 0x5b);
1443 if (rc < 0)
1444 return rc;
1445 rc = mb86a20s_readreg(state, 0x51);
1446 if (rc < 0)
1447 return rc;
1448
1449
1450 if (!(rc & 0x01)) {
1451 dev_dbg(&state->i2c->dev,
1452 "%s: MER measures aren't available yet.\n", __func__);
1453 return -EBUSY;
1454 }
1455
1456
1457 for (layer = 0; layer < NUM_LAYERS; layer++) {
1458 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1459 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1460 continue;
1461 }
1462
1463 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1464 if (rc < 0)
1465 return rc;
1466 rc = mb86a20s_readreg(state, 0x51);
1467 if (rc < 0)
1468 return rc;
1469 mer = rc << 16;
1470 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1471 if (rc < 0)
1472 return rc;
1473 rc = mb86a20s_readreg(state, 0x51);
1474 if (rc < 0)
1475 return rc;
1476 mer |= rc << 8;
1477 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1478 if (rc < 0)
1479 return rc;
1480 rc = mb86a20s_readreg(state, 0x51);
1481 if (rc < 0)
1482 return rc;
1483 mer |= rc;
1484
1485 switch (c->layer[layer].modulation) {
1486 case DQPSK:
1487 case QPSK:
1488 segs = cnr_qpsk_table;
1489 segs_len = ARRAY_SIZE(cnr_qpsk_table);
1490 break;
1491 case QAM_16:
1492 segs = cnr_16qam_table;
1493 segs_len = ARRAY_SIZE(cnr_16qam_table);
1494 break;
1495 default:
1496 case QAM_64:
1497 segs = cnr_64qam_table;
1498 segs_len = ARRAY_SIZE(cnr_64qam_table);
1499 break;
1500 }
1501 cnr = interpolate_value(mer, segs, segs_len);
1502
1503 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1504 c->cnr.stat[1 + layer].svalue = cnr;
1505
1506 dev_dbg(&state->i2c->dev,
1507 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1508 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1509
1510 }
1511
1512
1513
1514 rc = mb86a20s_writereg(state, 0x50, 0x50);
1515 if (rc < 0)
1516 return rc;
1517 rc = mb86a20s_readreg(state, 0x51);
1518 if (rc < 0)
1519 return rc;
1520 val = rc;
1521
1522 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1523 if (rc < 0)
1524 return rc;
1525 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1526 if (rc < 0)
1527 return rc;
1528
1529 return 0;
1530 }
1531
1532 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1533 {
1534 struct mb86a20s_state *state = fe->demodulator_priv;
1535 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1536 int layer;
1537
1538 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1539
1540
1541
1542
1543 c->strength.len = 1;
1544
1545
1546 c->cnr.len = NUM_LAYERS + 1;
1547 c->pre_bit_error.len = NUM_LAYERS + 1;
1548 c->pre_bit_count.len = NUM_LAYERS + 1;
1549 c->post_bit_error.len = NUM_LAYERS + 1;
1550 c->post_bit_count.len = NUM_LAYERS + 1;
1551 c->block_error.len = NUM_LAYERS + 1;
1552 c->block_count.len = NUM_LAYERS + 1;
1553
1554
1555 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1556 c->strength.stat[0].uvalue = 0;
1557
1558
1559 for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1560 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1561 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1562 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1563 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1564 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1565 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1566 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1567 }
1568 }
1569
1570 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1571 {
1572 struct mb86a20s_state *state = fe->demodulator_priv;
1573 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1574 int rc = 0, layer;
1575 u32 bit_error = 0, bit_count = 0;
1576 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1577 u32 t_post_bit_error = 0, t_post_bit_count = 0;
1578 u32 block_error = 0, block_count = 0;
1579 u32 t_block_error = 0, t_block_count = 0;
1580 int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1581 int per_layers = 0;
1582
1583 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1584
1585 mb86a20s_get_main_CNR(fe);
1586
1587
1588 mb86a20s_get_blk_error_layer_CNR(fe);
1589
1590
1591
1592
1593
1594
1595 if (status_nr < 9)
1596 return 0;
1597
1598 for (layer = 0; layer < NUM_LAYERS; layer++) {
1599 if (c->isdbt_layer_enabled & (1 << layer)) {
1600
1601 active_layers++;
1602
1603
1604 rc = mb86a20s_get_pre_ber(fe, layer,
