root/drivers/media/usb/gspca/sonixb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. reg_r
  2. reg_w
  3. i2c_w
  4. i2c_w_vector
  5. setbrightness
  6. setgain
  7. setexposure
  8. setfreq
  9. do_autogain
  10. sd_config
  11. sd_init
  12. sd_s_ctrl
  13. sd_init_controls
  14. sd_start
  15. sd_stopN
  16. find_sof
  17. sd_pkt_scan
  18. sd_int_pkt_scan
  19. sd_probe

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *              sonix sn9c102 (bayer) library
   4  *
   5  * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
   6  * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
   7  * Add Pas106 Stefano Mozzi (C) 2004
   8  */
   9 
  10 /* Some documentation on known sonixb registers:
  11 
  12 Reg     Use
  13 sn9c101 / sn9c102:
  14 0x10    high nibble red gain low nibble blue gain
  15 0x11    low nibble green gain
  16 sn9c103:
  17 0x05    red gain 0-127
  18 0x06    blue gain 0-127
  19 0x07    green gain 0-127
  20 all:
  21 0x08-0x0f i2c / 3wire registers
  22 0x12    hstart
  23 0x13    vstart
  24 0x15    hsize (hsize = register-value * 16)
  25 0x16    vsize (vsize = register-value * 16)
  26 0x17    bit 0 toggle compression quality (according to sn9c102 driver)
  27 0x18    bit 7 enables compression, bit 4-5 set image down scaling:
  28         00 scale 1, 01 scale 1/2, 10, scale 1/4
  29 0x19    high-nibble is sensor clock divider, changes exposure on sensors which
  30         use a clock generated by the bridge. Some sensors have their own clock.
  31 0x1c    auto_exposure area (for avg_lum) startx (startx = register-value * 32)
  32 0x1d    auto_exposure area (for avg_lum) starty (starty = register-value * 32)
  33 0x1e    auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
  34 0x1f    auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
  35 */
  36 
  37 #define MODULE_NAME "sonixb"
  38 
  39 #include <linux/input.h>
  40 #include "gspca.h"
  41 
  42 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
  43 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
  44 MODULE_LICENSE("GPL");
  45 
  46 /* specific webcam descriptor */
  47 struct sd {
  48         struct gspca_dev gspca_dev;     /* !! must be the first item */
  49 
  50         struct v4l2_ctrl *brightness;
  51         struct v4l2_ctrl *plfreq;
  52 
  53         atomic_t avg_lum;
  54         int prev_avg_lum;
  55         int exposure_knee;
  56         int header_read;
  57         u8 header[12]; /* Header without sof marker */
  58 
  59         unsigned char autogain_ignore_frames;
  60         unsigned char frames_to_drop;
  61 
  62         __u8 bridge;                    /* Type of bridge */
  63 #define BRIDGE_101 0
  64 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
  65 #define BRIDGE_103 1
  66 
  67         __u8 sensor;                    /* Type of image sensor chip */
  68 #define SENSOR_HV7131D 0
  69 #define SENSOR_HV7131R 1
  70 #define SENSOR_OV6650 2
  71 #define SENSOR_OV7630 3
  72 #define SENSOR_PAS106 4
  73 #define SENSOR_PAS202 5
  74 #define SENSOR_TAS5110C 6
  75 #define SENSOR_TAS5110D 7
  76 #define SENSOR_TAS5130CXX 8
  77         __u8 reg11;
  78 };
  79 
  80 typedef const __u8 sensor_init_t[8];
  81 
  82 struct sensor_data {
  83         const __u8 *bridge_init;
  84         sensor_init_t *sensor_init;
  85         int sensor_init_size;
  86         int flags;
  87         __u8 sensor_addr;
  88 };
  89 
  90 /* sensor_data flags */
  91 #define F_SIF           0x01    /* sif or vga */
  92 
  93 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
  94 #define MODE_RAW 0x10           /* raw bayer mode */
  95 #define MODE_REDUCED_SIF 0x20   /* vga mode (320x240 / 160x120) on sif cam */
  96 
  97 #define COMP 0xc7               /* 0x87 //0x07 */
  98 #define COMP1 0xc9              /* 0x89 //0x09 */
  99 
 100 #define MCK_INIT 0x63
 101 #define MCK_INIT1 0x20          /*fixme: Bayer - 0x50 for JPEG ??*/
 102 
 103 #define SYS_CLK 0x04
 104 
 105 #define SENS(bridge, sensor, _flags, _sensor_addr) \
 106 { \
 107         .bridge_init = bridge, \
 108         .sensor_init = sensor, \
 109         .sensor_init_size = sizeof(sensor), \
 110         .flags = _flags, .sensor_addr = _sensor_addr \
 111 }
 112 
 113 /* We calculate the autogain at the end of the transfer of a frame, at this
 114    moment a frame with the old settings is being captured and transmitted. So
 115    if we adjust the gain or exposure we must ignore at least the next frame for
 116    the new settings to come into effect before doing any other adjustments. */
 117 #define AUTOGAIN_IGNORE_FRAMES 1
 118 
 119 static const struct v4l2_pix_format vga_mode[] = {
 120         {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
 121                 .bytesperline = 160,
 122                 .sizeimage = 160 * 120,
 123                 .colorspace = V4L2_COLORSPACE_SRGB,
 124                 .priv = 2 | MODE_RAW},
 125         {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 126                 .bytesperline = 160,
 127                 .sizeimage = 160 * 120 * 5 / 4,
 128                 .colorspace = V4L2_COLORSPACE_SRGB,
 129                 .priv = 2},
 130         {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 131                 .bytesperline = 320,
 132                 .sizeimage = 320 * 240 * 5 / 4,
 133                 .colorspace = V4L2_COLORSPACE_SRGB,
 134                 .priv = 1},
 135         {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 136                 .bytesperline = 640,
 137                 .sizeimage = 640 * 480 * 5 / 4,
 138                 .colorspace = V4L2_COLORSPACE_SRGB,
 139                 .priv = 0},
 140 };
 141 static const struct v4l2_pix_format sif_mode[] = {
 142         {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
 143                 .bytesperline = 160,
 144                 .sizeimage = 160 * 120,
 145                 .colorspace = V4L2_COLORSPACE_SRGB,
 146                 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
 147         {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 148                 .bytesperline = 160,
 149                 .sizeimage = 160 * 120 * 5 / 4,
 150                 .colorspace = V4L2_COLORSPACE_SRGB,
 151                 .priv = 1 | MODE_REDUCED_SIF},
 152         {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
 153                 .bytesperline = 176,
 154                 .sizeimage = 176 * 144,
 155                 .colorspace = V4L2_COLORSPACE_SRGB,
 156                 .priv = 1 | MODE_RAW},
 157         {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 158                 .bytesperline = 176,
 159                 .sizeimage = 176 * 144 * 5 / 4,
 160                 .colorspace = V4L2_COLORSPACE_SRGB,
 161                 .priv = 1},
