This source file includes following definitions.
- i2c_write
- i2c_read
- MulDiv32
- Read16
- Read32
- Write16
- Write32
- write_chunk
- WriteBlock
- WriteTable
- ResetCEFR
- InitCP
- InitCE
- StopOC
- StartOC
- InitEQ
- InitEC
- InitSC
- InitAtomicRead
- DRX_GetLockStatus
- SetCfgIfAgc
- SetCfgRfAgc
- ReadIFAgc
- load_firmware
- DownloadMicrocode
- HI_Command
- HI_CfgCommand
- InitHI
- HI_ResetCommand
- DRX_ConfigureI2CBridge
- AtomicReadBlock
- AtomicReadReg32
- StopAllProcessors
- EnableAndResetMB
- InitCC
- ResetECOD
- SetCfgPga
- InitFE
- InitFT
- SC_WaitForReady
- SC_SendCommand
- SC_ProcStartCommand
- SC_SetPrefParamCommand
- SC_GetOpParamCommand
- ConfigureMPEGOutput
- SetDeviceTypeId
- CorrectSysClockDeviation
- DRX_Stop
- SetOperationMode
- StartDiversity
- SetFrequencyShift
- SetCfgNoiseCalibration
- DRX_Start
- CDRXD
- DRXD_init
- DRXD_status
- drxd_read_signal_strength
- drxd_read_status
- drxd_init
- drxd_config_i2c
- drxd_get_tune_settings
- drxd_read_ber
- drxd_read_snr
- drxd_read_ucblocks
- drxd_sleep
- drxd_i2c_gate_ctrl
- drxd_set_frontend
- drxd_release
- drxd_attach
1
2
3
4
5
6
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/firmware.h>
14 #include <linux/i2c.h>
15 #include <asm/div64.h>
16
17 #include <media/dvb_frontend.h>
18 #include "drxd.h"
19 #include "drxd_firm.h"
20
21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23
24 #define CHUNK_SIZE 48
25
26 #define DRX_I2C_RMW 0x10
27 #define DRX_I2C_BROADCAST 0x20
28 #define DRX_I2C_CLEARCRC 0x80
29 #define DRX_I2C_SINGLE_MASTER 0xC0
30 #define DRX_I2C_MODEFLAGS 0xC0
31 #define DRX_I2C_FLAGS 0xF0
32
33 #define DEFAULT_LOCK_TIMEOUT 1100
34
35 #define DRX_CHANNEL_AUTO 0
36 #define DRX_CHANNEL_HIGH 1
37 #define DRX_CHANNEL_LOW 2
38
39 #define DRX_LOCK_MPEG 1
40 #define DRX_LOCK_FEC 2
41 #define DRX_LOCK_DEMOD 4
42
43
44
45 enum CSCDState {
46 CSCD_INIT = 0,
47 CSCD_SET,
48 CSCD_SAVED
49 };
50
51 enum CDrxdState {
52 DRXD_UNINITIALIZED = 0,
53 DRXD_STOPPED,
54 DRXD_STARTED
55 };
56
57 enum AGC_CTRL_MODE {
58 AGC_CTRL_AUTO = 0,
59 AGC_CTRL_USER,
60 AGC_CTRL_OFF
61 };
62
63 enum OperationMode {
64 OM_Default,
65 OM_DVBT_Diversity_Front,
66 OM_DVBT_Diversity_End
67 };
68
69 struct SCfgAgc {
70 enum AGC_CTRL_MODE ctrlMode;
71 u16 outputLevel;
72 u16 settleLevel;
73 u16 minOutputLevel;
74 u16 maxOutputLevel;
75 u16 speed;
76
77 u16 R1;
78 u16 R2;
79 u16 R3;
80 };
81
82 struct SNoiseCal {
83 int cpOpt;
84 short cpNexpOfs;
85 short tdCal2k;
86 short tdCal8k;
87 };
88
89 enum app_env {
90 APPENV_STATIC = 0,
91 APPENV_PORTABLE = 1,
92 APPENV_MOBILE = 2
93 };
94
95 enum EIFFilter {
96 IFFILTER_SAW = 0,
97 IFFILTER_DISCRETE = 1
98 };
99
100 struct drxd_state {
101 struct dvb_frontend frontend;
102 struct dvb_frontend_ops ops;
103 struct dtv_frontend_properties props;
104
105 const struct firmware *fw;
106 struct device *dev;
107
108 struct i2c_adapter *i2c;
109 void *priv;
110 struct drxd_config config;
111
112 int i2c_access;
113 int init_done;
114 struct mutex mutex;
115
116 u8 chip_adr;
117 u16 hi_cfg_timing_div;
118 u16 hi_cfg_bridge_delay;
119 u16 hi_cfg_wakeup_key;
120 u16 hi_cfg_ctrl;
121
122 u16 intermediate_freq;
123 u16 osc_clock_freq;
124
125 enum CSCDState cscd_state;
126 enum CDrxdState drxd_state;
127
128 u16 sys_clock_freq;
129 s16 osc_clock_deviation;
130 u16 expected_sys_clock_freq;
131
132 u16 insert_rs_byte;
133 u16 enable_parallel;
134
135 int operation_mode;
136
137 struct SCfgAgc if_agc_cfg;
138 struct SCfgAgc rf_agc_cfg;
139
140 struct SNoiseCal noise_cal;
141
142 u32 fe_fs_add_incr;
143 u32 org_fe_fs_add_incr;
144 u16 current_fe_if_incr;
145
146 u16 m_FeAgRegAgPwd;
147 u16 m_FeAgRegAgAgcSio;
148
149 u16 m_EcOcRegOcModeLop;
150 u16 m_EcOcRegSncSncLvl;
151 u8 *m_InitAtomicRead;
152 u8 *m_HiI2cPatch;
153
154 u8 *m_ResetCEFR;
155 u8 *m_InitFE_1;
156 u8 *m_InitFE_2;
157 u8 *m_InitCP;
158 u8 *m_InitCE;
159 u8 *m_InitEQ;
160 u8 *m_InitSC;
161 u8 *m_InitEC;
162 u8 *m_ResetECRAM;
163 u8 *m_InitDiversityFront;
164 u8 *m_InitDiversityEnd;
165 u8 *m_DisableDiversity;
166 u8 *m_StartDiversityFront;
167 u8 *m_StartDiversityEnd;
168
169 u8 *m_DiversityDelay8MHZ;
170 u8 *m_DiversityDelay6MHZ;
171
172 u8 *microcode;
173 u32 microcode_length;
174
175 int type_A;
176 int PGA;
177 int diversity;
178 int tuner_mirrors;
179
180 enum app_env app_env_default;
181 enum app_env app_env_diversity;
182
183 };
184
185
186
187
188
189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190 {
191 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192
193 if (i2c_transfer(adap, &msg, 1) != 1)
194 return -1;
195 return 0;
196 }
197
198 static int i2c_read(struct i2c_adapter *adap,
199 u8 adr, u8 *msg, int len, u8 *answ, int alen)
200 {
201 struct i2c_msg msgs[2] = {
202 {
203 .addr = adr, .flags = 0,
204 .buf = msg, .len = len
205 }, {
206 .addr = adr, .flags = I2C_M_RD,
207 .buf = answ, .len = alen
208 }
209 };
210 if (i2c_transfer(adap, msgs, 2) != 2)
211 return -1;
212 return 0;
213 }
214
215 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216 {
217 u64 tmp64;
218
219 tmp64 = (u64)a * (u64)b;
220 do_div(tmp64, c);
221
222 return (u32) tmp64;
223 }
224
225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226 {
227 u8 adr = state->config.demod_address;
228 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230 };
231 u8 mm2[2];
232 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233 return -1;
234 if (data)
235 *data = mm2[0] | (mm2[1] << 8);
236 return mm2[0] | (mm2[1] << 8);
237 }
238
239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240 {
241 u8 adr = state->config.demod_address;
242 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244 };
245 u8 mm2[4];
246
247 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248 return -1;
249 if (data)
250 *data =
251 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252 return 0;
253 }
254
255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256 {
257 u8 adr = state->config.demod_address;
258 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260 data & 0xff, (data >> 8) & 0xff
261 };
262
263 if (i2c_write(state->i2c, adr, mm, 6) < 0)
264 return -1;
265 return 0;
266 }
267
268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269 {
270 u8 adr = state->config.demod_address;
271 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273 data & 0xff, (data >> 8) & 0xff,
274 (data >> 16) & 0xff, (data >> 24) & 0xff
275 };
276
277 if (i2c_write(state->i2c, adr, mm, 8) < 0)
278 return -1;
279 return 0;
280 }
281
282 static int write_chunk(struct drxd_state *state,
283 u32 reg, u8 *data, u32 len, u8 flags)
284 {
285 u8 adr = state->config.demod_address;
286 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288 };
289 int i;
290
291 for (i = 0; i < len; i++)
292 mm[4 + i] = data[i];
293 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294 printk(KERN_ERR "error in write_chunk\n");
295 return -1;
296 }
297 return 0;
298 }
299
300 static int WriteBlock(struct drxd_state *state,
301 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302 {
303 while (BlockSize > 0) {
304 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305
306 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307 return -1;
308 pBlock += Chunk;
309 Address += (Chunk >> 1);
310 BlockSize -= Chunk;
311 }
312 return 0;
313 }
314
315 static int WriteTable(struct drxd_state *state, u8 * pTable)
316 {
317 int status = 0;
318
319 if (!pTable)
320 return 0;
321
322 while (!status) {
323 u16 Length;
324 u32 Address = pTable[0] | (pTable[1] << 8) |
325 (pTable[2] << 16) | (pTable[3] << 24);
326
327 if (Address == 0xFFFFFFFF)
328 break;
329 pTable += sizeof(u32);
330
331 Length = pTable[0] | (pTable[1] << 8);
332 pTable += sizeof(u16);
333 if (!Length)
334 break;
335 status = WriteBlock(state, Address, Length * 2, pTable, 0);
336 pTable += (Length * 2);
337 }
338 return status;
339 }
340
341
342
343
344
345 static int ResetCEFR(struct drxd_state *state)
346 {
347 return WriteTable(state, state->m_ResetCEFR);
348 }
349
350 static int InitCP(struct drxd_state *state)
351 {
352 return WriteTable(state, state->m_InitCP);
353 }
354
355 static int InitCE(struct drxd_state *state)
356 {
357 int status;
358 enum app_env AppEnv = state->app_env_default;
359
360 do {
361 status = WriteTable(state, state->m_InitCE);
362 if (status < 0)
363 break;
364
365 if (state->operation_mode == OM_DVBT_Diversity_Front ||
366 state->operation_mode == OM_DVBT_Diversity_End) {
367 AppEnv = state->app_env_diversity;
368 }
369 if (AppEnv == APPENV_STATIC) {
370 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371 if (status < 0)
372 break;
373 } else if (AppEnv == APPENV_PORTABLE) {
374 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375 if (status < 0)
376 break;
377 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
378 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379 if (status < 0)
380 break;
381 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383 if (status < 0)
384 break;
385 }
386
387
388 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389 if (status < 0)
390 break;
391 } while (0);
392 return status;
393 }
