This source file includes following definitions.
- read_block
- read_reg
- read_pccard
- write_pccard
- read_io
- write_io
- write_regm
- write_reg
- write_block
- set_mode
- cam_mode
- init
- read_attribute_mem
- write_attribute_mem
- read_cam_control
- write_cam_control
- slot_reset
- slot_shutdown
- slot_ts_enable
- campoll
- poll_slot_status
- read_data
- write_data
- cxd2099_probe
- cxd2099_remove
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 #include <linux/slab.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/i2c.h>
21 #include <linux/regmap.h>
22 #include <linux/wait.h>
23 #include <linux/delay.h>
24 #include <linux/mutex.h>
25 #include <linux/io.h>
26
27 #include "cxd2099.h"
28
29 static int buffermode;
30 module_param(buffermode, int, 0444);
31 MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
32
33 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
34
35 struct cxd {
36 struct dvb_ca_en50221 en;
37
38 struct cxd2099_cfg cfg;
39 struct i2c_client *client;
40 struct regmap *regmap;
41
42 u8 regs[0x23];
43 u8 lastaddress;
44 u8 clk_reg_f;
45 u8 clk_reg_b;
46 int mode;
47 int ready;
48 int dr;
49 int write_busy;
50 int slot_stat;
51
52 u8 amem[1024];
53 int amem_read;
54
55 int cammode;
56 struct mutex lock;
57
58 u8 rbuf[1028];
59 u8 wbuf[1028];
60 };
61
62 static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
63 {
64 int status = 0;
65
66 if (ci->lastaddress != adr)
67 status = regmap_write(ci->regmap, 0, adr);
68 if (!status) {
69 ci->lastaddress = adr;
70
71 while (n) {
72 int len = n;
73
74 if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
75 len = ci->cfg.max_i2c;
76 status = regmap_raw_read(ci->regmap, 1, data, len);
77 if (status)
78 return status;
79 data += len;
80 n -= len;
81 }
82 }
83 return status;
84 }
85
86 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
87 {
88 return read_block(ci, reg, val, 1);
89 }
90
91 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
92 {
93 int status;
94 u8 addr[2] = {address & 0xff, address >> 8};
95
96 status = regmap_raw_write(ci->regmap, 2, addr, 2);
97 if (!status)
98 status = regmap_raw_read(ci->regmap, 3, data, n);
99 return status;
100 }
101
102 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
103 {
104 int status;
105 u8 addr[2] = {address & 0xff, address >> 8};
106
107 status = regmap_raw_write(ci->regmap, 2, addr, 2);
108 if (!status) {
109 u8 buf[256];
110
111 memcpy(buf, data, n);
112 status = regmap_raw_write(ci->regmap, 3, buf, n);
113 }
114 return status;
115 }
116
117 static int read_io(struct cxd *ci, u16 address, unsigned int *val)
118 {
119 int status;
120 u8 addr[2] = {address & 0xff, address >> 8};
121
122 status = regmap_raw_write(ci->regmap, 2, addr, 2);
123 if (!status)
124 status = regmap_read(ci->regmap, 3, val);
125 return status;
126 }
127
128 static int write_io(struct cxd *ci, u16 address, u8 val)
129 {
130 int status;
131 u8 addr[2] = {address & 0xff, address >> 8};
132
133 status = regmap_raw_write(ci->regmap, 2, addr, 2);
134 if (!status)
135 status = regmap_write(ci->regmap, 3, val);
136 return status;
137 }
138