 162         {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 163                 .bytesperline = 320,
 164                 .sizeimage = 320 * 240 * 5 / 4,
 165                 .colorspace = V4L2_COLORSPACE_SRGB,
 166                 .priv = 0 | MODE_REDUCED_SIF},
 167         {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
 168                 .bytesperline = 352,
 169                 .sizeimage = 352 * 288 * 5 / 4,
 170                 .colorspace = V4L2_COLORSPACE_SRGB,
 171                 .priv = 0},
 172 };
 173 
 174 static const __u8 initHv7131d[] = {
 175         0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
 176         0x00, 0x00,
 177         0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
 178         0x28, 0x1e, 0x60, 0x8e, 0x42,
 179 };
 180 static const __u8 hv7131d_sensor_init[][8] = {
 181         {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
 182         {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
 183         {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
 184         {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
 185         {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
 186 };
 187 
 188 static const __u8 initHv7131r[] = {
 189         0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
 190         0x00, 0x00,
 191         0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
 192         0x28, 0x1e, 0x60, 0x8a, 0x20,
 193 };
 194 static const __u8 hv7131r_sensor_init[][8] = {
 195         {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
 196         {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
 197         {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
 198         {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
 199         {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
 200 };
 201 static const __u8 initOv6650[] = {
 202         0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
 203         0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 204         0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
 205         0x10,
 206 };
 207 static const __u8 ov6650_sensor_init[][8] = {
 208         /* Bright, contrast, etc are set through SCBB interface.
 209          * AVCAP on win2 do not send any data on this controls. */
 210         /* Anyway, some registers appears to alter bright and constrat */
 211 
 212         /* Reset sensor */
 213         {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
 214         /* Set clock register 0x11 low nibble is clock divider */
 215         {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
 216         /* Next some unknown stuff */
 217         {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
 218 /*      {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
 219                  * THIS SET GREEN SCREEN
 220                  * (pixels could be innverted in decode kind of "brg",
 221                  * but blue wont be there. Avoid this data ... */
 222         {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
 223         {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
 224         {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
 225         /* Enable rgb brightness control */
 226         {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
 227         /* HDG: Note windows uses the line below, which sets both register 0x60
 228            and 0x61 I believe these registers of the ov6650 are identical as
 229            those of the ov7630, because if this is true the windows settings
 230            add a bit additional red gain and a lot additional blue gain, which
 231            matches my findings that the windows settings make blue much too
 232            blue and red a little too red.
 233         {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
 234         /* Some more unknown stuff */
 235         {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
 236         {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
 237 };
 238 
 239 static const __u8 initOv7630[] = {
 240         0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
 241         0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
 242         0x00, 0x01, 0x01, 0x0a,                         /* r11 .. r14 */
 243         0x28, 0x1e,                     /* H & V sizes     r15 .. r16 */
 244         0x68, 0x8f, MCK_INIT1,                          /* r17 .. r19 */
 245 };
 246 static const __u8 ov7630_sensor_init[][8] = {
 247         {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
 248         {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
 249 /*      {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},          jfm */
 250         {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10},       /* jfm */
 251         {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
 252         {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
 253         {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
 254         {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
 255         {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
 256         {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
 257         {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
 258         {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
 259 /*      {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},        * jfm */
 260         {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
 261         {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
 262         {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
 263         {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
 264         {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
 265         {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
 266 };
 267 
 268 static const __u8 initPas106[] = {
 269         0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
 270         0x00, 0x00,
 271         0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
 272         0x16, 0x12, 0x24, COMP1, MCK_INIT1,
 273 };
 274 /* compression 0x86 mckinit1 0x2b */
 275 
 276 /* "Known" PAS106B registers:
 277   0x02 clock divider
 278   0x03 Variable framerate bits 4-11
 279   0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
 280        The variable framerate control must never be set lower then 300,
 281        which sets the framerate at 90 / reg02, otherwise vsync is lost.
 282   0x05 Shutter Time Line Offset, this can be used as an exposure control:
 283        0 = use full frame time, 255 = no exposure at all
 284        Note this may never be larger then "var-framerate control" / 2 - 2.
 285        When var-framerate control is < 514, no exposure is reached at the max
 286        allowed value for the framerate control value, rather then at 255.