394
395 static int StopOC(struct drxd_state *state)
396 {
397 int status = 0;
398 u16 ocSyncLvl = 0;
399 u16 ocModeLop = state->m_EcOcRegOcModeLop;
400 u16 dtoIncLop = 0;
401 u16 dtoIncHip = 0;
402
403 do {
404
405 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406 if (status < 0)
407 break;
408
409 state->m_EcOcRegSncSncLvl = ocSyncLvl;
410
411
412
413 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414 if (status < 0)
415 break;
416 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417 if (status < 0)
418 break;
419 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420 if (status < 0)
421 break;
422 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423 if (status < 0)
424 break;
425 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428 if (status < 0)
429 break;
430 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431 if (status < 0)
432 break;
433
434 msleep(1);
435
436 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437 if (status < 0)
438 break;
439
440
441 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443 if (status < 0)
444 break;
445 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447 ocModeLop |= 0x2;
448 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449 if (status < 0)
450 break;
451 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452 if (status < 0)
453 break;
454 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455 if (status < 0)
456 break;
457 } while (0);
458
459 return status;
460 }
461
462 static int StartOC(struct drxd_state *state)
463 {
464 int status = 0;
465
466 do {
467
468 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469 if (status < 0)
470 break;
471
472
473 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474 if (status < 0)
475 break;
476 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477 if (status < 0)
478 break;
479
480
481 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482 if (status < 0)
483 break;
484
485
486 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487 if (status < 0)
488 break;
489 } while (0);
490 return status;
491 }
492
493 static int InitEQ(struct drxd_state *state)
494 {
495 return WriteTable(state, state->m_InitEQ);
496 }
497
498 static int InitEC(struct drxd_state *state)
499 {
500 return WriteTable(state, state->m_InitEC);
501 }
502
503 static int InitSC(struct drxd_state *state)
504 {
505 return WriteTable(state, state->m_InitSC);
506 }
507
508 static int InitAtomicRead(struct drxd_state *state)
509 {
510 return WriteTable(state, state->m_InitAtomicRead);
511 }
512
513 static int CorrectSysClockDeviation(struct drxd_state *state);
514
515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516 {
517 u16 ScRaRamLock = 0;
518 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519 SC_RA_RAM_LOCK_FEC__M |
520 SC_RA_RAM_LOCK_DEMOD__M);
521 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522 SC_RA_RAM_LOCK_DEMOD__M);
523 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524
525 int status;
526
527 *pLockStatus = 0;
528
529 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530 if (status < 0) {
531 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532 return status;
533 }
534
535 if (state->drxd_state != DRXD_STARTED)
536 return 0;
537
538 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539 *pLockStatus |= DRX_LOCK_MPEG;
540 CorrectSysClockDeviation(state);
541 }
542
543 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544 *pLockStatus |= DRX_LOCK_FEC;
545
546 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547 *pLockStatus |= DRX_LOCK_DEMOD;
548 return 0;
549 }
550
551
552
553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554 {
555 int status;
556
557 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558 return -1;
559
560 if (cfg->ctrlMode == AGC_CTRL_USER) {
561 do {
562 u16 FeAgRegPm1AgcWri;
563 u16 FeAgRegAgModeLop;
564
565 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566 if (status < 0)
567 break;
568 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571 if (status < 0)
572 break;
573
574 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575 FE_AG_REG_PM1_AGC_WRI__M);
576 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577 if (status < 0)
578 break;
579 } while (0);
580 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583 ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585 )
586 return -1;
587 do {
588 u16 FeAgRegAgModeLop;
589 u16 FeAgRegEgcSetLvl;
590 u16 slope, offset;
591
592
593
594 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595 if (status < 0)
596 break;
597 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598 FeAgRegAgModeLop |=
599 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601 if (status < 0)
602 break;
603
604
605
606 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607 FE_AG_REG_EGC_SET_LVL__M);
608 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609 if (status < 0)
610 break;
611
612
613
614 slope = (u16) ((cfg->maxOutputLevel -
615 cfg->minOutputLevel) / 2);
616 offset = (u16) ((cfg->maxOutputLevel +
617 cfg->minOutputLevel) / 2 - 511);
618
619 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620 if (status < 0)
621 break;
622 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623 if (status < 0)
624 break;
625
626
627 {
628 const u16 maxRur = 8;
629 static const u16 slowIncrDecLUT[] = {
630 3, 4, 4, 5, 6 };
631 static const u16 fastIncrDecLUT[] = {
632 14, 15, 15, 16,
633 17, 18, 18, 19,
634 20, 21, 22, 23,
635 24, 26, 27, 28,
636 29, 31
637 };
638
639 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640 (maxRur + 1);
641 u16 fineSpeed = (u16) (cfg->speed -
642 ((cfg->speed /
643 fineSteps) *
644 fineSteps));
645 u16 invRurCount = (u16) (cfg->speed /
646 fineSteps);
647 u16 rurCount;
648 if (invRurCount > maxRur) {
649 rurCount = 0;
650 fineSpeed += fineSteps;
651 } else {
652 rurCount = maxRur - invRurCount;
653 }
654
655
656
657
658
659
660
661
662 {
663 u16 fastIncrDec =
664 fastIncrDecLUT[fineSpeed /
665 ((fineSteps /
666 (14 + 1)) + 1)];
667 u16 slowIncrDec =
668 slowIncrDecLUT[fineSpeed /
669 (fineSteps /
670 (3 + 1))];
671
672 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673 if (status < 0)
674 break;
675 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676 if (status < 0)
677 break;
678 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679 if (status < 0)
680 break;
681 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682 if (status < 0)
683 break;
684 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685 if (status < 0)
686 break;
687 }
688 }
689 } while (0);
690
691 } else {
692
693 return -1;
694 }
695 return status;
696 }
697
698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699 {
700 int status = 0;
701
702 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703 return -1;
704
705 if (cfg->ctrlMode == AGC_CTRL_USER) {
706 do {
707 u16 AgModeLop = 0;
708 u16 level = (cfg->outputLevel);
709
710 if (level == DRXD_FE_CTRL_MAX)
711 level++;
712
713 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714 if (status < 0)
715 break;
716
717
718
719
720 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721 state->m_FeAgRegAgPwd |=
722 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724 if (status < 0)
725 break;
726
727 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728 if (status < 0)
729 break;
730 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735 if (status < 0)
736 break;
737
738
739 {
740 u16 FeAgRegAgAgcSio = 0;
741 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742 if (status < 0)
743 break;
744 FeAgRegAgAgcSio &=
745 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746 FeAgRegAgAgcSio |=
747 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749 if (status < 0)
750 break;
751 }
752
753 } while (0);
754 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755 u16 AgModeLop = 0;
756
757 do {
758 u16 level;
759
760
761 (state->m_FeAgRegAgPwd) &=
762 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763 (state->m_FeAgRegAgPwd) |=
764 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766 if (status < 0)
767 break;
768
769 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770 if (status < 0)
771 break;
772 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777 if (status < 0)
778 break;
779
780 level = (((cfg->settleLevel) >> 4) &
781 FE_AG_REG_TGC_SET_LVL__M);
782 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783 if (status < 0)
784 break;
785
786
787
788
789
790
791 {
792 u16 FeAgRegAgAgcSio = 0;
793 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794 if (status < 0)
795 break;
796 FeAgRegAgAgcSio &=
797 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798 FeAgRegAgAgcSio |=
799 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801 if (status < 0)
802 break;
803 }
804
805 } while (0);
806 } else {
807 u16 AgModeLop = 0;
808
809 do {
810
811
812 (state->m_FeAgRegAgPwd) &=
813 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814 (state->m_FeAgRegAgPwd) |=
815 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817 if (status < 0)
818 break;
819
