This source file includes following definitions.
- nvt_get_dev
- is_w83667hg
- nvt_cr_write
- nvt_cr_read
- nvt_set_reg_bit
- nvt_clear_reg_bit
- nvt_efm_enable
- nvt_efm_disable
- nvt_select_logical_dev
- nvt_enable_logical_dev
- nvt_disable_logical_dev
- nvt_cir_reg_write
- nvt_cir_reg_read
- nvt_cir_wake_reg_write
- nvt_cir_wake_reg_read
- nvt_set_ioaddr
- nvt_write_wakeup_codes
- wakeup_data_show
- wakeup_data_store
- cir_dump_regs
- cir_wake_dump_regs
- nvt_find_chip
- nvt_hw_detect
- nvt_cir_ldev_init
- nvt_cir_wake_ldev_init
- nvt_clear_cir_fifo
- nvt_clear_cir_wake_fifo
- nvt_clear_tx_fifo
- nvt_set_cir_iren
- nvt_cir_regs_init
- nvt_cir_wake_regs_init
- nvt_enable_wake
- nvt_rx_carrier_detect
- nvt_set_tx_carrier
- nvt_ir_raw_set_wakeup_filter
- nvt_dump_rx_buf
- nvt_process_rx_ir_data
- nvt_handle_rx_fifo_overrun
- nvt_get_rx_ir_data
- nvt_cir_log_irqs
- nvt_cir_isr
- nvt_enable_cir
- nvt_disable_cir
- nvt_open
- nvt_close
- nvt_probe
- nvt_remove
- nvt_suspend
- nvt_resume
- nvt_shutdown
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
34
35 #include "nuvoton-cir.h"
36
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38
39 static const struct nvt_chip nvt_chips[] = {
40 { "w83667hg", NVT_W83667HG },
41 { "NCT6775F", NVT_6775F },
42 { "NCT6776F", NVT_6776F },
43 { "NCT6779D", NVT_6779D },
44 };
45
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47 {
48 return nvt->rdev->dev.parent;
49 }
50
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 return nvt->chip_ver == NVT_W83667HG;
54 }
55
56
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 outb(reg, nvt->cr_efir);
60 outb(val, nvt->cr_efdr);
61 }
62
63
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 outb(reg, nvt->cr_efir);
67 return inb(nvt->cr_efdr);
68 }
69
70
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 u8 tmp = nvt_cr_read(nvt, reg) | val;
74 nvt_cr_write(nvt, tmp, reg);
75 }
76
77
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
79 {
80 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 nvt_cr_write(nvt, tmp, reg);
82 }
83
84
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
86 {
87 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 return -EBUSY;
89
90
91 outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 outb(EFER_EFM_ENABLE, nvt->cr_efir);
93
94 return 0;
95 }
96
97
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
99 {
100 outb(EFER_EFM_DISABLE, nvt->cr_efir);
101
102 release_region(nvt->cr_efir, 2);
103 }
104
105
106
107
108
109
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 {
112 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 }
114
115
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
117 {
118 nvt_efm_enable(nvt);
119 nvt_select_logical_dev(nvt, ldev);
120 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 nvt_efm_disable(nvt);
122 }
123
124
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
126 {
127 nvt_efm_enable(nvt);
128 nvt_select_logical_dev(nvt, ldev);
129 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 nvt_efm_disable(nvt);
131 }
132
133
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
135 {
136 outb(val, nvt->cir_addr + offset);
137 }
138
139
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
141 {
142 return inb(nvt->cir_addr + offset);
143 }
144
145
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
147 u8 val, u8 offset)
148 {
149 outb(val, nvt->cir_wake_addr + offset);
150 }
151
152
153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
154 {
155 return inb(nvt->cir_wake_addr + offset);
156 }
157
158
159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
160 {
161 unsigned long old_addr;
162
163 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
164 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
165
166 if (old_addr)
167 *ioaddr = old_addr;
168 else {
169 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
170 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
171 }
172 }
173
174 static void nvt_write_wakeup_codes(struct rc_dev *dev,
175 const u8 *wbuf, int count)
176 {
177 u8 tolerance, config;
178 struct nvt_dev *nvt = dev->priv;
179 unsigned long flags;
180 int i;
181
182
183 tolerance = DIV_ROUND_UP(count, 10);
184
185 spin_lock_irqsave(&nvt->lock, flags);
186
187 nvt_clear_cir_wake_fifo(nvt);
188 nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
189 nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
190
191 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
192
193
194 nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
195 CIR_WAKE_IRCON);
196
197 if (count)
198 pr_info("Wake samples (%d) =", count);
199 else
200 pr_info("Wake sample fifo cleared");
201
202 for (i = 0; i < count; i++)
203 nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
204
205 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
206
207 spin_unlock_irqrestore(&nvt->lock, flags);