 287   0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
 288        only a very little bit, leave at 0xcd
 289   0x07 offset sign bit (bit0 1 > negative offset)
 290   0x08 offset
 291   0x09 Blue Gain
 292   0x0a Green1 Gain
 293   0x0b Green2 Gain
 294   0x0c Red Gain
 295   0x0e Global gain
 296   0x13 Write 1 to commit settings to sensor
 297 */
 298 
 299 static const __u8 pas106_sensor_init[][8] = {
 300         /* Pixel Clock Divider 6 */
 301         { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
 302         /* Frame Time MSB (also seen as 0x12) */
 303         { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
 304         /* Frame Time LSB (also seen as 0x05) */
 305         { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
 306         /* Shutter Time Line Offset (also seen as 0x6d) */
 307         { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
 308         /* Shutter Time Pixel Offset (also seen as 0xb1) */
 309         { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
 310         /* Black Level Subtract Sign (also seen 0x00) */
 311         { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
 312         /* Black Level Subtract Level (also seen 0x01) */
 313         { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
 314         { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
 315         /* Color Gain B Pixel 5 a */
 316         { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
 317         /* Color Gain G1 Pixel 1 5 */
 318         { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
 319         /* Color Gain G2 Pixel 1 0 5 */
 320         { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
 321         /* Color Gain R Pixel 3 1 */
 322         { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
 323         /* Color GainH  Pixel */
 324         { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
 325         /* Global Gain */
 326         { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
 327         /* Contrast */
 328         { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
 329         /* H&V synchro polarity */
 330         { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
 331         /* ?default */
 332         { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
 333         /* DAC scale */
 334         { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
 335         /* ?default */
 336         { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
 337         /* Validate Settings */
 338         { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
 339 };
 340 
 341 static const __u8 initPas202[] = {
 342         0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
 343         0x00, 0x00,
 344         0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
 345         0x28, 0x1e, 0x20, 0x89, 0x20,
 346 };
 347 
 348 /* "Known" PAS202BCB registers:
 349   0x02 clock divider
 350   0x04 Variable framerate bits 6-11 (*)
 351   0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
 352   0x07 Blue Gain
 353   0x08 Green Gain
 354   0x09 Red Gain
 355   0x0b offset sign bit (bit0 1 > negative offset)
 356   0x0c offset
 357   0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
 358        leave at 1 otherwise we get a jump in our exposure control
 359   0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
 360   0x10 Master gain 0 - 31
 361   0x11 write 1 to apply changes
 362   (*) The variable framerate control must never be set lower then 500
 363       which sets the framerate at 30 / reg02, otherwise vsync is lost.
 364 */
 365 static const __u8 pas202_sensor_init[][8] = {
 366         /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
 367            to set it lower, but for some reason the bridge starts missing
 368            vsync's then */
 369         {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
 370         {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
 371         {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
 372         {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
 373         {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
 374         {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
 375         {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
 376         {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
 377         {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
 378         {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
 379 };
 380 
 381 static const __u8 initTas5110c[] = {
 382         0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
 383         0x00, 0x00,
 384         0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
 385         0x16, 0x12, 0x60, 0x86, 0x2b,
 386 };
 387 /* Same as above, except a different hstart */
 388 static const __u8 initTas5110d[] = {
 389         0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
 390         0x00, 0x00,
 391         0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
 392         0x16, 0x12, 0x60, 0x86, 0x2b,
 393 };
 394 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
 395 static const __u8 tas5110c_sensor_init[][8] = {
 396         {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
 397         {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
 398 };
 399 /* Known TAS5110D registers
 400  * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
 401  * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
 402  *        Note: writing reg03 seems to only work when written together with 02
 403  */
 404 static const __u8 tas5110d_sensor_init[][8] = {
 405         {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
 406 };
 407 
 408 static const __u8 initTas5130[] = {
 409         0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
 410         0x00, 0x00,
 411         0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
 412         0x28, 0x1e, 0x60, COMP, MCK_INIT,
 413 };
 414 static const __u8 tas5130_sensor_init[][8] = {
 415 /*      {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
 416                                         * shutter 0x47 short exposure? */
 417         {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
 418                                         /* shutter 0x01 long exposure */
 419         {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
 420 };
 421 
 422 static const struct sensor_data sensor_data[] = {
 423         SENS(initHv7131d, hv7131d_sensor_init, 0, 0),
 424         SENS(initHv7131r, hv7131r_sensor_init, 0, 0),
 425         SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60),
 426         SENS(initOv7630, ov7630_sensor_init, 0, 0x21),
 427         SENS(initPas106, pas106_sensor_init, F_SIF, 0),
 428         SENS(initPas202, pas202_sensor_init, 0, 0),
 429         SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0),
 430         SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0),
 431         SENS(initTas5130, tas5130_sensor_init, 0, 0),
 432 };
 433 
 434 /* get one byte in gspca_dev->usb_buf */
 435 static void reg_r(struct gspca_dev *gspca_dev,
 436                   __u16 value)
 437 {
 438         int res;
 439 
 440         if (gspca_dev->usb_err < 0)
 441                 return;
 442 
 443         res = usb_control_msg(gspca_dev->dev,
 444                         usb_rcvctrlpipe(gspca_dev->dev, 0),
 445                         0,                      /* request */
 446                         USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 447                         value,
 448                         0,                      /* index */
 449                         gspca_dev->usb_buf, 1,
 450                         500);
 451 
 452         if (res < 0) {
 453                 dev_err(gspca_dev->v4l2_dev.dev,
 454                         "Error reading register %02x: %d\n", value, res);
 455                 gspca_dev->usb_err = res;
 456                 /*
 457                  * Make sure the result is zeroed to avoid uninitialized
 458                  * values.