820 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821 if (status < 0)
822 break;
823 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828 if (status < 0)
829 break;
830
831
832 {
833 u16 FeAgRegAgAgcSio = 0;
834 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835 if (status < 0)
836 break;
837 FeAgRegAgAgcSio &=
838 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839 FeAgRegAgAgcSio |=
840 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842 if (status < 0)
843 break;
844 }
845 } while (0);
846 }
847 return status;
848 }
849
850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851 {
852 int status = 0;
853
854 *pValue = 0;
855 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856 u16 Value;
857 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858 Value &= FE_AG_REG_GC1_AGC_DAT__M;
859 if (status >= 0) {
860
861
862
863
864
865
866
867
868
869
870 u32 R1 = state->if_agc_cfg.R1;
871 u32 R2 = state->if_agc_cfg.R2;
872 u32 R3 = state->if_agc_cfg.R3;
873
874 u32 Vmax, Rpar, Vmin, Vout;
875
876 if (R2 == 0 && (R1 == 0 || R3 == 0))
877 return 0;
878
879 Vmax = (3300 * R2) / (R1 + R2);
880 Rpar = (R2 * R3) / (R3 + R2);
881 Vmin = (3300 * Rpar) / (R1 + Rpar);
882 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883
884 *pValue = Vout;
885 }
886 }
887 return status;
888 }
889
890 static int load_firmware(struct drxd_state *state, const char *fw_name)
891 {
892 const struct firmware *fw;
893
894 if (request_firmware(&fw, fw_name, state->dev) < 0) {
895 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896 return -EIO;
897 }
898
899 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900 if (!state->microcode) {
901 release_firmware(fw);
902 return -ENOMEM;
903 }
904
905 state->microcode_length = fw->size;
906 release_firmware(fw);
907 return 0;
908 }
909
910 static int DownloadMicrocode(struct drxd_state *state,
911 const u8 *pMCImage, u32 Length)
912 {
913 u8 *pSrc;
914 u32 Address;
915 u16 nBlocks;
916 u16 BlockSize;
917 u32 offset = 0;
918 int i, status = 0;
919
920 pSrc = (u8 *) pMCImage;
921
922
923 pSrc += sizeof(u16);
924 offset += sizeof(u16);
925 nBlocks = (pSrc[0] << 8) | pSrc[1];
926 pSrc += sizeof(u16);
927 offset += sizeof(u16);
928
929 for (i = 0; i < nBlocks; i++) {
930 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
931 (pSrc[2] << 8) | pSrc[3];
932 pSrc += sizeof(u32);
933 offset += sizeof(u32);
934
935 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
936 pSrc += sizeof(u16);
937 offset += sizeof(u16);
938
939
940
941 pSrc += sizeof(u16);
942 offset += sizeof(u16);
943
944
945
946 pSrc += sizeof(u16);
947 offset += sizeof(u16);
948
949 status = WriteBlock(state, Address, BlockSize,
950 pSrc, DRX_I2C_CLEARCRC);
951 if (status < 0)
952 break;
953 pSrc += BlockSize;
954 offset += BlockSize;
955 }
956
957 return status;
958 }
959
960 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
961 {
962 u32 nrRetries = 0;
963 int status;
964
965 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
966 if (status < 0)
967 return status;
968
969 do {
970 nrRetries += 1;
971 if (nrRetries > DRXD_MAX_RETRIES) {
972 status = -1;
973 break;
974 }
975 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
976 } while (status != 0);
977
978 if (status >= 0)
979 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
980 return status;
981 }
982
983 static int HI_CfgCommand(struct drxd_state *state)
984 {
985 int status = 0;
986
987 mutex_lock(&state->mutex);
988 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
989 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
990 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
991 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
992 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
993
994 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
995
996 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
997 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
998 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
999 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1000 else
1001 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1002 mutex_unlock(&state->mutex);
1003 return status;
1004 }
1005
1006 static int InitHI(struct drxd_state *state)
1007 {
1008 state->hi_cfg_wakeup_key = (state->chip_adr);
1009
1010 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1011 return HI_CfgCommand(state);
1012 }
1013
1014 static int HI_ResetCommand(struct drxd_state *state)
1015 {
1016 int status;
1017
1018 mutex_lock(&state->mutex);
1019 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1020 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1021 if (status == 0)
1022 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1023 mutex_unlock(&state->mutex);
1024 msleep(1);
1025 return status;
1026 }
1027
1028 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1029 {
1030 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1031 if (bEnableBridge)
1032 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1033 else
1034 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1035
1036 return HI_CfgCommand(state);
1037 }
1038
1039 #define HI_TR_WRITE 0x9
1040 #define HI_TR_READ 0xA
1041 #define HI_TR_READ_WRITE 0xB
1042 #define HI_TR_BROADCAST 0x4
1043
1044 #if 0
1045 static int AtomicReadBlock(struct drxd_state *state,
1046 u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1047 {
1048 int status;
1049 int i = 0;
1050
1051
1052 if ((!pData) || ((DataSize & 1) != 0))
1053 return -1;
1054
1055 mutex_lock(&state->mutex);
1056
1057 do {
1058
1059
1060 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1061 if (status < 0)
1062 break;
1063 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1064 if (status < 0)
1065 break;
1066 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1067 if (status < 0)
1068 break;
1069 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1070 if (status < 0)
1071 break;
1072 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1073 if (status < 0)
1074 break;
1075
1076 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1077 if (status < 0)
1078 break;
1079
1080 } while (0);
1081
1082 if (status >= 0) {
1083 for (i = 0; i < (DataSize / 2); i += 1) {
1084 u16 word;
1085
1086 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1087 &word, 0);
1088 if (status < 0)
1089 break;
1090 pData[2 * i] = (u8) (word & 0xFF);
1091 pData[(2 * i) + 1] = (u8) (word >> 8);
1092 }
1093 }
1094 mutex_unlock(&state->mutex);
1095 return status;
1096 }
1097
1098 static int AtomicReadReg32(struct drxd_state *state,
1099 u32 Addr, u32 *pData, u8 Flags)
1100 {
1101 u8 buf[sizeof(u32)];
1102 int status;
1103
1104 if (!pData)
1105 return -1;
1106 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1107 *pData = (((u32) buf[0]) << 0) +
1108 (((u32) buf[1]) << 8) +
1109 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1110 return status;
1111 }
1112 #endif
1113
1114 static int StopAllProcessors(struct drxd_state *state)
1115 {
1116 return Write16(state, HI_COMM_EXEC__A,
1117 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1118 }
1119
1120 static int EnableAndResetMB(struct drxd_state *state)
1121 {
1122 if (state->type_A) {
1123
1124 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1125 }
1126
1127
1128 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1129 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1130 return 0;
1131 }
1132
1133 static int InitCC(struct drxd_state *state)
1134 {
1135 int status = 0;
1136
1137 if (state->osc_clock_freq == 0 ||
1138 state->osc_clock_freq > 20000 ||
1139 (state->osc_clock_freq % 4000) != 0) {
1140 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1141 return -1;
1142 }
1143
1144 status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1145 status |= Write16(state, CC_REG_PLL_MODE__A,
1146 CC_REG_PLL_MODE_BYPASS_PLL |
1147 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1148 status |= Write16(state, CC_REG_REF_DIVIDE__A,
1149 state->osc_clock_freq / 4000, 0);
1150 status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1151 0);
1152 status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1153
1154 return status;
1155 }
1156
1157 static int ResetECOD(struct drxd_state *state)
1158 {
1159 int status = 0;
1160
1161 if (state->type_A)
1162 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1163 else
1164 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1165
1166 if (!(status < 0))
1167 status = WriteTable(state, state->m_ResetECRAM);
1168 if (!(status < 0))
1169 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1170 return status;
1171 }
1172
1173
1174
1175 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1176 {
1177 int status;
1178 u16 AgModeLop = 0;
1179 u16 AgModeHip = 0;
1180 do {
1181 if (pgaSwitch) {
1182
1183
1184 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1185 if (status < 0)
1186 break;
1187 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1188 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1189 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1190 if (status < 0)
1191 break;
1192
1193