139 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
140 {
141 int status = 0;
142 unsigned int regval;
143
144 if (ci->lastaddress != reg)
145 status = regmap_write(ci->regmap, 0, reg);
146 if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
147 status = regmap_read(ci->regmap, 1, ®val);
148 ci->regs[reg] = regval;
149 }
150 ci->lastaddress = reg;
151 ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
152 if (!status)
153 status = regmap_write(ci->regmap, 1, ci->regs[reg]);
154 if (reg == 0x20)
155 ci->regs[reg] &= 0x7f;
156 return status;
157 }
158
159 static int write_reg(struct cxd *ci, u8 reg, u8 val)
160 {
161 return write_regm(ci, reg, val, 0xff);
162 }
163
164 static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
165 {
166 int status = 0;
167 u8 *buf = ci->wbuf;
168
169 if (ci->lastaddress != adr)
170 status = regmap_write(ci->regmap, 0, adr);
171 if (status)
172 return status;
173
174 ci->lastaddress = adr;
175 while (n) {
176 int len = n;
177
178 if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
179 len = ci->cfg.max_i2c - 1;
180 memcpy(buf, data, len);
181 status = regmap_raw_write(ci->regmap, 1, buf, len);
182 if (status)
183 return status;
184 n -= len;
185 data += len;
186 }
187 return status;
188 }
189
190 static void set_mode(struct cxd *ci, int mode)
191 {
192 if (mode == ci->mode)
193 return;
194
195 switch (mode) {
196 case 0x00:
197 write_regm(ci, 0x06, 0x00, 0x07);
198 break;
199 case 0x01:
200 write_regm(ci, 0x06, 0x02, 0x07);
201 break;
202 default:
203 break;
204 }
205 ci->mode = mode;
206 }
207
208 static void cam_mode(struct cxd *ci, int mode)
209 {
210 u8 dummy;
211
212 if (mode == ci->cammode)
213 return;
214
215 switch (mode) {
216 case 0x00:
217 write_regm(ci, 0x20, 0x80, 0x80);
218 break;
219 case 0x01:
220 if (!ci->en.read_data)
221 return;
222 ci->write_busy = 0;
223 dev_info(&ci->client->dev, "enable cam buffer mode\n");
224 write_reg(ci, 0x0d, 0x00);
225 write_reg(ci, 0x0e, 0x01);
226 write_regm(ci, 0x08, 0x40, 0x40);
227 read_reg(ci, 0x12, &dummy);
228 write_regm(ci, 0x08, 0x80, 0x80);
229 break;
230 default:
231 break;
232 }
233 ci->cammode = mode;
234 }
235
236 static int init(struct cxd *ci)
237 {
238 int status;
239
240 mutex_lock(&ci->lock);
241 ci->mode = -1;
242 do {
243 status = write_reg(ci, 0x00, 0x00);
244 if (status < 0)
245 break;
246 status = write_reg(ci, 0x01, 0x00);
247 if (status < 0)
248 break;
249 status = write_reg(ci, 0x02, 0x10);
250 if (status < 0)
251 break;
252 status = write_reg(ci, 0x03, 0x00);
253 if (status < 0)
254 break;
255 status = write_reg(ci, 0x05, 0xFF);
256 if (status < 0)
257 break;
258 status = write_reg(ci, 0x06, 0x1F);
259 if (status < 0)
260 break;
261 status = write_reg(ci, 0x07, 0x1F);
262 if (status < 0)
263 break;
264 status = write_reg(ci, 0x08, 0x28);
265 if (status < 0)
266 break;
267 status = write_reg(ci, 0x14, 0x20);
268 if (status < 0)
269 break;
270
271
272
273
274 status = write_reg(ci, 0x0A, 0xA7);
275 if (status < 0)
276 break;
277
278 status = write_reg(ci, 0x0B, 0x33);
279 if (status < 0)
280 break;
281 status = write_reg(ci, 0x0C, 0x33);
282 if (status < 0)