 459                  */
 460                 gspca_dev->usb_buf[0] = 0;
 461         }
 462 }
 463 
 464 static void reg_w(struct gspca_dev *gspca_dev,
 465                   __u16 value,
 466                   const __u8 *buffer,
 467                   int len)
 468 {
 469         int res;
 470 
 471         if (gspca_dev->usb_err < 0)
 472                 return;
 473 
 474         memcpy(gspca_dev->usb_buf, buffer, len);
 475         res = usb_control_msg(gspca_dev->dev,
 476                         usb_sndctrlpipe(gspca_dev->dev, 0),
 477                         0x08,                   /* request */
 478                         USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
 479                         value,
 480                         0,                      /* index */
 481                         gspca_dev->usb_buf, len,
 482                         500);
 483 
 484         if (res < 0) {
 485                 dev_err(gspca_dev->v4l2_dev.dev,
 486                         "Error writing register %02x: %d\n", value, res);
 487                 gspca_dev->usb_err = res;
 488         }
 489 }
 490 
 491 static void i2c_w(struct gspca_dev *gspca_dev, const u8 *buf)
 492 {
 493         int retry = 60;
 494 
 495         if (gspca_dev->usb_err < 0)
 496                 return;
 497 
 498         /* is i2c ready */
 499         reg_w(gspca_dev, 0x08, buf, 8);
 500         while (retry--) {
 501                 if (gspca_dev->usb_err < 0)
 502                         return;
 503                 msleep(1);
 504                 reg_r(gspca_dev, 0x08);
 505                 if (gspca_dev->usb_buf[0] & 0x04) {
 506                         if (gspca_dev->usb_buf[0] & 0x08) {
 507                                 dev_err(gspca_dev->v4l2_dev.dev,
 508                                         "i2c error writing %8ph\n", buf);
 509                                 gspca_dev->usb_err = -EIO;
 510                         }
 511                         return;
 512                 }
 513         }
 514 
 515         dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n");
 516         gspca_dev->usb_err = -EIO;
 517 }
 518 
 519 static void i2c_w_vector(struct gspca_dev *gspca_dev,
 520                         const __u8 buffer[][8], int len)
 521 {
 522         for (;;) {
 523                 if (gspca_dev->usb_err < 0)
 524                         return;
 525                 i2c_w(gspca_dev, *buffer);
 526                 len -= 8;
 527                 if (len <= 0)
 528                         break;
 529                 buffer++;
 530         }
 531 }
 532 
 533 static void setbrightness(struct gspca_dev *gspca_dev)
 534 {
 535         struct sd *sd = (struct sd *) gspca_dev;
 536 
 537         switch (sd->sensor) {
 538         case  SENSOR_OV6650:
 539         case  SENSOR_OV7630: {
 540                 __u8 i2cOV[] =
 541                         {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
 542 
 543                 /* change reg 0x06 */
 544                 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
 545                 i2cOV[3] = sd->brightness->val;
 546                 i2c_w(gspca_dev, i2cOV);
 547                 break;
 548         }
 549         case SENSOR_PAS106:
 550         case SENSOR_PAS202: {
 551                 __u8 i2cpbright[] =
 552                         {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
 553                 __u8 i2cpdoit[] =
 554                         {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
 555 
 556                 /* PAS106 uses reg 7 and 8 instead of b and c */
 557                 if (sd->sensor == SENSOR_PAS106) {
 558                         i2cpbright[2] = 7;
 559                         i2cpdoit[2] = 0x13;
 560                 }
 561 
 562                 if (sd->brightness->val < 127) {
 563                         /* change reg 0x0b, signreg */
 564                         i2cpbright[3] = 0x01;
 565                         /* set reg 0x0c, offset */
 566                         i2cpbright[4] = 127 - sd->brightness->val;
 567                 } else
 568                         i2cpbright[4] = sd->brightness->val - 127;
 569 
 570                 i2c_w(gspca_dev, i2cpbright);
 571                 i2c_w(gspca_dev, i2cpdoit);
 572                 break;
 573         }
 574         default:
 575                 break;
 576         }
 577 }
 578 
 579 static void setgain(struct gspca_dev *gspca_dev)
 580 {
 581         struct sd *sd = (struct sd *) gspca_dev;
 582         u8 gain = gspca_dev->gain->val;
 583 
 584         switch (sd->sensor) {
 585         case SENSOR_HV7131D: {
 586                 __u8 i2c[] =
 587                         {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
 588 
 589                 i2c[3] = 0x3f - gain;
 590                 i2c[4] = 0x3f - gain;
 591                 i2c[5] = 0x3f - gain;
 592 
 593                 i2c_w(gspca_dev, i2c);
 594                 break;
 595         }
 596         case SENSOR_TAS5110C:
 597         case SENSOR_TAS5130CXX: {
 598                 __u8 i2c[] =
 599                         {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
 600 
 601                 i2c[4] = 255 - gain;
 602                 i2c_w(gspca_dev, i2c);
 603                 break;
 604         }
 605         case SENSOR_TAS5110D: {
 606                 __u8 i2c[] = {
 607                         0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
 608                 gain = 255 - gain;
 609                 /* The bits in the register are the wrong way around!! */
 610                 i2c[3] |= (gain & 0x80) >> 7;
 611                 i2c[3] |= (gain & 0x40) >> 5;
 612                 i2c[3] |= (gain & 0x20) >> 3;
 613                 i2c[3] |= (gain & 0x10) >> 1;
 614                 i2c[3] |= (gain & 0x08) << 1;
 615                 i2c[3] |= (gain & 0x04) << 3;
 616                 i2c[3] |= (gain & 0x02) << 5;
 617                 i2c[3] |= (gain & 0x01) << 7;
 618                 i2c_w(gspca_dev, i2c);
 619                 break;
 620         }
 621         case SENSOR_OV6650:
 622         case SENSOR_OV7630: {
 623                 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
 624 
 625                 /*
 626                  * The ov7630's gain is weird, at 32 the gain drops to the
 627                  * same level as at 16, so skip 32-47 (of the 0-63 scale).