1605 &bit_error, &bit_count);
1606 if (rc >= 0) {
1607 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1608 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1609 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1610 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1611 } else if (rc != -EBUSY) {
1612
1613
1614
1615
1616 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1617 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1618 dev_err(&state->i2c->dev,
1619 "%s: Can't get BER for layer %c (error %d).\n",
1620 __func__, 'A' + layer, rc);
1621 }
1622 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1623 pre_ber_layers++;
1624
1625
1626 rc = mb86a20s_get_post_ber(fe, layer,
1627 &bit_error, &bit_count);
1628 if (rc >= 0) {
1629 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1630 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1631 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1632 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1633 } else if (rc != -EBUSY) {
1634
1635
1636
1637
1638 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1639 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1640 dev_err(&state->i2c->dev,
1641 "%s: Can't get BER for layer %c (error %d).\n",
1642 __func__, 'A' + layer, rc);
1643 }
1644 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1645 post_ber_layers++;
1646
1647
1648 rc = mb86a20s_get_blk_error(fe, layer,
1649 &block_error,
1650 &block_count);
1651 if (rc >= 0) {
1652 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1653 c->block_error.stat[1 + layer].uvalue += block_error;
1654 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1655 c->block_count.stat[1 + layer].uvalue += block_count;
1656 } else if (rc != -EBUSY) {
1657
1658
1659
1660
1661 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1662 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1663 dev_err(&state->i2c->dev,
1664 "%s: Can't get PER for layer %c (error %d).\n",
1665 __func__, 'A' + layer, rc);
1666
1667 }
1668 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1669 per_layers++;
1670
1671
1672 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1673 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1674
1675
1676 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1677 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1678
1679
1680 t_block_error += c->block_error.stat[1 + layer].uvalue;
1681 t_block_count += c->block_count.stat[1 + layer].uvalue;
1682 }
1683 }
1684
1685
1686
1687
1688
1689 if (pre_ber_layers) {
1690
1691
1692
1693
1694
1695
1696
1697 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1698 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1699 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1700 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1701 } else {
1702 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1703 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1704 }
1705
1706
1707
1708
1709
1710 if (post_ber_layers) {
1711
1712
1713
1714
1715
1716
1717
1718 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1719 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1720 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1721 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1722 } else {
1723 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1724 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1725 }
1726
1727 if (per_layers) {
1728
1729
1730
1731
1732
1733
1734
1735 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1736 c->block_error.stat[0].uvalue = t_block_error;
1737 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1738 c->block_count.stat[0].uvalue = t_block_count;
1739 } else {
1740 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1741 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1742 }
1743
1744 return rc;
1745 }
1746
1747
1748
1749
1750
1751
1752 static int mb86a20s_initfe(struct dvb_frontend *fe)
1753 {
1754 struct mb86a20s_state *state = fe->demodulator_priv;
1755 u64 pll;
1756 u32 fclk;
1757 int rc;
1758 u8 regD5 = 1, reg71, reg09 = 0x3a;
1759
1760 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1761
1762 if (fe->ops.i2c_gate_ctrl)
1763 fe->ops.i2c_gate_ctrl(fe, 0);
1764
1765
1766 rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1767 if (rc < 0)