208 }
209
210 static ssize_t wakeup_data_show(struct device *dev,
211 struct device_attribute *attr,
212 char *buf)
213 {
214 struct rc_dev *rc_dev = to_rc_dev(dev);
215 struct nvt_dev *nvt = rc_dev->priv;
216 int fifo_len, duration;
217 unsigned long flags;
218 ssize_t buf_len = 0;
219 int i;
220
221 spin_lock_irqsave(&nvt->lock, flags);
222
223 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
224 fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
225
226
227 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
228 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
229
230 for (i = 0; i < fifo_len; i++) {
231 duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
232 duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
233 buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
234 "%d ", duration);
235 }
236 buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
237
238 spin_unlock_irqrestore(&nvt->lock, flags);
239
240 return buf_len;
241 }
242
243 static ssize_t wakeup_data_store(struct device *dev,
244 struct device_attribute *attr,
245 const char *buf, size_t len)
246 {
247 struct rc_dev *rc_dev = to_rc_dev(dev);
248 u8 wake_buf[WAKEUP_MAX_SIZE];
249 char **argv;
250 int i, count;
251 unsigned int val;
252 ssize_t ret;
253
254 argv = argv_split(GFP_KERNEL, buf, &count);
255 if (!argv)
256 return -ENOMEM;
257 if (!count || count > WAKEUP_MAX_SIZE) {
258 ret = -EINVAL;
259 goto out;
260 }
261
262 for (i = 0; i < count; i++) {
263 ret = kstrtouint(argv[i], 10, &val);
264 if (ret)
265 goto out;
266 val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
267 if (!val || val > 0x7f) {
268 ret = -EINVAL;
269 goto out;
270 }
271 wake_buf[i] = val;
272
273 if (i % 2 == 0)
274 wake_buf[i] |= BUF_PULSE_BIT;
275 }
276
277 nvt_write_wakeup_codes(rc_dev, wake_buf, count);
278
279 ret = len;
280 out:
281 argv_free(argv);
282 return ret;
283 }
284 static DEVICE_ATTR_RW(wakeup_data);
285
286
287 static void cir_dump_regs(struct nvt_dev *nvt)
288 {
289 nvt_efm_enable(nvt);
290 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
291
292 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
293 pr_info(" * CR CIR ACTIVE : 0x%x\n",
294 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
295 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
296 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
297 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
298 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
299 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
300
301 nvt_efm_disable(nvt);
302
303 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
304 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
305 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
306 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
307 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
308 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
309 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
310 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
311 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
312 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
313 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
314 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
315 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
316 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
317 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
318 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
319 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
320 }
321
322
323 static void cir_wake_dump_regs(struct nvt_dev *nvt)
324 {
325 u8 i, fifo_len;
326
327 nvt_efm_enable(nvt);
328 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
329
330 pr_info("%s: Dump CIR WAKE logical device registers:\n",
331 NVT_DRIVER_NAME);
332 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
333 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
334 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
335 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
336 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
337 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
338 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
339
340 nvt_efm_disable(nvt);
341
342 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
343 pr_info(" * IRCON: 0x%x\n",
344 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
345 pr_info(" * IRSTS: 0x%x\n",
346 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
347 pr_info(" * IREN: 0x%x\n",
348 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
349 pr_info(" * FIFO CMP DEEP: 0x%x\n",
350 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
351 pr_info(" * FIFO CMP TOL: 0x%x\n",
352 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
353 pr_info(" * FIFO COUNT: 0x%x\n",
354 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