 628                  */
 629                 if (sd->sensor == SENSOR_OV7630 && gain >= 32)
 630                         gain += 16;
 631 
 632                 i2c[1] = sensor_data[sd->sensor].sensor_addr;
 633                 i2c[3] = gain;
 634                 i2c_w(gspca_dev, i2c);
 635                 break;
 636         }
 637         case SENSOR_PAS106:
 638         case SENSOR_PAS202: {
 639                 __u8 i2cpgain[] =
 640                         {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
 641                 __u8 i2cpcolorgain[] =
 642                         {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
 643                 __u8 i2cpdoit[] =
 644                         {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
 645 
 646                 /* PAS106 uses different regs (and has split green gains) */
 647                 if (sd->sensor == SENSOR_PAS106) {
 648                         i2cpgain[2] = 0x0e;
 649                         i2cpcolorgain[0] = 0xd0;
 650                         i2cpcolorgain[2] = 0x09;
 651                         i2cpdoit[2] = 0x13;
 652                 }
 653 
 654                 i2cpgain[3] = gain;
 655                 i2cpcolorgain[3] = gain >> 1;
 656                 i2cpcolorgain[4] = gain >> 1;
 657                 i2cpcolorgain[5] = gain >> 1;
 658                 i2cpcolorgain[6] = gain >> 1;
 659 
 660                 i2c_w(gspca_dev, i2cpgain);
 661                 i2c_w(gspca_dev, i2cpcolorgain);
 662                 i2c_w(gspca_dev, i2cpdoit);
 663                 break;
 664         }
 665         default:
 666                 if (sd->bridge == BRIDGE_103) {
 667                         u8 buf[3] = { gain, gain, gain }; /* R, G, B */
 668                         reg_w(gspca_dev, 0x05, buf, 3);
 669                 } else {
 670                         u8 buf[2];
 671                         buf[0] = gain << 4 | gain; /* Red and blue */
 672                         buf[1] = gain; /* Green */
 673                         reg_w(gspca_dev, 0x10, buf, 2);
 674                 }
 675         }
 676 }
 677 
 678 static void setexposure(struct gspca_dev *gspca_dev)
 679 {
 680         struct sd *sd = (struct sd *) gspca_dev;
 681 
 682         switch (sd->sensor) {
 683         case SENSOR_HV7131D: {
 684                 /* Note the datasheet wrongly says line mode exposure uses reg
 685                    0x26 and 0x27, testing has shown 0x25 + 0x26 */
 686                 __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
 687                 u16 reg = gspca_dev->exposure->val;
 688 
 689                 i2c[3] = reg >> 8;
 690                 i2c[4] = reg & 0xff;
 691                 i2c_w(gspca_dev, i2c);
 692                 break;
 693         }
 694         case SENSOR_TAS5110C:
 695         case SENSOR_TAS5110D: {
 696                 /* register 19's high nibble contains the sn9c10x clock divider
 697                    The high nibble configures the no fps according to the
 698                    formula: 60 / high_nibble. With a maximum of 30 fps */
 699                 u8 reg = gspca_dev->exposure->val;
 700 
 701                 reg = (reg << 4) | 0x0b;
 702                 reg_w(gspca_dev, 0x19, &reg, 1);
 703                 break;
 704         }
 705         case SENSOR_OV6650:
 706         case SENSOR_OV7630: {
 707                 /* The ov6650 / ov7630 have 2 registers which both influence
 708                    exposure, register 11, whose low nibble sets the nr off fps
 709                    according to: fps = 30 / (low_nibble + 1)
 710 
 711                    The fps configures the maximum exposure setting, but it is
 712                    possible to use less exposure then what the fps maximum
 713                    allows by setting register 10. register 10 configures the
 714                    actual exposure as quotient of the full exposure, with 0
 715                    being no exposure at all (not very useful) and reg10_max
 716                    being max exposure possible at that framerate.
 717 
 718                    The code maps our 0 - 510 ms exposure ctrl to these 2
 719                    registers, trying to keep fps as high as possible.
 720                 */
 721                 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
 722                 int reg10, reg11, reg10_max;
 723 
 724                 /* ov6645 datasheet says reg10_max is 9a, but that uses
 725                    tline * 2 * reg10 as formula for calculating texpo, the
 726                    ov6650 probably uses the same formula as the 7730 which uses
 727                    tline * 4 * reg10, which explains why the reg10max we've
 728                    found experimentally for the ov6650 is exactly half that of
 729                    the ov6645. The ov7630 datasheet says the max is 0x41. */
 730                 if (sd->sensor == SENSOR_OV6650) {
 731                         reg10_max = 0x4d;
 732                         i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
 733                 } else
 734                         reg10_max = 0x41;
 735 
 736                 reg11 = (15 * gspca_dev->exposure->val + 999) / 1000;
 737                 if (reg11 < 1)
 738                         reg11 = 1;
 739                 else if (reg11 > 16)
 740                         reg11 = 16;
 741 
 742                 /* In 640x480, if the reg11 has less than 4, the image is
 743                    unstable (the bridge goes into a higher compression mode
 744                    which we have not reverse engineered yet). */
 745                 if (gspca_dev->pixfmt.width == 640 && reg11 < 4)
 746                         reg11 = 4;
 747 
 748                 /* frame exposure time in ms = 1000 * reg11 / 30    ->
 749                 reg10 = (gspca_dev->exposure->val / 2) * reg10_max
 750                                 / (1000 * reg11 / 30) */
 751                 reg10 = (gspca_dev->exposure->val * 15 * reg10_max)
 752                                 / (1000 * reg11);
 753 
 754                 /* Don't allow this to get below 10 when using autogain, the
 755                    steps become very large (relatively) when below 10 causing
 756                    the image to oscillate from much too dark, to much too bright
 757                    and back again. */
 758                 if (gspca_dev->autogain->val && reg10 < 10)
 759                         reg10 = 10;
 760                 else if (reg10 > reg10_max)
 761                         reg10 = reg10_max;
 762 
 763                 /* Write reg 10 and reg11 low nibble */
 764                 i2c[1] = sensor_data[sd->sensor].sensor_addr;
 765                 i2c[3] = reg10;
 766                 i2c[4] |= reg11 - 1;
 767 
 768                 /* If register 11 didn't change, don't change it */
 769                 if (sd->reg11 == reg11)
 770                         i2c[0] = 0xa0;
 771 
 772                 i2c_w(gspca_dev, i2c);
 773                 if (gspca_dev->usb_err == 0)
 774                         sd->reg11 = reg11;
 775                 break;
 776         }
 777         case SENSOR_PAS202: {
 778                 __u8 i2cpframerate[] =
 779                         {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
 780                 __u8 i2cpexpo[] =
 781                         {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
 782                 const __u8 i2cpdoit[] =
 783                         {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
 784                 int framerate_ctrl;
 785 
 786                 /* The exposure knee for the autogain algorithm is 200
 787                    (100 ms / 10 fps on other sensors), for values below this
 788                    use the control for setting the partial frame expose time,