1768 goto err;
1769
1770 if (!state->inversion)
1771 reg09 |= 0x04;
1772 rc = mb86a20s_writereg(state, 0x09, reg09);
1773 if (rc < 0)
1774 goto err;
1775 if (!state->bw)
1776 reg71 = 1;
1777 else
1778 reg71 = 0;
1779 rc = mb86a20s_writereg(state, 0x39, reg71);
1780 if (rc < 0)
1781 goto err;
1782 rc = mb86a20s_writereg(state, 0x71, state->bw);
1783 if (rc < 0)
1784 goto err;
1785 if (state->subchannel) {
1786 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1787 if (rc < 0)
1788 goto err;
1789 }
1790
1791 fclk = state->config->fclk;
1792 if (!fclk)
1793 fclk = 32571428;
1794
1795
1796 if (fe->ops.tuner_ops.get_if_frequency)
1797 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1798
1799 if (!state->if_freq)
1800 state->if_freq = 3300000;
1801
1802 pll = (((u64)1) << 34) * state->if_freq;
1803 do_div(pll, 63 * fclk);
1804 pll = (1 << 25) - pll;
1805 rc = mb86a20s_writereg(state, 0x28, 0x2a);
1806 if (rc < 0)
1807 goto err;
1808 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1809 if (rc < 0)
1810 goto err;
1811 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1812 if (rc < 0)
1813 goto err;
1814 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1815 if (rc < 0)
1816 goto err;
1817 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1818 __func__, fclk, state->if_freq, (long long)pll);
1819
1820
1821 pll = state->if_freq * 1677721600L;
1822 do_div(pll, 1628571429L);
1823 rc = mb86a20s_writereg(state, 0x28, 0x20);
1824 if (rc < 0)
1825 goto err;
1826 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1827 if (rc < 0)
1828 goto err;
1829 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1830 if (rc < 0)
1831 goto err;
1832 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1833 if (rc < 0)
1834 goto err;
1835 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1836 __func__, state->if_freq, (long long)pll);
1837
1838 if (!state->config->is_serial)
1839 regD5 &= ~1;
1840
1841 rc = mb86a20s_writereg(state, 0x50, 0xd5);
1842 if (rc < 0)
1843 goto err;
1844 rc = mb86a20s_writereg(state, 0x51, regD5);
1845 if (rc < 0)
1846 goto err;
1847
1848 rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1849 if (rc < 0)
1850 goto err;
1851
1852
1853 err:
1854 if (fe->ops.i2c_gate_ctrl)
1855 fe->ops.i2c_gate_ctrl(fe, 1);
1856
1857 if (rc < 0) {
1858 state->need_init = true;
1859 dev_info(&state->i2c->dev,
1860 "mb86a20s: Init failed. Will try again later\n");
1861 } else {
1862 state->need_init = false;
1863 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1864 }
1865 return rc;
1866 }
1867
1868 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1869 {
1870 struct mb86a20s_state *state = fe->demodulator_priv;
1871 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1872 int rc, if_freq;
1873 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1874
1875 if (!c->isdbt_layer_enabled)
1876 c->isdbt_layer_enabled = 7;
1877
1878 if (c->isdbt_layer_enabled == 1)
1879 state->bw = MB86A20S_1SEG;
1880 else if (c->isdbt_partial_reception)
1881 state->bw = MB86A20S_13SEG_PARTIAL;
1882 else
1883 state->bw = MB86A20S_13SEG;
1884
1885 if (c->inversion == INVERSION_ON)
1886 state->inversion = true;
1887 else
1888 state->inversion = false;
1889
1890 if (!c->isdbt_sb_mode) {
1891 state->subchannel = 0;
1892 } else {
1893 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1894 c->isdbt_sb_subchannel = 0;
1895
1896 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1897 }
1898
1899
1900
1901
1902
1903 if (fe->ops.i2c_gate_ctrl)
1904 fe->ops.i2c_gate_ctrl(fe, 1);
1905 fe->ops.tuner_ops.set_params(fe);
1906
1907 if (fe->ops.tuner_ops.get_if_frequency)
1908 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927 mb86a20s_initfe(fe);
1928
1929 if (fe->ops.i2c_gate_ctrl)
1930 fe->ops.i2c_gate_ctrl(fe, 0);
1931
1932 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1933 mb86a20s_reset_counters(fe);
1934 mb86a20s_stats_not_ready(fe);
1935
1936 if (fe->ops.i2c_gate_ctrl)
1937 fe->ops.i2c_gate_ctrl(fe, 1);
1938
1939 return rc;
1940 }
1941
1942 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1943 enum fe_status *status)
1944 {
1945 struct mb86a20s_state *state = fe->demodulator_priv;
1946 int rc, status_nr;
1947
1948 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1949