283 break;
284
285 status = write_regm(ci, 0x14, 0x00, 0x0F);
286 if (status < 0)
287 break;
288 status = write_reg(ci, 0x15, ci->clk_reg_b);
289 if (status < 0)
290 break;
291 status = write_regm(ci, 0x16, 0x00, 0x0F);
292 if (status < 0)
293 break;
294 status = write_reg(ci, 0x17, ci->clk_reg_f);
295 if (status < 0)
296 break;
297
298 if (ci->cfg.clock_mode == 2) {
299
300 u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
301
302 if (ci->cfg.polarity) {
303 status = write_reg(ci, 0x09, 0x6f);
304 if (status < 0)
305 break;
306 } else {
307 status = write_reg(ci, 0x09, 0x6d);
308 if (status < 0)
309 break;
310 }
311 status = write_reg(ci, 0x20, 0x08);
312 if (status < 0)
313 break;
314 status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
315 if (status < 0)
316 break;
317 status = write_reg(ci, 0x22, reg & 0xff);
318 if (status < 0)
319 break;
320 } else if (ci->cfg.clock_mode == 1) {
321 if (ci->cfg.polarity) {
322 status = write_reg(ci, 0x09, 0x6f);
323 if (status < 0)
324 break;
325 } else {
326 status = write_reg(ci, 0x09, 0x6d);
327 if (status < 0)
328 break;
329 }
330 status = write_reg(ci, 0x20, 0x68);
331 if (status < 0)
332 break;
333 status = write_reg(ci, 0x21, 0x00);
334 if (status < 0)
335 break;
336 status = write_reg(ci, 0x22, 0x02);
337 if (status < 0)
338 break;
339 } else {
340 if (ci->cfg.polarity) {
341 status = write_reg(ci, 0x09, 0x4f);
342 if (status < 0)
343 break;
344 } else {
345 status = write_reg(ci, 0x09, 0x4d);
346 if (status < 0)
347 break;
348 }
349 status = write_reg(ci, 0x20, 0x28);
350 if (status < 0)
351 break;
352 status = write_reg(ci, 0x21, 0x00);
353 if (status < 0)
354 break;
355 status = write_reg(ci, 0x22, 0x07);
356 if (status < 0)
357 break;
358 }
359
360 status = write_regm(ci, 0x20, 0x80, 0x80);
361 if (status < 0)
362 break;
363 status = write_regm(ci, 0x03, 0x02, 0x02);
364 if (status < 0)
365 break;
366 status = write_reg(ci, 0x01, 0x04);
367 if (status < 0)
368 break;
369 status = write_reg(ci, 0x00, 0x31);
370 if (status < 0)
371 break;
372
373
374 status = write_regm(ci, 0x09, 0x08, 0x08);
375 if (status < 0)
376 break;
377 ci->cammode = -1;
378 cam_mode(ci, 0);
379 } while (0);
380 mutex_unlock(&ci->lock);
381
382 return 0;
383 }
384
385 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
386 int slot, int address)
387 {
388 struct cxd *ci = ca->data;
389 u8 val;
390
391 mutex_lock(&ci->lock);
392 set_mode(ci, 1);
393 read_pccard(ci, address, &val, 1);
394 mutex_unlock(&ci->lock);
395 return val;
396 }
397
398 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
399 int address, u8 value)
400 {
401 struct cxd *ci = ca->data;
402
403 mutex_lock(&ci->lock);
404 set_mode(ci, 1);
405 write_pccard(ci, address, &value, 1);
406 mutex_unlock(&ci->lock);
407 return 0;
408 }
409
410 static int read_cam_control(struct dvb_ca_en50221 *ca,
411 int slot, u8 address)
412 {
413 struct cxd *ci = ca->data;
414 unsigned int val;
415
416 mutex_lock(&ci->lock);
417 set_mode(ci, 0);
418 read_io(ci, address, &val);
419 mutex_unlock(&ci->lock);
420 return val;
421 }
422
423 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