1194 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1195 if (status < 0)
1196 break;
1197 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1198 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1199 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1200 if (status < 0)
1201 break;
1202
1203
1204
1205 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1206 if (status < 0)
1207 break;
1208 } else {
1209
1210
1211
1212 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1213 if (status < 0)
1214 break;
1215 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1216 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1217 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1218 if (status < 0)
1219 break;
1220
1221
1222 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1223 if (status < 0)
1224 break;
1225 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1226 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1227 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1228 if (status < 0)
1229 break;
1230
1231
1232
1233 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1234 if (status < 0)
1235 break;
1236 }
1237 } while (0);
1238 return status;
1239 }
1240
1241 static int InitFE(struct drxd_state *state)
1242 {
1243 int status;
1244
1245 do {
1246 status = WriteTable(state, state->m_InitFE_1);
1247 if (status < 0)
1248 break;
1249
1250 if (state->type_A) {
1251 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1252 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253 0);
1254 } else {
1255 if (state->PGA)
1256 status = SetCfgPga(state, 0);
1257 else
1258 status =
1259 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1260 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261 0);
1262 }
1263
1264 if (status < 0)
1265 break;
1266 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1267 if (status < 0)
1268 break;
1269 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1270 if (status < 0)
1271 break;
1272
1273 status = WriteTable(state, state->m_InitFE_2);
1274 if (status < 0)
1275 break;
1276
1277 } while (0);
1278
1279 return status;
1280 }
1281
1282 static int InitFT(struct drxd_state *state)
1283 {
1284
1285
1286
1287
1288 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1289 }
1290
1291 static int SC_WaitForReady(struct drxd_state *state)
1292 {
1293 int i;
1294
1295 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1296 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1297 if (status == 0)
1298 return status;
1299 }
1300 return -1;
1301 }
1302
1303 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1304 {
1305 int status = 0, ret;
1306 u16 errCode;
1307
1308 status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1309 if (status < 0)
1310 return status;
1311
1312 SC_WaitForReady(state);
1313
1314 ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1315
1316 if (ret < 0 || errCode == 0xFFFF) {
1317 printk(KERN_ERR "Command Error\n");
1318 status = -1;
1319 }
1320
1321 return status;
1322 }
1323
1324 static int SC_ProcStartCommand(struct drxd_state *state,
1325 u16 subCmd, u16 param0, u16 param1)
1326 {
1327 int ret, status = 0;
1328 u16 scExec;
1329
1330 mutex_lock(&state->mutex);
1331 do {
1332 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1333 if (ret < 0 || scExec != 1) {
1334 status = -1;
1335 break;
1336 }
1337 SC_WaitForReady(state);
1338 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1339 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1340 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1341
1342 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1343 } while (0);
1344 mutex_unlock(&state->mutex);
1345 return status;
1346 }
1347
1348 static int SC_SetPrefParamCommand(struct drxd_state *state,
1349 u16 subCmd, u16 param0, u16 param1)
1350 {
1351 int status;
1352
1353 mutex_lock(&state->mutex);
1354 do {
1355 status = SC_WaitForReady(state);
1356 if (status < 0)
1357 break;
1358 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1359 if (status < 0)
1360 break;
1361 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1362 if (status < 0)
1363 break;
1364 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1365 if (status < 0)
1366 break;
1367
1368 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1369 if (status < 0)
1370 break;
1371 } while (0);
1372 mutex_unlock(&state->mutex);
1373 return status;
1374 }
1375
1376 #if 0
1377 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1378 {
1379 int status = 0;
1380
1381 mutex_lock(&state->mutex);
1382 do {
1383 status = SC_WaitForReady(state);
1384 if (status < 0)
1385 break;
1386 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1387 if (status < 0)
1388 break;
1389 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1390 if (status < 0)
1391 break;
1392 } while (0);
1393 mutex_unlock(&state->mutex);
1394 return status;
1395 }
1396 #endif
1397
1398 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1399 {
1400 int status;
1401
1402 do {
1403 u16 EcOcRegIprInvMpg = 0;
1404 u16 EcOcRegOcModeLop = 0;
1405 u16 EcOcRegOcModeHip = 0;
1406 u16 EcOcRegOcMpgSio = 0;
1407
1408
1409
1410 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1411 if (bEnableOutput) {
1412 EcOcRegOcModeHip |=
1413 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1414 } else
1415 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1416 EcOcRegOcModeLop |=
1417 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1418 } else {
1419 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1420
1421 if (bEnableOutput)
1422 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1423 else
1424 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425
1426
1427 if (state->insert_rs_byte) {
1428 EcOcRegOcModeLop &=
1429 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1430 EcOcRegOcModeHip &=
1431 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1432 EcOcRegOcModeHip |=
1433 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1434 } else {
1435 EcOcRegOcModeLop |=
1436 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1437 EcOcRegOcModeHip &=
1438 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439 EcOcRegOcModeHip |=
1440 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1441 }
1442
1443
1444 if (state->enable_parallel)
1445 EcOcRegOcModeLop &=
1446 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1447 else
1448 EcOcRegOcModeLop |=
1449 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1450 }
1451
1452
1453 EcOcRegIprInvMpg &= (~(0x00FF));
1454
1455
1456
1457 EcOcRegIprInvMpg &= (~(0x0100));
1458
1459
1460
1461 EcOcRegIprInvMpg &= (~(0x0200));
1462
1463
1464
1465 EcOcRegIprInvMpg &= (~(0x0400));
1466
1467
1468
1469 EcOcRegIprInvMpg &= (~(0x0800));
1470
1471
1472 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1473 if (status < 0)
1474 break;
1475 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1476 if (status < 0)
1477 break;
1478 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1479 if (status < 0)
1480 break;
1481 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1482 if (status < 0)
1483 break;
1484 } while (0);
1485 return status;
1486 }
1487
1488 static int SetDeviceTypeId(struct drxd_state *state)
1489 {
1490 int status = 0;
1491 u16 deviceId = 0;
1492
1493 do {
1494 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1495 if (status < 0)
1496 break;
1497
1498 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499 if (status < 0)
1500 break;
1501 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1502
1503 state->type_A = 0;
1504 state->PGA = 0;
1505 state->diversity = 0;
1506 if (deviceId == 0) {
1507 state->type_A = 1;
1508 printk(KERN_INFO "DRX3975D-A2\n");
1509 } else {
1510 deviceId >>= 12;
1511 printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1512 switch (deviceId) {
1513 case 4:
1514 state->diversity = 1;
1515
1516 case 3:
1517 case 7:
1518 state->PGA = 1;
1519 break;
1520 case 6:
1521 state->diversity = 1;
1522
1523 case 5:
1524 case 8:
1525 break;
1526 default:
1527 status = -1;
1528 break;
1529 }
1530 }
1531 } while (0);
1532
1533 if (status < 0)
1534 return status;
1535
1536
1537 state->m_InitAtomicRead = DRXD_InitAtomicRead;
1538 state->m_InitSC = DRXD_InitSC;
1539 state->m_ResetECRAM = DRXD_ResetECRAM;
1540 if (state->type_A) {
1541 state->m_ResetCEFR = DRXD_ResetCEFR;
1542 state->m_InitFE_1 = DRXD_InitFEA2_1;
1543 state->m_InitFE_2 = DRXD_InitFEA2_2;
1544 state->m_InitCP = DRXD_InitCPA2;
1545 state->m_InitCE = DRXD_InitCEA2;
1546 state->m_InitEQ = DRXD_InitEQA2;
1547 state->m_InitEC = DRXD_InitECA2;
1548 if (load_firmware(state, DRX_FW_FILENAME_A2))
1549 return -EIO;
1550 } else {
1551 state->m_ResetCEFR = NULL;
1552 state->m_InitFE_1 = DRXD_InitFEB1_1;
1553 state->m_InitFE_2 = DRXD_InitFEB1_2;
1554 state->m_InitCP = DRXD_InitCPB1;
1555 state->m_InitCE = DRXD_InitCEB1;
1556 state->m_InitEQ = DRXD_InitEQB1;
1557 state->m_InitEC = DRXD_InitECB1;
1558 if (load_firmware(state, DRX_FW_FILENAME_B1))
1559 return -EIO;
1560 }
1561 if (state->diversity) {
1562 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1563 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1564 state->m_DisableDiversity = DRXD_DisableDiversity;