355 pr_info(" * SLCH: 0x%x\n",
356 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
357 pr_info(" * SLCL: 0x%x\n",
358 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
359 pr_info(" * FIFOCON: 0x%x\n",
360 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
361 pr_info(" * SRXFSTS: 0x%x\n",
362 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
363 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
364 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
365 pr_info(" * WR FIFO DATA: 0x%x\n",
366 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
367 pr_info(" * RD FIFO ONLY: 0x%x\n",
368 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
369 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
370 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
371 pr_info(" * FIFO IGNORE: 0x%x\n",
372 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
373 pr_info(" * IRFSM: 0x%x\n",
374 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
375
376 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
377 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
378 pr_info("* Contents =");
379 for (i = 0; i < fifo_len; i++)
380 pr_cont(" %02x",
381 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
382 pr_cont("\n");
383 }
384
385 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
386 {
387 int i;
388
389 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
390 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
391 nvt->chip_ver = nvt_chips[i].chip_ver;
392 return nvt_chips[i].name;
393 }
394
395 return NULL;
396 }
397
398
399
400 static int nvt_hw_detect(struct nvt_dev *nvt)
401 {
402 struct device *dev = nvt_get_dev(nvt);
403 const char *chip_name;
404 int chip_id;
405
406 nvt_efm_enable(nvt);
407
408
409 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
410 if (nvt->chip_major == 0xff) {
411 nvt_efm_disable(nvt);
412 nvt->cr_efir = CR_EFIR2;
413 nvt->cr_efdr = CR_EFDR2;
414 nvt_efm_enable(nvt);
415 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
416 }
417 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
418
419 nvt_efm_disable(nvt);
420
421 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
422 if (chip_id == NVT_INVALID) {
423 dev_err(dev, "No device found on either EFM port\n");
424 return -ENODEV;
425 }
426
427 chip_name = nvt_find_chip(nvt, chip_id);
428
429
430 if (!chip_name)
431 dev_warn(dev,
432 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
433 nvt->chip_major, nvt->chip_minor);
434 else
435 dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
436 chip_name, nvt->chip_major, nvt->chip_minor);
437
438 return 0;
439 }
440
441 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
442 {
443 u8 val, psreg, psmask, psval;
444
445 if (is_w83667hg(nvt)) {
446 psreg = CR_MULTIFUNC_PIN_SEL;
447 psmask = MULTIFUNC_PIN_SEL_MASK;
448 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
449 } else {
450 psreg = CR_OUTPUT_PIN_SEL;
451 psmask = OUTPUT_PIN_SEL_MASK;
452 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
453 }
454
455
456 val = nvt_cr_read(nvt, psreg);
457 val &= psmask;
458 val |= psval;
459 nvt_cr_write(nvt, val, psreg);
460
461
462 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
463
464 nvt_set_ioaddr(nvt, &nvt->cir_addr);
465
466 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
467
468 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
469 nvt->cir_addr, nvt->cir_irq);
470 }
471
472 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
473 {
474
475 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
476 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
477
478
479 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
480
481
482 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
483
484
485 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
486
487 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
488
489 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
490 nvt->cir_wake_addr);
491 }
492
493
494 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
495 {
496 u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
497 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
498 }
499
500
501 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
502 {
503 u8 val, config;
504
505 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
506
507
508 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
509 CIR_WAKE_IRCON);
510
511 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
512 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
513 CIR_WAKE_FIFOCON);
514
515 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
516 }
517
518
519 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
520 {
521 u8 val;
522
523 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
524 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
525 }
526
527