424 u8 address, u8 value)
425 {
426 struct cxd *ci = ca->data;
427
428 mutex_lock(&ci->lock);
429 set_mode(ci, 0);
430 write_io(ci, address, value);
431 mutex_unlock(&ci->lock);
432 return 0;
433 }
434
435 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
436 {
437 struct cxd *ci = ca->data;
438
439 if (ci->cammode)
440 read_data(ca, slot, ci->rbuf, 0);
441
442 mutex_lock(&ci->lock);
443 cam_mode(ci, 0);
444 write_reg(ci, 0x00, 0x21);
445 write_reg(ci, 0x06, 0x1F);
446 write_reg(ci, 0x00, 0x31);
447 write_regm(ci, 0x20, 0x80, 0x80);
448 write_reg(ci, 0x03, 0x02);
449 ci->ready = 0;
450 ci->mode = -1;
451 {
452 int i;
453
454 for (i = 0; i < 100; i++) {
455 usleep_range(10000, 11000);
456 if (ci->ready)
457 break;
458 }
459 }
460 mutex_unlock(&ci->lock);
461 return 0;
462 }
463
464 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
465 {
466 struct cxd *ci = ca->data;
467
468 dev_dbg(&ci->client->dev, "%s\n", __func__);
469 if (ci->cammode)
470 read_data(ca, slot, ci->rbuf, 0);
471 mutex_lock(&ci->lock);
472 write_reg(ci, 0x00, 0x21);
473 write_reg(ci, 0x06, 0x1F);
474 msleep(300);
475
476 write_regm(ci, 0x09, 0x08, 0x08);
477 write_regm(ci, 0x20, 0x80, 0x80);
478 write_regm(ci, 0x06, 0x07, 0x07);
479
480 ci->mode = -1;
481 ci->write_busy = 0;
482 mutex_unlock(&ci->lock);
483 return 0;
484 }
485
486 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
487 {
488 struct cxd *ci = ca->data;
489
490 mutex_lock(&ci->lock);
491 write_regm(ci, 0x09, 0x00, 0x08);
492 set_mode(ci, 0);
493 cam_mode(ci, 1);
494 mutex_unlock(&ci->lock);
495 return 0;
496 }
497
498 static int campoll(struct cxd *ci)
499 {
500 u8 istat;
501
502 read_reg(ci, 0x04, &istat);
503 if (!istat)
504 return 0;
505 write_reg(ci, 0x05, istat);
506
507 if (istat & 0x40)
508 ci->dr = 1;
509 if (istat & 0x20)
510 ci->write_busy = 0;
511
512 if (istat & 2) {
513 u8 slotstat;
514
515 read_reg(ci, 0x01, &slotstat);
516 if (!(2 & slotstat)) {
517 if (!ci->slot_stat) {
518 ci->slot_stat |=
519 DVB_CA_EN50221_POLL_CAM_PRESENT;
520 write_regm(ci, 0x03, 0x08, 0x08);
521 }
522
523 } else {
524 if (ci->slot_stat) {
525 ci->slot_stat = 0;
526 write_regm(ci, 0x03, 0x00, 0x08);
527 dev_info(&ci->client->dev, "NO CAM\n");
528 ci->ready = 0;
529 }
530 }
531 if ((istat & 8) &&
532 ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
533 ci->ready = 1;
534 ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
535 }
536 }
537 return 0;
538 }
539
540 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
541 {
542 struct cxd *ci = ca->data;
543 u8 slotstat;
544
545 mutex_lock(&ci->lock);
546 campoll(ci);
547 read_reg(ci, 0x01, &slotstat);
548 mutex_unlock(&ci->lock);
549
550 return ci->slot_stat;
551 }
552
553 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
554 {
555 struct cxd *ci = ca->data;
556 u8 msb, lsb;
557 u16 len;
558
559 mutex_lock(&ci->lock);
560 campoll(ci);
561 mutex_unlock(&ci->lock);
562
563 if (!ci->dr)
564 return 0;
565
566 mutex_lock(&ci->lock);
567 read_reg(ci, 0x0f, &msb);
568 read_reg(ci, 0x10, &lsb);
569 len = ((u16)msb << 8) | lsb;
570 if (len > ecount || len < 2) {
571