1950 if (fe->ops.i2c_gate_ctrl)
1951 fe->ops.i2c_gate_ctrl(fe, 0);
1952
1953
1954 status_nr = mb86a20s_read_status(fe, status);
1955 if (status_nr < 7) {
1956 mb86a20s_stats_not_ready(fe);
1957 mb86a20s_reset_frontend_cache(fe);
1958 }
1959 if (status_nr < 0) {
1960 dev_err(&state->i2c->dev,
1961 "%s: Can't read frontend lock status\n", __func__);
1962 rc = status_nr;
1963 goto error;
1964 }
1965
1966
1967 rc = mb86a20s_read_signal_strength(fe);
1968 if (rc < 0) {
1969 dev_err(&state->i2c->dev,
1970 "%s: Can't reset VBER registers.\n", __func__);
1971 mb86a20s_stats_not_ready(fe);
1972 mb86a20s_reset_frontend_cache(fe);
1973
1974 rc = 0;
1975 goto error;
1976 }
1977
1978 if (status_nr >= 7) {
1979
1980 rc = mb86a20s_get_frontend(fe);
1981 if (rc < 0) {
1982 dev_err(&state->i2c->dev,
1983 "%s: Can't get FE TMCC data.\n", __func__);
1984 rc = 0;
1985 goto error;
1986 }
1987
1988
1989 rc = mb86a20s_get_stats(fe, status_nr);
1990 if (rc < 0 && rc != -EBUSY) {
1991 dev_err(&state->i2c->dev,
1992 "%s: Can't get FE statistics.\n", __func__);
1993 rc = 0;
1994 goto error;
1995 }
1996 rc = 0;
1997 }
1998 goto ok;
1999
2000 error:
2001 mb86a20s_stats_not_ready(fe);
2002
2003 ok:
2004 if (fe->ops.i2c_gate_ctrl)
2005 fe->ops.i2c_gate_ctrl(fe, 1);
2006
2007 return rc;
2008 }
2009
2010 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2011 u16 *strength)
2012 {
2013 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2014
2015
2016 *strength = c->strength.stat[0].uvalue;
2017
2018 return 0;
2019 }
2020
2021 static int mb86a20s_tune(struct dvb_frontend *fe,
2022 bool re_tune,
2023 unsigned int mode_flags,
2024 unsigned int *delay,
2025 enum fe_status *status)
2026 {
2027 struct mb86a20s_state *state = fe->demodulator_priv;
2028 int rc = 0;
2029
2030 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2031
2032 if (re_tune)
2033 rc = mb86a20s_set_frontend(fe);
2034
2035 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2036 mb86a20s_read_status_and_stats(fe, status);
2037
2038 return rc;
2039 }
2040
2041 static void mb86a20s_release(struct dvb_frontend *fe)
2042 {
2043 struct mb86a20s_state *state = fe->demodulator_priv;
2044
2045 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2046
2047 kfree(state);
2048 }
2049
2050 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2051 {
2052 return DVBFE_ALGO_HW;
2053 }
2054
2055 static const struct dvb_frontend_ops mb86a20s_ops;
2056
2057 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2058 struct i2c_adapter *i2c)
2059 {
2060 struct mb86a20s_state *state;
2061 u8 rev;
2062
2063 dev_dbg(&i2c->dev, "%s called.\n", __func__);
2064
2065
2066 state = kzalloc(sizeof(*state), GFP_KERNEL);
2067 if (!state)
2068 return NULL;
2069
2070
2071 state->config = config;
2072 state->i2c = i2c;
2073
2074
2075 memcpy(&state->frontend.ops, &mb86a20s_ops,
2076 sizeof(struct dvb_frontend_ops));
2077 state->frontend.demodulator_priv = state;
2078
2079
2080 rev = mb86a20s_readreg(state, 0);
2081 if (rev != 0x13) {
2082 kfree(state);
2083 dev_dbg(&i2c->dev,
2084 "Frontend revision %d is unknown - aborting.\n",
2085 rev);
2086 return NULL;
2087 }
2088
2089 dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2090 return &state->frontend;
2091 }
2092 EXPORT_SYMBOL(mb86a20s_attach);
2093
2094 static const struct dvb_frontend_ops mb86a20s_ops = {
2095 .delsys = { SYS_ISDBT },
2096
2097 .info = {
2098 .name = "Fujitsu mb86A20s",
2099 .caps = FE_CAN_RECOVER |
2100 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2101 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2102 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2103 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2104 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
2105
2106 .frequency_min_hz = 45 * MHz,
2107 .frequency_max_hz = 864 * MHz,
2108 .frequency_stepsize_hz = 62500,
2109 },
2110
2111 .release = mb86a20s_release,
2112
2113 .init = mb86a20s_initfe,
2114 .set_frontend = mb86a20s_set_frontend,
2115 .read_status = mb86a20s_read_status_and_stats,
2116 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2117 .tune = mb86a20s_tune,
2118 .get_frontend_algo = mb86a20s_get_frontend_algo,
2119 };
2120
2121 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2122 MODULE_AUTHOR("Mauro Carvalho Chehab");
2123 MODULE_LICENSE("GPL");