1565 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1566 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1567 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1568 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1569 } else {
1570 state->m_InitDiversityFront = NULL;
1571 state->m_InitDiversityEnd = NULL;
1572 state->m_DisableDiversity = NULL;
1573 state->m_StartDiversityFront = NULL;
1574 state->m_StartDiversityEnd = NULL;
1575 state->m_DiversityDelay8MHZ = NULL;
1576 state->m_DiversityDelay6MHZ = NULL;
1577 }
1578
1579 return status;
1580 }
1581
1582 static int CorrectSysClockDeviation(struct drxd_state *state)
1583 {
1584 int status;
1585 s32 incr = 0;
1586 s32 nomincr = 0;
1587 u32 bandwidth = 0;
1588 u32 sysClockInHz = 0;
1589 u32 sysClockFreq = 0;
1590 s16 oscClockDeviation;
1591 s16 Diff;
1592
1593 do {
1594
1595
1596
1597
1598 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1599 if (status < 0)
1600 break;
1601 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1602 if (status < 0)
1603 break;
1604
1605 if (state->type_A) {
1606 if ((nomincr - incr < -500) || (nomincr - incr > 500))
1607 break;
1608 } else {
1609 if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1610 break;
1611 }
1612
1613 switch (state->props.bandwidth_hz) {
1614 case 8000000:
1615 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1616 break;
1617 case 7000000:
1618 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1619 break;
1620 case 6000000:
1621 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1622 break;
1623 default:
1624 return -1;
1625 break;
1626 }
1627
1628
1629
1630 incr += (1 << 23);
1631 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1632 sysClockFreq = (u32) (sysClockInHz / 1000);
1633
1634 if ((sysClockInHz % 1000) > 500)
1635 sysClockFreq++;
1636
1637
1638 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1639 (s32)
1640 (state->expected_sys_clock_freq)) *
1641 1000000L) /
1642 (s32)
1643 (state->expected_sys_clock_freq));
1644
1645 Diff = oscClockDeviation - state->osc_clock_deviation;
1646
1647 if (Diff >= -200 && Diff <= 200) {
1648 state->sys_clock_freq = (u16) sysClockFreq;
1649 if (oscClockDeviation != state->osc_clock_deviation) {
1650 if (state->config.osc_deviation) {
1651 state->config.osc_deviation(state->priv,
1652 oscClockDeviation,
1653 1);
1654 state->osc_clock_deviation =
1655 oscClockDeviation;
1656 }
1657 }
1658
1659 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1660 if (status < 0)
1661 break;
1662
1663
1664 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1665 if (status < 0)
1666 break;
1667 state->cscd_state = CSCD_SAVED;
1668 }
1669 } while (0);
1670
1671 return status;
1672 }
1673
1674 static int DRX_Stop(struct drxd_state *state)
1675 {
1676 int status;
1677
1678 if (state->drxd_state != DRXD_STARTED)
1679 return 0;
1680
1681 do {
1682 if (state->cscd_state != CSCD_SAVED) {
1683 u32 lock;
1684 status = DRX_GetLockStatus(state, &lock);
1685 if (status < 0)
1686 break;
1687 }
1688
1689 status = StopOC(state);
1690 if (status < 0)
1691 break;
1692
1693 state->drxd_state = DRXD_STOPPED;
1694
1695 status = ConfigureMPEGOutput(state, 0);
1696 if (status < 0)
1697 break;
1698
1699 if (state->type_A) {
1700
1701 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1702 if (status < 0)
1703 break;
1704
1705 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1706 if (status < 0)
1707 break;
1708 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1709 if (status < 0)
1710 break;
1711 } else {
1712
1713 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714 if (status < 0)
1715 break;
1716 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717 if (status < 0)
1718 break;
1719 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720 if (status < 0)
1721 break;
1722 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723 if (status < 0)
1724 break;
1725 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726 if (status < 0)
1727 break;
1728 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729 if (status < 0)
1730 break;
1731 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1732 if (status < 0)
1733 break;
1734 }
1735
1736 } while (0);
1737 return status;
1738 }
1739
1740 #if 0
1741 static int SetOperationMode(struct drxd_state *state, int oMode)
1742 {
1743 int status;
1744
1745 do {
1746 if (state->drxd_state != DRXD_STOPPED) {
1747 status = -1;
1748 break;
1749 }
1750
1751 if (oMode == state->operation_mode) {
1752 status = 0;
1753 break;
1754 }
1755
1756 if (oMode != OM_Default && !state->diversity) {
1757 status = -1;
1758 break;
1759 }
1760
1761 switch (oMode) {
1762 case OM_DVBT_Diversity_Front:
1763 status = WriteTable(state, state->m_InitDiversityFront);
1764 break;
1765 case OM_DVBT_Diversity_End:
1766 status = WriteTable(state, state->m_InitDiversityEnd);
1767 break;
1768 case OM_Default:
1769
1770
1771 default:
1772 status = WriteTable(state, state->m_DisableDiversity);
1773 break;
1774 }
1775 } while (0);
1776
1777 if (!status)
1778 state->operation_mode = oMode;
1779 return status;
1780 }
1781 #endif
1782
1783 static int StartDiversity(struct drxd_state *state)
1784 {
1785 int status = 0;
1786 u16 rcControl;
1787
1788 do {
1789 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1790 status = WriteTable(state, state->m_StartDiversityFront);
1791 if (status < 0)
1792 break;
1793 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1794 status = WriteTable(state, state->m_StartDiversityEnd);
1795 if (status < 0)
1796 break;
1797 if (state->props.bandwidth_hz == 8000000) {
1798 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1799 if (status < 0)
1800 break;
1801 } else {
1802 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1803 if (status < 0)
1804 break;
1805 }
1806
1807 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1808 if (status < 0)
1809 break;
1810 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1811 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1812
1813 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1814 B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1815 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1816 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1817 if (status < 0)
1818 break;
1819 }
1820 } while (0);
1821 return status;
1822 }
1823
1824 static int SetFrequencyShift(struct drxd_state *state,
1825 u32 offsetFreq, int channelMirrored)
1826 {
1827 int negativeShift = (state->tuner_mirrors == channelMirrored);
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1841 offsetFreq,
1842 1 << 28, state->sys_clock_freq);
1843
1844 state->fe_fs_add_incr &= 0x0FFFFFFFL;
1845 if (negativeShift)
1846 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1847
1848
1849
1850 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1851 1 << 28, state->sys_clock_freq);
1852
1853 state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1854 if (negativeShift)
1855 state->org_fe_fs_add_incr = ((1L << 28) -
1856 state->org_fe_fs_add_incr);
1857
1858 return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1859 state->fe_fs_add_incr, 0);
1860 }
1861
1862 static int SetCfgNoiseCalibration(struct drxd_state *state,
1863 struct SNoiseCal *noiseCal)
1864 {
1865 u16 beOptEna;
1866 int status = 0;
1867
1868 do {
1869 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1870 if (status < 0)
1871 break;
1872 if (noiseCal->cpOpt) {
1873 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1874 } else {
1875 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1876 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1877 if (status < 0)
1878 break;
1879 }
1880 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1881 if (status < 0)
1882 break;
1883
1884 if (!state->type_A) {
1885 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1886 if (status < 0)
1887 break;
1888 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1889 if (status < 0)
1890 break;
1891 }
1892 } while (0);
1893
1894 return status;
1895 }
1896
1897 static int DRX_Start(struct drxd_state *state, s32 off)
1898 {
1899 struct dtv_frontend_properties *p = &state->props;
1900 int status;
1901
1902 u16 transmissionParams = 0;
1903 u16 operationMode = 0;
1904 u16 qpskTdTpsPwr = 0;
1905 u16 qam16TdTpsPwr = 0;
1906 u16 qam64TdTpsPwr = 0;
1907 u32 feIfIncr = 0;
1908 u32 bandwidth = 0;
1909 int mirrorFreqSpect;
1910
1911 u16 qpskSnCeGain = 0;
1912 u16 qam16SnCeGain = 0;
1913 u16 qam64SnCeGain = 0;
1914 u16 qpskIsGainMan = 0;
1915 u16 qam16IsGainMan = 0;
1916 u16 qam64IsGainMan = 0;
1917 u16 qpskIsGainExp = 0;
1918 u16 qam16IsGainExp = 0;
1919 u16 qam64IsGainExp = 0;
1920 u16 bandwidthParam = 0;
1921
1922 if (off < 0)
1923 off = (off - 500) / 1000;
1924 else
1925 off = (off + 500) / 1000;
1926
1927 do {
1928 if (state->drxd_state != DRXD_STOPPED)
1929 return -1;
1930 status = ResetECOD(state);
1931 if (status < 0)
1932 break;
1933 if (state->type_A) {
1934 status = InitSC(state);
1935 if (status < 0)
1936 break;
1937 } else {
1938 status = InitFT(state);