572 read_block(ci, 0x12, ci->rbuf, len);
573 mutex_unlock(&ci->lock);
574 return -EIO;
575 }
576 read_block(ci, 0x12, ebuf, len);
577 ci->dr = 0;
578 mutex_unlock(&ci->lock);
579 return len;
580 }
581
582 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
583 {
584 struct cxd *ci = ca->data;
585
586 if (ci->write_busy)
587 return -EAGAIN;
588 mutex_lock(&ci->lock);
589 write_reg(ci, 0x0d, ecount >> 8);
590 write_reg(ci, 0x0e, ecount & 0xff);
591 write_block(ci, 0x11, ebuf, ecount);
592 ci->write_busy = 1;
593 mutex_unlock(&ci->lock);
594 return ecount;
595 }
596
597 static const struct dvb_ca_en50221 en_templ = {
598 .read_attribute_mem = read_attribute_mem,
599 .write_attribute_mem = write_attribute_mem,
600 .read_cam_control = read_cam_control,
601 .write_cam_control = write_cam_control,
602 .slot_reset = slot_reset,
603 .slot_shutdown = slot_shutdown,
604 .slot_ts_enable = slot_ts_enable,
605 .poll_slot_status = poll_slot_status,
606 .read_data = read_data,
607 .write_data = write_data,
608 };
609
610 static int cxd2099_probe(struct i2c_client *client,
611 const struct i2c_device_id *id)
612 {
613 struct cxd *ci;
614 struct cxd2099_cfg *cfg = client->dev.platform_data;
615 static const struct regmap_config rm_cfg = {
616 .reg_bits = 8,
617 .val_bits = 8,
618 };
619 unsigned int val;
620 int ret;
621
622 ci = kzalloc(sizeof(*ci), GFP_KERNEL);
623 if (!ci) {
624 ret = -ENOMEM;
625 goto err;
626 }
627
628 ci->client = client;
629 memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
630
631 ci->regmap = regmap_init_i2c(client, &rm_cfg);
632 if (IS_ERR(ci->regmap)) {
633 ret = PTR_ERR(ci->regmap);
634 goto err_kfree;
635 }
636
637 ret = regmap_read(ci->regmap, 0x00, &val);
638 if (ret < 0) {
639 dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
640 client->addr);
641 goto err_rmexit;
642 }
643
644 mutex_init(&ci->lock);
645 ci->lastaddress = 0xff;
646 ci->clk_reg_b = 0x4a;
647 ci->clk_reg_f = 0x1b;
648
649 ci->en = en_templ;
650 ci->en.data = ci;
651 init(ci);
652 dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
653
654 *cfg->en = &ci->en;
655
656 if (!buffermode) {
657 ci->en.read_data = NULL;
658 ci->en.write_data = NULL;
659 } else {
660 dev_info(&client->dev, "Using CXD2099AR buffer mode");
661 }
662
663 i2c_set_clientdata(client, ci);
664
665 return 0;
666
667 err_rmexit:
668 regmap_exit(ci->regmap);
669 err_kfree:
670 kfree(ci);
671 err:
672
673 return ret;
674 }
675
676 static int cxd2099_remove(struct i2c_client *client)
677 {
678 struct cxd *ci = i2c_get_clientdata(client);
679
680 regmap_exit(ci->regmap);
681 kfree(ci);
682
683 return 0;
684 }
685
686 static const struct i2c_device_id cxd2099_id[] = {
687 {"cxd2099", 0},
688 {}
689 };
690 MODULE_DEVICE_TABLE(i2c, cxd2099_id);
691
692 static struct i2c_driver cxd2099_driver = {
693 .driver = {
694 .name = "cxd2099",
695 },
696 .probe = cxd2099_probe,
697 .remove = cxd2099_remove,
698 .id_table = cxd2099_id,
699 };
700
701 module_i2c_driver(cxd2099_driver);
702
703 MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
704 MODULE_AUTHOR("Ralph Metzler");
705 MODULE_LICENSE("GPL v2");