528 static void nvt_set_cir_iren(struct nvt_dev *nvt)
529 {
530 u8 iren;
531
532 iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
533 nvt_cir_reg_write(nvt, iren, CIR_IREN);
534 }
535
536 static void nvt_cir_regs_init(struct nvt_dev *nvt)
537 {
538 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
539
540
541 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
542 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
543
544
545 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
546 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
547
548
549 nvt_clear_cir_fifo(nvt);
550 nvt_clear_tx_fifo(nvt);
551
552 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
553 }
554
555 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
556 {
557 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
558
559
560
561
562
563 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
564 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
565 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
566 CIR_WAKE_IRCON);
567
568
569 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
570 }
571
572 static void nvt_enable_wake(struct nvt_dev *nvt)
573 {
574 unsigned long flags;
575
576 nvt_efm_enable(nvt);
577
578 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
579 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
580 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
581
582 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
583 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
584
585 nvt_efm_disable(nvt);
586
587 spin_lock_irqsave(&nvt->lock, flags);
588
589 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
590 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
591 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
592 CIR_WAKE_IRCON);
593 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
594 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
595
596 spin_unlock_irqrestore(&nvt->lock, flags);
597 }
598
599 #if 0
600
601 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
602 {
603 u32 count, carrier, duration = 0;
604 int i;
605
606 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
607 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
608
609 for (i = 0; i < nvt->pkts; i++) {
610 if (nvt->buf[i] & BUF_PULSE_BIT)
611 duration += nvt->buf[i] & BUF_LEN_MASK;
612 }
613
614 duration *= SAMPLE_PERIOD;
615
616 if (!count || !duration) {
617 dev_notice(nvt_get_dev(nvt),
618 "Unable to determine carrier! (c:%u, d:%u)",
619 count, duration);
620 return 0;
621 }
622
623 carrier = MS_TO_NS(count) / duration;
624
625 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
626 nvt_dbg("WTF? Carrier frequency out of range!");
627
628 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
629 carrier, count, duration);
630
631 return carrier;
632 }
633 #endif
634
635
636
637
638
639
640
641 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
642 {
643 struct nvt_dev *nvt = dev->priv;
644 u16 val;
645
646 if (carrier == 0)
647 return -EINVAL;
648
649 nvt_cir_reg_write(nvt, 1, CIR_CP);
650 val = 3000000 / (carrier) - 1;
651 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
652
653 nvt_dbg("cp: 0x%x cc: 0x%x\n",
654 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
655
656 return 0;
657 }
658
659 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
660 struct rc_scancode_filter *sc_filter)
661 {
662 u8 buf_val;
663 int i, ret, count;
664 unsigned int val;
665 struct ir_raw_event *raw;
666 u8 wake_buf[WAKEUP_MAX_SIZE];
667 bool complete;
668
669
670 if (!sc_filter->mask)
671 return 0;
672
673 raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
674 if (!raw)
675 return -ENOMEM;
676
677 ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
678 raw, WAKEUP_MAX_SIZE);
679 complete = (ret != -ENOBUFS);
680 if (!complete)
681 ret = WAKEUP_MAX_SIZE;
682 else if (ret < 0)
683 goto out_raw;
684
685
686 for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
687
688 val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
689
690
691 while (val > 0 && count < WAKEUP_MAX_SIZE) {
692
693 if (complete && i == ret - 1 && val < BUF_LEN_MASK)
694 break;
695
696
697 buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
698
699 wake_buf[count] = buf_val;
700 val -= buf_val;
701 if ((raw[i]).pulse)
702 wake_buf[count] |= BUF_PULSE_BIT;
703 count++;
704 }
705 }
706
707 nvt_write_wakeup_codes(dev, wake_buf, count);
708 ret = 0;
709 out_raw:
710 kfree(raw);
711
712 return ret;
713 }
714
715
716 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
717 {
718 int i;
719
720 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
721 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
722 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
723 printk(KERN_CONT "\n");
724 }
725
726
727
728
729
730
731
732
733
734
735
736
737
738 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