1939 if (status < 0)
1940 break;
1941 status = InitCP(state);
1942 if (status < 0)
1943 break;
1944 status = InitCE(state);
1945 if (status < 0)
1946 break;
1947 status = InitEQ(state);
1948 if (status < 0)
1949 break;
1950 status = InitSC(state);
1951 if (status < 0)
1952 break;
1953 }
1954
1955
1956
1957 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1958 if (status < 0)
1959 break;
1960 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1961 if (status < 0)
1962 break;
1963
1964 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1965
1966 switch (p->transmission_mode) {
1967 default:
1968 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1969
1970 case TRANSMISSION_MODE_8K:
1971 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1972 if (state->type_A) {
1973 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1974 if (status < 0)
1975 break;
1976 qpskSnCeGain = 99;
1977 qam16SnCeGain = 83;
1978 qam64SnCeGain = 67;
1979 }
1980 break;
1981 case TRANSMISSION_MODE_2K:
1982 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1983 if (state->type_A) {
1984 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1985 if (status < 0)
1986 break;
1987 qpskSnCeGain = 97;
1988 qam16SnCeGain = 71;
1989 qam64SnCeGain = 65;
1990 }
1991 break;
1992 }
1993
1994 switch (p->guard_interval) {
1995 case GUARD_INTERVAL_1_4:
1996 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1997 break;
1998 case GUARD_INTERVAL_1_8:
1999 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2000 break;
2001 case GUARD_INTERVAL_1_16:
2002 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2003 break;
2004 case GUARD_INTERVAL_1_32:
2005 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2006 break;
2007 default:
2008 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2009
2010 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2011 break;
2012 }
2013
2014 switch (p->hierarchy) {
2015 case HIERARCHY_1:
2016 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2017 if (state->type_A) {
2018 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2019 if (status < 0)
2020 break;
2021 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2022 if (status < 0)
2023 break;
2024
2025 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2026 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2027 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2028
2029 qpskIsGainMan =
2030 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2031 qam16IsGainMan =
2032 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2033 qam64IsGainMan =
2034 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2035
2036 qpskIsGainExp =
2037 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2038 qam16IsGainExp =
2039 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2040 qam64IsGainExp =
2041 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2042 }
2043 break;
2044
2045 case HIERARCHY_2:
2046 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2047 if (state->type_A) {
2048 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2049 if (status < 0)
2050 break;
2051 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2052 if (status < 0)
2053 break;
2054
2055 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2056 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2057 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2058
2059 qpskIsGainMan =
2060 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2061 qam16IsGainMan =
2062 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2063 qam64IsGainMan =
2064 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2065
2066 qpskIsGainExp =
2067 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2068 qam16IsGainExp =
2069 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2070 qam64IsGainExp =
2071 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2072 }
2073 break;
2074 case HIERARCHY_4:
2075 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2076 if (state->type_A) {
2077 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2078 if (status < 0)
2079 break;
2080 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2081 if (status < 0)
2082 break;
2083
2084 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2085 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2086 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2087
2088 qpskIsGainMan =
2089 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2090 qam16IsGainMan =
2091 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2092 qam64IsGainMan =
2093 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2094
2095 qpskIsGainExp =
2096 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2097 qam16IsGainExp =
2098 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2099 qam64IsGainExp =
2100 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2101 }
2102 break;
2103 case HIERARCHY_AUTO:
2104 default:
2105
2106 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2107 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2108 if (state->type_A) {
2109 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2110 if (status < 0)
2111 break;
2112 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2113 if (status < 0)
2114 break;
2115
2116 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2117 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2118 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2119
2120 qpskIsGainMan =
2121 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2122 qam16IsGainMan =
2123 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2124 qam64IsGainMan =
2125 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2126
2127 qpskIsGainExp =
2128 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2129 qam16IsGainExp =
2130 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2131 qam64IsGainExp =
2132 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2133 }
2134 break;
2135 }
2136 if (status < 0)
2137 break;
2138
2139 switch (p->modulation) {
2140 default:
2141 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2142
2143 case QAM_64:
2144 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2145 if (state->type_A) {
2146 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2147 if (status < 0)
2148 break;
2149 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2150 if (status < 0)
2151 break;
2152 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2153 if (status < 0)
2154 break;
2155 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2156 if (status < 0)
2157 break;
2158 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2159 if (status < 0)
2160 break;
2161
2162 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2163 if (status < 0)
2164 break;
2165 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2166 if (status < 0)
2167 break;
2168 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2169 if (status < 0)
2170 break;
2171 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2172 if (status < 0)
2173 break;
2174 }
2175 break;
2176 case QPSK:
2177 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2178 if (state->type_A) {
2179 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2180 if (status < 0)
2181 break;
2182 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2183 if (status < 0)
2184 break;
2185 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2186 if (status < 0)
2187 break;
2188 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2189 if (status < 0)
2190 break;
2191 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2192 if (status < 0)
2193 break;
2194
2195 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2196 if (status < 0)
2197 break;
2198 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2199 if (status < 0)
2200 break;
2201 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2202 if (status < 0)
2203 break;
2204 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2205 if (status < 0)
2206 break;
2207 }
2208 break;
2209
2210 case QAM_16:
2211 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2212 if (state->type_A) {
2213 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2214 if (status < 0)
2215 break;
2216 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2217 if (status < 0)
2218 break;
2219 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2220 if (status < 0)
2221 break;
2222 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2223 if (status < 0)
2224 break;
2225 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2226 if (status < 0)
2227 break;
2228
2229 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2230 if (status < 0)
2231 break;
2232 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2233 if (status < 0)
2234 break;
2235 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2236 if (status < 0)
2237 break;
2238 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2239 if (status < 0)
2240 break;
2241 }
2242 break;
2243
2244 }
2245 if (status < 0)
2246 break;
2247
2248 switch (DRX_CHANNEL_HIGH) {
2249 default:
2250 case DRX_CHANNEL_AUTO:
2251 case DRX_CHANNEL_LOW:
2252 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2253 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2254 break;
2255 case DRX_CHANNEL_HIGH:
2256 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2257 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2258 break;
2259 }
2260
2261 switch (p->code_rate_HP) {
2262 case FEC_1_2:
2263 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2264 if (state->type_A)
2265 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2266 break;
2267 default:
2268 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2269
2270 case FEC_2_3:
2271 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2272 if (state->type_A)
2273 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2274 break;
2275 case FEC_3_4:
2276 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2277 if (state->type_A)
2278 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2279 break;
2280 case FEC_5_6:
2281 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2282 if (state->type_A)
2283 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2284 break;
2285 case FEC_7_8:
2286 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2287 if (state->type_A)
2288 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2289 break;
2290 }
2291 if (status < 0)
2292 break;
2293
2294
2295
2296
2297
2298
2299
2300
2301 switch (p->bandwidth_hz) {
2302 case 0:
2303 p->bandwidth_hz = 8000000;
2304
2305 case 8000000:
2306
2307 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2308
2309 bandwidthParam = 0;
2310 status = Write16(state,
2311 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2312 break;
2313 case 7000000:
2314
2315 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2316 bandwidthParam = 0x4807;
2317 status = Write16(state,
2318 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2319 break;
2320 case 6000000:
2321
2322 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2323 bandwidthParam = 0x0F07;
2324 status = Write16(state,
2325 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2326 break;
2327 default:
2328 status = -EINVAL;
2329 }
2330 if (status < 0)
2331 break;
2332
2333 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2334 if (status < 0)
2335 break;
2336
2337 {
2338 u16 sc_config;
2339 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2340 if (status < 0)
2341 break;
2342
2343
2344
2345 if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2346 (p->guard_interval == GUARD_INTERVAL_1_32)) {
2347
2348 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2349 } else {
2350
2351 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2352 }
2353 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2354 if (status < 0)
2355 break;
2356 }
2357
2358 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2359 if (status < 0)
2360 break;
2361
2362 if (state->cscd_state == CSCD_INIT) {
2363
2364 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2365 if (status < 0)
2366 break;
2367
2368 state->cscd_state = CSCD_SET;
2369 }
2370
2371
2372
2373
2374 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2375 (1ULL << 21), bandwidth) - (1 << 23);
2376 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2377 if (status < 0)
2378 break;
2379 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2380 if (status < 0)
2381 break;
2382
2383
2384
2385 SetFrequencyShift(state, off, mirrorFreqSpect);
2386
2387
2388
2389
2390 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2391 if (status < 0)
2392 break;
2393 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2394 if (status < 0)
2395 break;
2396
2397
2398 #if 1
2399 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2400 SC_RA_RAM_OP_AUTO_GUARD__M |
2401 SC_RA_RAM_OP_AUTO_CONST__M |
2402 SC_RA_RAM_OP_AUTO_HIER__M |
2403 SC_RA_RAM_OP_AUTO_RATE__M);
2404 #endif
2405 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2406 if (status < 0)
2407 break;
2408
2409
2410 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2411 if (status < 0)
2412 break;
2413
2414 status = StartOC(state);
2415 if (status < 0)
2416 break;
2417
2418 if (state->operation_mode != OM_Default) {
2419 status = StartDiversity(state);
2420 if (status < 0)
2421 break;
2422 }
2423
2424 state->drxd_state = DRXD_STARTED;
2425 } while (0);
2426
2427 return status;
2428 }
2429
2430 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2431 {
2432 u32 ulRfAgcOutputLevel = 0xffffffff;
2433 u32 ulRfAgcSettleLevel = 528;
2434 u32 ulRfAgcMinLevel = 0;
2435 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;
2436 u32 ulRfAgcSpeed = 0;
2437 u32 ulRfAgcMode = 0;
2438 u32 ulRfAgcR1 = 820;
2439 u32 ulRfAgcR2 = 2200;
2440 u32 ulRfAgcR3 = 150;
2441 u32 ulIfAgcMode = 0;
2442 u32 ulIfAgcOutputLevel = 0xffffffff;
2443 u32 ulIfAgcSettleLevel = 0xffffffff;
2444 u32 ulIfAgcMinLevel = 0xffffffff;
2445 u32 ulIfAgcMaxLevel = 0xffffffff;
2446 u32 ulIfAgcSpeed = 0xffffffff;
2447 u32 ulIfAgcR1 = 820;
2448 u32 ulIfAgcR2 = 2200;
2449 u32 ulIfAgcR3 = 150;
2450 u32 ulClock = state->config.clock;
2451 u32 ulSerialMode = 0;
2452 u32 ulEcOcRegOcModeLop = 4;
2453 u32 ulHiI2cDelay = HI_I2C_DELAY;
2454 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2455 u32 ulHiI2cPatch = 0;
2456 u32 ulEnvironment = APPENV_PORTABLE;
2457 u32 ulEnvironmentDiversity = APPENV_MOBILE;
2458 u32 ulIFFilter = IFFILTER_SAW;
2459
2460 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2461 state->if_agc_cfg.outputLevel = 0;
2462 state->if_agc_cfg.settleLevel = 140;
2463 state->if_agc_cfg.minOutputLevel = 0;
2464 state->if_agc_cfg.maxOutputLevel = 1023;
2465 state->if_agc_cfg.speed = 904;
2466
2467 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2468 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2469 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2470 }
2471
2472 if (ulIfAgcMode == 0 &&
2473 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2474 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2475 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2476 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2477 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2478 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2479 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2480 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2481 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2482 }
2483
2484 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2485 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2486 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2487
2488 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2489 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2490 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2491
2492 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2493
2494 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2495 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2496 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2497 }
2498
2499 if (ulRfAgcMode == 0 &&
2500 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2501 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2502 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2503 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2504 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2505 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2506 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2507 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2508 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2509 }
2510
2511 if (ulRfAgcMode == 2)
2512 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2513
2514 if (ulEnvironment <= 2)
2515 state->app_env_default = (enum app_env)
2516 (ulEnvironment);
2517 if (ulEnvironmentDiversity <= 2)
2518 state->app_env_diversity = (enum app_env)
2519 (ulEnvironmentDiversity);
2520
2521 if (ulIFFilter == IFFILTER_DISCRETE) {
2522
2523 state->noise_cal.cpOpt = 0;
2524 state->noise_cal.cpNexpOfs = 40;
2525 state->noise_cal.tdCal2k = -40;
2526 state->noise_cal.tdCal8k = -24;
2527 } else {
2528
2529 state->noise_cal.cpOpt = 1;
2530 state->noise_cal.cpNexpOfs = 0;
2531 state->noise_cal.tdCal2k = -21;
2532 state->noise_cal.tdCal8k = -24;
2533 }
2534 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2535
2536 state->chip_adr = (state->config.demod_address << 1) | 1;
2537 switch (ulHiI2cPatch) {
2538 case 1:
2539 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2540 break;
2541 case 3:
2542 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2543 break;
2544 default:
2545 state->m_HiI2cPatch = NULL;
2546 }
2547
2548
2549 state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2550
2551 state->expected_sys_clock_freq = 48000;
2552
2553 state->sys_clock_freq = 48000;
2554 state->osc_clock_freq = (u16) ulClock;
2555 state->osc_clock_deviation = 0;
2556 state->cscd_state = CSCD_INIT;
2557 state->drxd_state = DRXD_UNINITIALIZED;
2558
2559 state->PGA = 0;
2560 state->type_A = 0;
2561 state->tuner_mirrors = 0;
2562
2563
2564 state->insert_rs_byte = state->config.insert_rs_byte;
2565 state->enable_parallel = (ulSerialMode != 1);
2566
2567
2568
2569
2570 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2571 ulHiI2cDelay) / 1000;