 789                    above that use variable framerate. This way we run at max
 790                    framerate (640x480@7.5 fps, 320x240@10fps) until the knee
 791                    is reached. Using the variable framerate control above 200
 792                    is better then playing around with both clockdiv + partial
 793                    frame exposure times (like we are doing with the ov chips),
 794                    as that sometimes leads to jumps in the exposure control,
 795                    which are bad for auto exposure. */
 796                 if (gspca_dev->exposure->val < 200) {
 797                         i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255)
 798                                                 / 200;
 799                         framerate_ctrl = 500;
 800                 } else {
 801                         /* The PAS202's exposure control goes from 0 - 4095,
 802                            but anything below 500 causes vsync issues, so scale
 803                            our 200-1023 to 500-4095 */
 804                         framerate_ctrl = (gspca_dev->exposure->val - 200)
 805                                                         * 1000 / 229 +  500;
 806                 }
 807 
 808                 i2cpframerate[3] = framerate_ctrl >> 6;
 809                 i2cpframerate[4] = framerate_ctrl & 0x3f;
 810                 i2c_w(gspca_dev, i2cpframerate);
 811                 i2c_w(gspca_dev, i2cpexpo);
 812                 i2c_w(gspca_dev, i2cpdoit);
 813                 break;
 814         }
 815         case SENSOR_PAS106: {
 816                 __u8 i2cpframerate[] =
 817                         {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
 818                 __u8 i2cpexpo[] =
 819                         {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
 820                 const __u8 i2cpdoit[] =
 821                         {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
 822                 int framerate_ctrl;
 823 
 824                 /* For values below 150 use partial frame exposure, above
 825                    that use framerate ctrl */
 826                 if (gspca_dev->exposure->val < 150) {
 827                         i2cpexpo[3] = 150 - gspca_dev->exposure->val;
 828                         framerate_ctrl = 300;
 829                 } else {
 830                         /* The PAS106's exposure control goes from 0 - 4095,
 831                            but anything below 300 causes vsync issues, so scale
 832                            our 150-1023 to 300-4095 */
 833                         framerate_ctrl = (gspca_dev->exposure->val - 150)
 834                                                 * 1000 / 230 + 300;
 835                 }
 836 
 837                 i2cpframerate[3] = framerate_ctrl >> 4;
 838                 i2cpframerate[4] = framerate_ctrl & 0x0f;
 839                 i2c_w(gspca_dev, i2cpframerate);
 840                 i2c_w(gspca_dev, i2cpexpo);
 841                 i2c_w(gspca_dev, i2cpdoit);
 842                 break;
 843         }
 844         default:
 845                 break;
 846         }
 847 }
 848 
 849 static void setfreq(struct gspca_dev *gspca_dev)
 850 {
 851         struct sd *sd = (struct sd *) gspca_dev;
 852 
 853         if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) {
 854                 /* Framerate adjust register for artificial light 50 hz flicker
 855                    compensation, for the ov6650 this is identical to ov6630
 856                    0x2b register, see ov6630 datasheet.
 857                    0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
 858                 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
 859                 switch (sd->plfreq->val) {
 860                 default:
 861 /*              case 0:                  * no filter*/
 862 /*              case 2:                  * 60 hz */
 863                         i2c[3] = 0;
 864                         break;
 865                 case 1:                 /* 50 hz */
 866                         i2c[3] = (sd->sensor == SENSOR_OV6650)
 867                                         ? 0x4f : 0x8a;
 868                         break;
 869                 }
 870                 i2c[1] = sensor_data[sd->sensor].sensor_addr;
 871                 i2c_w(gspca_dev, i2c);
 872         }
 873 }
 874 
 875 static void do_autogain(struct gspca_dev *gspca_dev)
 876 {
 877         struct sd *sd = (struct sd *) gspca_dev;
 878         int deadzone, desired_avg_lum, avg_lum;
 879 
 880         avg_lum = atomic_read(&sd->avg_lum);
 881         if (avg_lum == -1)
 882                 return;
 883 
 884         if (sd->autogain_ignore_frames > 0) {
 885                 sd->autogain_ignore_frames--;
 886                 return;
 887         }
 888 
 889         /* SIF / VGA sensors have a different autoexposure area and thus
 890            different avg_lum values for the same picture brightness */
 891         if (sensor_data[sd->sensor].flags & F_SIF) {
 892                 deadzone = 500;
 893                 /* SIF sensors tend to overexpose, so keep this small */
 894                 desired_avg_lum = 5000;
 895         } else {
 896                 deadzone = 1500;
 897                 desired_avg_lum = 13000;
 898         }
 899 
 900         if (sd->brightness)
 901                 desired_avg_lum = sd->brightness->val * desired_avg_lum / 127;
 902 
 903         if (gspca_dev->exposure->maximum < 500) {
 904                 if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
 905                                 desired_avg_lum, deadzone))
 906                         sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
 907         } else {
 908                 int gain_knee = (s32)gspca_dev->gain->maximum * 9 / 10;
 909                 if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum,
 910                                 deadzone, gain_knee, sd->exposure_knee))
 911                         sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
 912         }
 913 }
 914 
 915 /* this function is called at probe time */
 916 static int sd_config(struct gspca_dev *gspca_dev,
 917                         const struct usb_device_id *id)
 918 {
 919         struct sd *sd = (struct sd *) gspca_dev;
 920         struct cam *cam;
 921 
 922         reg_r(gspca_dev, 0x00);
 923         if (gspca_dev->usb_buf[0] != 0x10)
 924                 return -ENODEV;
 925 
 926         /* copy the webcam info from the device id */
 927         sd->sensor = id->driver_info >> 8;
 928         sd->bridge = id->driver_info & 0xff;
 929 
 930         cam = &gspca_dev->cam;
 931         if (!(sensor_data[sd->sensor].flags & F_SIF)) {
 932                 cam->cam_mode = vga_mode;
 933                 cam->nmodes = ARRAY_SIZE(vga_mode);
 934         } else {
 935                 cam->cam_mode = sif_mode;
 936                 cam->nmodes = ARRAY_SIZE(sif_mode);
 937         }
 938         cam->npkt = 36;                 /* 36 packets per ISOC message */
 939 
 940         return 0;
 941 }
 942 
 943 /* this function is called at probe and resume time */
 944 static int sd_init(struct gspca_dev *gspca_dev)
 945 {
 946         const __u8 stop = 0x09; /* Disable stream turn of LED */
 947 
 948         reg_w(gspca_dev, 0x01, &stop, 1);
 949 
 950         return gspca_dev->usb_err;
 951 }
 952 
 953 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
 954 {
 955         struct gspca_dev *gspca_dev =
 956                 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
 957         struct sd *sd = (struct sd *)gspca_dev;
 958 
 959         gspca_dev->usb_err = 0;
 960 
 961         if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) {