739 {
740 struct ir_raw_event rawir = {};
741 u8 sample;
742 int i;
743
744 nvt_dbg_verbose("%s firing", __func__);
745
746 if (debug)
747 nvt_dump_rx_buf(nvt);
748
749 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
750
751 for (i = 0; i < nvt->pkts; i++) {
752 sample = nvt->buf[i];
753
754 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
755 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
756 * SAMPLE_PERIOD);
757
758 nvt_dbg("Storing %s with duration %d",
759 rawir.pulse ? "pulse" : "space", rawir.duration);
760
761 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
762 }
763
764 nvt->pkts = 0;
765
766 nvt_dbg("Calling ir_raw_event_handle\n");
767 ir_raw_event_handle(nvt->rdev);
768
769 nvt_dbg_verbose("%s done", __func__);
770 }
771
772 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
773 {
774 dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
775
776 nvt->pkts = 0;
777 nvt_clear_cir_fifo(nvt);
778 ir_raw_event_reset(nvt->rdev);
779 }
780
781
782 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
783 {
784 u8 fifocount;
785 int i;
786
787
788 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
789
790 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
791
792
793 for (i = 0; i < fifocount; i++)
794 nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
795
796 nvt->pkts = fifocount;
797 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
798
799 nvt_process_rx_ir_data(nvt);
800 }
801
802 static void nvt_cir_log_irqs(u8 status, u8 iren)
803 {
804 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
805 status, iren,
806 status & CIR_IRSTS_RDR ? " RDR" : "",
807 status & CIR_IRSTS_RTR ? " RTR" : "",
808 status & CIR_IRSTS_PE ? " PE" : "",
809 status & CIR_IRSTS_RFO ? " RFO" : "",
810 status & CIR_IRSTS_TE ? " TE" : "",
811 status & CIR_IRSTS_TTR ? " TTR" : "",
812 status & CIR_IRSTS_TFU ? " TFU" : "",
813 status & CIR_IRSTS_GH ? " GH" : "",
814 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
815 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
816 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
817 }
818
819
820 static irqreturn_t nvt_cir_isr(int irq, void *data)
821 {
822 struct nvt_dev *nvt = data;
823 u8 status, iren;
824
825 nvt_dbg_verbose("%s firing", __func__);
826
827 spin_lock(&nvt->lock);
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
843 iren = nvt_cir_reg_read(nvt, CIR_IREN);
844
845
846
847
848 if (status == 0xff && iren == 0xff) {
849 spin_unlock(&nvt->lock);
850 nvt_dbg_verbose("Spurious interrupt detected");
851 return IRQ_HANDLED;
852 }
853
854
855
856
857 if (!(status & iren)) {
858 spin_unlock(&nvt->lock);
859 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
860 return IRQ_NONE;
861 }
862
863
864 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
865 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
866
867 nvt_cir_log_irqs(status, iren);
868
869 if (status & CIR_IRSTS_RFO)
870 nvt_handle_rx_fifo_overrun(nvt);
871 else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
872 nvt_get_rx_ir_data(nvt);
873
874 spin_unlock(&nvt->lock);
875
876 nvt_dbg_verbose("%s done", __func__);
877 return IRQ_HANDLED;
878 }
879
880 static void nvt_enable_cir(struct nvt_dev *nvt)
881 {
882 unsigned long flags;
883
884
885 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
886
887 spin_lock_irqsave(&nvt->lock, flags);
888
889
890
891
892
893 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
894 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
895 CIR_IRCON);
896
897
898 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
899
900
901 nvt_set_cir_iren(nvt);
902
903 spin_unlock_irqrestore(&nvt->lock, flags);
904 }
905
906 static void nvt_disable_cir(struct nvt_dev *nvt)
907 {
908 unsigned long flags;
909
910 spin_lock_irqsave(&nvt->lock, flags);
911
912
913 nvt_cir_reg_write(nvt, 0, CIR_IREN);
914
915
916 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
917
918
919 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
920
921
922 nvt_clear_cir_fifo(nvt);
923 nvt_clear_tx_fifo(nvt);
924
925 spin_unlock_irqrestore(&nvt->lock, flags);
926
927
928 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
929 }
930
931 static int nvt_open(struct rc_dev *dev)
932 {
933 struct nvt_dev *nvt = dev->priv;
934
935 nvt_enable_cir(nvt);
936
937 return 0;
938 }
939
940 static void nvt_close(struct rc_dev *dev)
941 {
942 struct nvt_dev *nvt = dev->priv;
943
944 nvt_disable_cir(nvt);
945 }
946
947
948 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
949 {
950 struct nvt_dev *nvt;
951 struct rc_dev *rdev;
952 int ret;
953
954 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
955 if (!nvt)
956 return -ENOMEM;
957
958
959 nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
960 if (!nvt->rdev)
961 return -ENOMEM;
962 rdev = nvt->rdev;
963
964
965 ret = pnp_activate_dev(pdev);