2572
2573
2574 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2575 ulHiI2cBridgeDelay) / 1000;
2576
2577 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2578
2579 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2580 return 0;
2581 }
2582
2583 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2584 {
2585 int status = 0;
2586 u32 driverVersion;
2587
2588 if (state->init_done)
2589 return 0;
2590
2591 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2592
2593 do {
2594 state->operation_mode = OM_Default;
2595
2596 status = SetDeviceTypeId(state);
2597 if (status < 0)
2598 break;
2599
2600
2601 if (!state->type_A && state->m_HiI2cPatch) {
2602 status = WriteTable(state, state->m_HiI2cPatch);
2603 if (status < 0)
2604 break;
2605 }
2606
2607 if (state->type_A) {
2608
2609
2610 status = Write16(state, 0x43012D, 0x047f, 0);
2611 if (status < 0)
2612 break;
2613 }
2614
2615 status = HI_ResetCommand(state);
2616 if (status < 0)
2617 break;
2618
2619 status = StopAllProcessors(state);
2620 if (status < 0)
2621 break;
2622 status = InitCC(state);
2623 if (status < 0)
2624 break;
2625
2626 state->osc_clock_deviation = 0;
2627
2628 if (state->config.osc_deviation)
2629 state->osc_clock_deviation =
2630 state->config.osc_deviation(state->priv, 0, 0);
2631 {
2632
2633 s32 devB;
2634 s32 devA = (s32) (state->osc_clock_deviation) *
2635 (s32) (state->expected_sys_clock_freq);
2636
2637 s32 deviation = (devA / (1000000L));
2638
2639 if (devA > 0)
2640 devB = (2);
2641 else
2642 devB = (-2);
2643 if ((devB * (devA % 1000000L) > 1000000L)) {
2644
2645 deviation += (devB / 2);
2646 }
2647
2648 state->sys_clock_freq =
2649 (u16) ((state->expected_sys_clock_freq) +
2650 deviation);
2651 }
2652 status = InitHI(state);
2653 if (status < 0)
2654 break;
2655 status = InitAtomicRead(state);
2656 if (status < 0)
2657 break;
2658
2659 status = EnableAndResetMB(state);
2660 if (status < 0)
2661 break;
2662 if (state->type_A) {
2663 status = ResetCEFR(state);
2664 if (status < 0)
2665 break;
2666 }
2667 if (fw) {
2668 status = DownloadMicrocode(state, fw, fw_size);
2669 if (status < 0)
2670 break;
2671 } else {
2672 status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2673 if (status < 0)
2674 break;
2675 }
2676
2677 if (state->PGA) {
2678 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2679 SetCfgPga(state, 0);
2680 } else {
2681 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2682 }
2683
2684 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2685
2686 status = InitFE(state);
2687 if (status < 0)
2688 break;
2689 status = InitFT(state);
2690 if (status < 0)
2691 break;
2692 status = InitCP(state);
2693 if (status < 0)
2694 break;
2695 status = InitCE(state);
2696 if (status < 0)
2697 break;
2698 status = InitEQ(state);
2699 if (status < 0)
2700 break;
2701 status = InitEC(state);
2702 if (status < 0)
2703 break;
2704 status = InitSC(state);
2705 if (status < 0)
2706 break;
2707
2708 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2709 if (status < 0)
2710 break;
2711 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2712 if (status < 0)
2713 break;
2714
2715 state->cscd_state = CSCD_INIT;
2716 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2717 if (status < 0)
2718 break;
2719 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2720 if (status < 0)
2721 break;
2722
2723 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2724 (VERSION_MAJOR % 10)) << 24;
2725 driverVersion += (((VERSION_MINOR / 10) << 4) +
2726 (VERSION_MINOR % 10)) << 16;
2727 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2728 ((VERSION_PATCH / 100) << 8) +
2729 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2730
2731 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2732 if (status < 0)
2733 break;
2734
2735 status = StopOC(state);
2736 if (status < 0)
2737 break;
2738
2739 state->drxd_state = DRXD_STOPPED;
2740 state->init_done = 1;
2741 status = 0;
2742 } while (0);
2743 return status;
2744 }
2745
2746 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2747 {
2748 DRX_GetLockStatus(state, pLockStatus);
2749
2750
2751 if (*pLockStatus & DRX_LOCK_FEC) {
2752 ConfigureMPEGOutput(state, 1);
2753
2754
2755 }
2756
2757 return 0;
2758 }
2759
2760
2761
2762
2763
2764 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2765 {
2766 struct drxd_state *state = fe->demodulator_priv;
2767 u32 value;
2768 int res;
2769
2770 res = ReadIFAgc(state, &value);
2771 if (res < 0)
2772 *strength = 0;
2773 else
2774 *strength = 0xffff - (value << 4);
2775 return 0;
2776 }
2777
2778 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2779 {
2780 struct drxd_state *state = fe->demodulator_priv;
2781 u32 lock;
2782
2783 DRXD_status(state, &lock);
2784 *status = 0;
2785
2786 #if 1
2787 if (lock & DRX_LOCK_MPEG)
2788 *status |= FE_HAS_LOCK;
2789 #else
2790 if (lock & DRX_LOCK_FEC)
2791 *status |= FE_HAS_LOCK;
2792 #endif
2793 if (lock & DRX_LOCK_FEC)
2794 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2795 if (lock & DRX_LOCK_DEMOD)
2796 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2797
2798 return 0;
2799 }
2800
2801 static int drxd_init(struct dvb_frontend *fe)
2802 {
2803 struct drxd_state *state = fe->demodulator_priv;
2804
2805 return DRXD_init(state, NULL, 0);
2806 }
2807
2808 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2809 {
2810 struct drxd_state *state = fe->demodulator_priv;
2811
2812 if (state->config.disable_i2c_gate_ctrl == 1)
2813 return 0;
2814
2815 return DRX_ConfigureI2CBridge(state, onoff);
2816 }
2817
2818 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2819 struct dvb_frontend_tune_settings *sets)
2820 {
2821 sets->min_delay_ms = 10000;
2822 sets->max_drift = 0;
2823 sets->step_size = 0;
2824 return 0;
2825 }
2826
2827 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2828 {
2829 *ber = 0;
2830 return 0;
2831 }
2832
2833 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2834 {
2835 *snr = 0;
2836 return 0;
2837 }
2838
2839 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2840 {
2841 *ucblocks = 0;
2842 return 0;
2843 }
2844
2845 static int drxd_sleep(struct dvb_frontend *fe)
2846 {
2847 struct drxd_state *state = fe->demodulator_priv;
2848
2849 ConfigureMPEGOutput(state, 0);
2850 return 0;
2851 }
2852
2853 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2854 {
2855 return drxd_config_i2c(fe, enable);
2856 }
2857
2858 static int drxd_set_frontend(struct dvb_frontend *fe)
2859 {
2860 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2861 struct drxd_state *state = fe->demodulator_priv;
2862 s32 off = 0;
2863
2864 state->props = *p;
2865 DRX_Stop(state);
2866
2867 if (fe->ops.tuner_ops.set_params) {
2868 fe->ops.tuner_ops.set_params(fe);
2869 if (fe->ops.i2c_gate_ctrl)
2870 fe->ops.i2c_gate_ctrl(fe, 0);
2871 }
2872
2873 msleep(200);
2874
2875 return DRX_Start(state, off);
2876 }
2877
2878 static void drxd_release(struct dvb_frontend *fe)
2879 {
2880 struct drxd_state *state = fe->demodulator_priv;
2881
2882 kfree(state);
2883 }
2884
2885 static const struct dvb_frontend_ops drxd_ops = {
2886 .delsys = { SYS_DVBT},
2887 .info = {
2888 .name = "Micronas DRXD DVB-T",
2889 .frequency_min_hz = 47125 * kHz,
2890 .frequency_max_hz = 855250 * kHz,
2891 .frequency_stepsize_hz = 166667,
2892 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2893 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2894 FE_CAN_FEC_AUTO |
2895 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2896 FE_CAN_QAM_AUTO |
2897 FE_CAN_TRANSMISSION_MODE_AUTO |
2898 FE_CAN_GUARD_INTERVAL_AUTO |
2899 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2900
2901 .release = drxd_release,
2902 .init = drxd_init,
2903 .sleep = drxd_sleep,
2904 .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2905
2906 .set_frontend = drxd_set_frontend,
2907 .get_tune_settings = drxd_get_tune_settings,
2908
2909 .read_status = drxd_read_status,
2910 .read_ber = drxd_read_ber,
2911 .read_signal_strength = drxd_read_signal_strength,
2912 .read_snr = drxd_read_snr,
2913 .read_ucblocks = drxd_read_ucblocks,
2914 };
2915
2916 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2917 void *priv, struct i2c_adapter *i2c,
2918 struct device *dev)
2919 {
2920 struct drxd_state *state = NULL;
2921
2922 state = kzalloc(sizeof(*state), GFP_KERNEL);
2923 if (!state)
2924 return NULL;
2925
2926 state->ops = drxd_ops;
2927 state->dev = dev;
2928 state->config = *config;
2929 state->i2c = i2c;
2930 state->priv = priv;
2931
2932 mutex_init(&state->mutex);
2933
2934 if (Read16(state, 0, NULL, 0) < 0)
2935 goto error;
2936
2937 state->frontend.ops = drxd_ops;
2938 state->frontend.demodulator_priv = state;
2939 ConfigureMPEGOutput(state, 0);
2940
2941 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2942 InitHI(state);
2943
2944 return &state->frontend;
2945
2946 error:
2947 printk(KERN_ERR "drxd: not found\n");
2948 kfree(state);
2949 return NULL;
2950 }
2951 EXPORT_SYMBOL(drxd_attach);
2952
2953 MODULE_DESCRIPTION("DRXD driver");
2954 MODULE_AUTHOR("Micronas");
2955 MODULE_LICENSE("GPL");