 962                 /* when switching to autogain set defaults to make sure
 963                    we are on a valid point of the autogain gain /
 964                    exposure knee graph, and give this change time to
 965                    take effect before doing autogain. */
 966                 gspca_dev->gain->val = gspca_dev->gain->default_value;
 967                 gspca_dev->exposure->val = gspca_dev->exposure->default_value;
 968                 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
 969         }
 970 
 971         if (!gspca_dev->streaming)
 972                 return 0;
 973 
 974         switch (ctrl->id) {
 975         case V4L2_CID_BRIGHTNESS:
 976                 setbrightness(gspca_dev);
 977                 break;
 978         case V4L2_CID_AUTOGAIN:
 979                 if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val))
 980                         setexposure(gspca_dev);
 981                 if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val))
 982                         setgain(gspca_dev);
 983                 break;
 984         case V4L2_CID_POWER_LINE_FREQUENCY:
 985                 setfreq(gspca_dev);
 986                 break;
 987         default:
 988                 return -EINVAL;
 989         }
 990         return gspca_dev->usb_err;
 991 }
 992 
 993 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
 994         .s_ctrl = sd_s_ctrl,
 995 };
 996 
 997 /* this function is called at probe time */
 998 static int sd_init_controls(struct gspca_dev *gspca_dev)
 999 {
1000         struct sd *sd = (struct sd *) gspca_dev;
1001         struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
1002 
1003         gspca_dev->vdev.ctrl_handler = hdl;
1004         v4l2_ctrl_handler_init(hdl, 5);
1005 
1006         if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 ||
1007             sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202)
1008                 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1009                                         V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);
1010 
1011         /* Gain range is sensor dependent */
1012         switch (sd->sensor) {
1013         case SENSOR_OV6650:
1014         case SENSOR_PAS106:
1015         case SENSOR_PAS202:
1016                 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1017                                         V4L2_CID_GAIN, 0, 31, 1, 15);
1018                 break;
1019         case SENSOR_OV7630:
1020                 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1021                                         V4L2_CID_GAIN, 0, 47, 1, 31);
1022                 break;
1023         case SENSOR_HV7131D:
1024                 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1025                                         V4L2_CID_GAIN, 0, 63, 1, 31);
1026                 break;
1027         case SENSOR_TAS5110C:
1028         case SENSOR_TAS5110D:
1029         case SENSOR_TAS5130CXX:
1030                 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1031                                         V4L2_CID_GAIN, 0, 255, 1, 127);
1032                 break;
1033         default:
1034                 if (sd->bridge == BRIDGE_103) {
1035                         gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1036                                                 V4L2_CID_GAIN, 0, 127, 1, 63);
1037                 } else {
1038                         gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1039                                                 V4L2_CID_GAIN, 0, 15, 1, 7);
1040                 }
1041         }
1042 
1043         /* Exposure range is sensor dependent, and not all have exposure */
1044         switch (sd->sensor) {
1045         case SENSOR_HV7131D:
1046                 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1047                                         V4L2_CID_EXPOSURE, 0, 8191, 1, 482);
1048                 sd->exposure_knee = 964;
1049                 break;
1050         case SENSOR_OV6650:
1051         case SENSOR_OV7630:
1052         case SENSOR_PAS106:
1053         case SENSOR_PAS202:
1054                 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1055                                         V4L2_CID_EXPOSURE, 0, 1023, 1, 66);
1056                 sd->exposure_knee = 200;
1057                 break;
1058         case SENSOR_TAS5110C:
1059         case SENSOR_TAS5110D:
1060                 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1061                                         V4L2_CID_EXPOSURE, 2, 15, 1, 2);
1062                 break;
1063         }
1064 
1065         if (gspca_dev->exposure) {
1066                 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1067                                                 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1068         }
1069 
1070         if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630)
1071                 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
1072                         V4L2_CID_POWER_LINE_FREQUENCY,
1073                         V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
1074                         V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1075 
1076         if (hdl->error) {
1077                 pr_err("Could not initialize controls\n");
1078                 return hdl->error;
1079         }
1080 
1081         if (gspca_dev->autogain)
1082                 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false);
1083 
1084         return 0;
1085 }
1086 
1087 /* -- start the camera -- */
1088 static int sd_start(struct gspca_dev *gspca_dev)
1089 {
1090         struct sd *sd = (struct sd *) gspca_dev;
1091         struct cam *cam = &gspca_dev->cam;
1092         int i, mode;
1093         __u8 regs[0x31];
1094 
1095         mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1096         /* Copy registers 0x01 - 0x19 from the template */
1097         memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
1098         /* Set the mode */
1099         regs[0x18] |= mode << 4;
1100 
1101         /* Set bridge gain to 1.0 */
1102         if (sd->bridge == BRIDGE_103) {
1103                 regs[0x05] = 0x20; /* Red */
1104                 regs[0x06] = 0x20; /* Green */
1105                 regs[0x07] = 0x20; /* Blue */
1106         } else {
1107                 regs[0x10] = 0x00; /* Red and blue */
1108                 regs[0x11] = 0x00; /* Green */
1109         }
1110 
1111         /* Setup pixel numbers and auto exposure window */
1112         if (sensor_data[sd->sensor].flags & F_SIF) {
1113                 regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1114                 regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1115                 regs[0x1c] = 0x02; /* AE H-start 64 */
1116                 regs[0x1d] = 0x02; /* AE V-start 64 */
1117                 regs[0x1e] = 0x09; /* AE H-end 288 */
1118                 regs[0x1f] = 0x07; /* AE V-end 224 */
1119         } else {
1120                 regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1121                 regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1122                 regs[0x1c] = 0x05; /* AE H-start 160 */
1123                 regs[0x1d] = 0x03; /* AE V-start 96 */
1124                 regs[0x1e] = 0x0f; /* AE H-end 480 */
1125                 regs[0x1f] = 0x0c; /* AE V-end 384 */
1126         }
1127 
1128         /* Setup the gamma table (only used with the sn9c103 bridge) */
1129         for (i = 0; i < 16; i++)
1130                 regs[0x20 + i] = i * 16;
1131         regs[0x20 + i] = 255;
1132 
1133         /* Special cases where some regs depend on mode or bridge */
1134         switch (sd->sensor) {
1135         case SENSOR_TAS5130CXX:
1136                 /* FIXME / TESTME