966 if (ret) {
967 dev_err(&pdev->dev, "Could not activate PNP device!\n");
968 return ret;
969 }
970
971
972 if (!pnp_port_valid(pdev, 0) ||
973 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
974 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
975 return -EINVAL;
976 }
977
978 if (!pnp_irq_valid(pdev, 0)) {
979 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
980 return -EINVAL;
981 }
982
983 if (!pnp_port_valid(pdev, 1) ||
984 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
985 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
986 return -EINVAL;
987 }
988
989 nvt->cir_addr = pnp_port_start(pdev, 0);
990 nvt->cir_irq = pnp_irq(pdev, 0);
991
992 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
993
994 nvt->cr_efir = CR_EFIR;
995 nvt->cr_efdr = CR_EFDR;
996
997 spin_lock_init(&nvt->lock);
998
999 pnp_set_drvdata(pdev, nvt);
1000
1001 ret = nvt_hw_detect(nvt);
1002 if (ret)
1003 return ret;
1004
1005
1006 nvt_efm_enable(nvt);
1007 nvt_cir_ldev_init(nvt);
1008 nvt_cir_wake_ldev_init(nvt);
1009 nvt_efm_disable(nvt);
1010
1011
1012
1013
1014
1015 nvt_cir_regs_init(nvt);
1016 nvt_cir_wake_regs_init(nvt);
1017
1018
1019 rdev->priv = nvt;
1020 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
1021 rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
1022 rdev->encode_wakeup = true;
1023 rdev->open = nvt_open;
1024 rdev->close = nvt_close;
1025 rdev->s_tx_carrier = nvt_set_tx_carrier;
1026 rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1027 rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1028 rdev->input_phys = "nuvoton/cir0";
1029 rdev->input_id.bustype = BUS_HOST;
1030 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1031 rdev->input_id.product = nvt->chip_major;
1032 rdev->input_id.version = nvt->chip_minor;
1033 rdev->driver_name = NVT_DRIVER_NAME;
1034 rdev->map_name = RC_MAP_RC6_MCE;
1035 rdev->timeout = MS_TO_NS(100);
1036
1037 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1038 #if 0
1039 rdev->min_timeout = XYZ;
1040 rdev->max_timeout = XYZ;
1041 #endif
1042 ret = devm_rc_register_device(&pdev->dev, rdev);
1043 if (ret)
1044 return ret;
1045
1046
1047 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1048 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1049 return -EBUSY;
1050
1051 ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1052 IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1053 if (ret)
1054 return ret;
1055
1056 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1057 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1058 return -EBUSY;
1059
1060 ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1061 if (ret)
1062 return ret;
1063
1064 device_init_wakeup(&pdev->dev, true);
1065
1066 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1067 if (debug) {
1068 cir_dump_regs(nvt);
1069 cir_wake_dump_regs(nvt);
1070 }
1071
1072 return 0;
1073 }
1074
1075 static void nvt_remove(struct pnp_dev *pdev)
1076 {
1077 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1078
1079 device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1080
1081 nvt_disable_cir(nvt);
1082
1083
1084 nvt_enable_wake(nvt);
1085 }
1086
1087 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1088 {
1089 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1090
1091 nvt_dbg("%s called", __func__);
1092
1093 mutex_lock(&nvt->rdev->lock);
1094 if (nvt->rdev->users)
1095 nvt_disable_cir(nvt);
1096 mutex_unlock(&nvt->rdev->lock);
1097
1098
1099 nvt_enable_wake(nvt);
1100
1101 return 0;
1102 }
1103
1104 static int nvt_resume(struct pnp_dev *pdev)
1105 {
1106 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1107
1108 nvt_dbg("%s called", __func__);
1109
1110 nvt_cir_regs_init(nvt);
1111 nvt_cir_wake_regs_init(nvt);
1112
1113 mutex_lock(&nvt->rdev->lock);
1114 if (nvt->rdev->users)
1115 nvt_enable_cir(nvt);
1116 mutex_unlock(&nvt->rdev->lock);
1117
1118 return 0;
1119 }
1120
1121 static void nvt_shutdown(struct pnp_dev *pdev)
1122 {
1123 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1124
1125 nvt_enable_wake(nvt);
1126 }
1127
1128 static const struct pnp_device_id nvt_ids[] = {
1129 { "WEC0530", 0 },
1130 { "NTN0530", 0 },
1131 { "", 0 },
1132 };
1133
1134 static struct pnp_driver nvt_driver = {
1135 .name = NVT_DRIVER_NAME,
1136 .id_table = nvt_ids,
1137 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1138 .probe = nvt_probe,
1139 .remove = nvt_remove,
1140 .suspend = nvt_suspend,
1141 .resume = nvt_resume,
1142 .shutdown = nvt_shutdown,
1143 };
1144
1145 module_param(debug, int, S_IRUGO | S_IWUSR);
1146 MODULE_PARM_DESC(debug, "Enable debugging output");
1147
1148 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1149 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1150
1151 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1152 MODULE_LICENSE("GPL");
1153
1154 module_pnp_driver(nvt_driver);