1137                    probably not mode specific at all most likely the upper
1138                    nibble of 0x19 is exposure (clock divider) just as with
1139                    the tas5110, we need someone to test this. */
1140                 regs[0x19] = mode ? 0x23 : 0x43;
1141                 break;
1142         case SENSOR_OV7630:
1143                 /* FIXME / TESTME for some reason with the 101/102 bridge the
1144                    clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1145                    Also the hstart needs to go from 1 to 2 when using a 103,
1146                    which is likely related. This does not seem right. */
1147                 if (sd->bridge == BRIDGE_103) {
1148                         regs[0x01] = 0x44; /* Select 24 Mhz clock */
1149                         regs[0x12] = 0x02; /* Set hstart to 2 */
1150                 }
1151                 break;
1152         case SENSOR_PAS202:
1153                 /* For some unknown reason we need to increase hstart by 1 on
1154                    the sn9c103, otherwise we get wrong colors (bayer shift). */
1155                 if (sd->bridge == BRIDGE_103)
1156                         regs[0x12] += 1;
1157                 break;
1158         }
1159         /* Disable compression when the raw bayer format has been selected */
1160         if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1161                 regs[0x18] &= ~0x80;
1162 
1163         /* Vga mode emulation on SIF sensor? */
1164         if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1165                 regs[0x12] += 16;       /* hstart adjust */
1166                 regs[0x13] += 24;       /* vstart adjust */
1167                 regs[0x15]  = 320 / 16; /* hsize */
1168                 regs[0x16]  = 240 / 16; /* vsize */
1169         }
1170 
1171         /* reg 0x01 bit 2 video transfert on */
1172         reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1173         /* reg 0x17 SensorClk enable inv Clk 0x60 */
1174         reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1175         /* Set the registers from the template */
1176         reg_w(gspca_dev, 0x01, &regs[0x01],
1177               (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1178 
1179         /* Init the sensor */
1180         i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1181                         sensor_data[sd->sensor].sensor_init_size);
1182 
1183         /* Mode / bridge specific sensor setup */
1184         switch (sd->sensor) {
1185         case SENSOR_PAS202: {
1186                 const __u8 i2cpclockdiv[] =
1187                         {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1188                 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1189                 if (mode)
1190                         i2c_w(gspca_dev, i2cpclockdiv);
1191                 break;
1192             }
1193         case SENSOR_OV7630:
1194                 /* FIXME / TESTME We should be able to handle this identical
1195                    for the 101/102 and the 103 case */
1196                 if (sd->bridge == BRIDGE_103) {
1197                         const __u8 i2c[] = { 0xa0, 0x21, 0x13,
1198                                              0x80, 0x00, 0x00, 0x00, 0x10 };
1199                         i2c_w(gspca_dev, i2c);
1200                 }
1201                 break;
1202         }
1203         /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1204         reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1205         /* compression register */
1206         reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1207         /* H_start */
1208         reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1209         /* V_START */
1210         reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1211         /* reset 0x17 SensorClk enable inv Clk 0x60 */
1212                                 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1213         reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1214         /*MCKSIZE ->3 */        /*fixme: not ov7630*/
1215         reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1216         /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1217         reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1218         /* Enable video transfert */
1219         reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1220         /* Compression */
1221         reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1222         msleep(20);
1223 
1224         sd->reg11 = -1;
1225 
1226         setgain(gspca_dev);
1227         setbrightness(gspca_dev);
1228         setexposure(gspca_dev);
1229         setfreq(gspca_dev);
1230 
1231         sd->frames_to_drop = 0;
1232         sd->autogain_ignore_frames = 0;
1233         gspca_dev->exp_too_high_cnt = 0;
1234         gspca_dev->exp_too_low_cnt = 0;
1235         atomic_set(&sd->avg_lum, -1);
1236         return gspca_dev->usb_err;
1237 }
1238 
1239 static void sd_stopN(struct gspca_dev *gspca_dev)
1240 {
1241         sd_init(gspca_dev);
1242 }
1243 
1244 static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1245 {
1246         struct sd *sd = (struct sd *) gspca_dev;
1247         int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1248 
1249         /* frames start with:
1250          *      ff ff 00 c4 c4 96       synchro
1251          *      00              (unknown)
1252          *      xx              (frame sequence / size / compression)
1253          *      (xx)            (idem - extra byte for sn9c103)
1254          *      ll mm           brightness sum inside auto exposure
1255          *      ll mm           brightness sum outside auto exposure
1256          *      (xx xx xx xx xx)        audio values for snc103
1257          */
1258         for (i = 0; i < len; i++) {
1259                 switch (sd->header_read) {
1260                 case 0:
1261                         if (data[i] == 0xff)
1262                                 sd->header_read++;
1263                         break;
1264                 case 1:
1265                         if (data[i] == 0xff)
1266                                 sd->header_read++;
1267                         else
1268                                 sd->header_read = 0;
1269                         break;
1270                 case 2:
1271                         if (data[i] == 0x00)
1272                                 sd->header_read++;
1273                         else if (data[i] != 0xff)
1274                                 sd->header_read = 0;
1275                         break;
1276                 case 3:
1277                         if (data[i] == 0xc4)
1278                                 sd->header_read++;
1279                         else if (data[i] == 0xff)
1280                                 sd->header_read = 1;
1281                         else
1282                                 sd->header_read = 0;
1283                         break;
1284                 case 4:
1285                         if (data[i] == 0xc4)
1286                                 sd->header_read++;
1287                         else if (data[i] == 0xff)
1288                                 sd->header_read = 1;
1289                         else
1290                                 sd->header_read = 0;
1291                         break;
1292                 case 5:
1293                         if (data[i] == 0x96)
1294                                 sd->header_read++;
1295                         else if (data[i] == 0xff)
1296                                 sd->header_read = 1;
1297                         else
1298                                 sd->header_read = 0;
1299                         break;
1300                 default:
1301                         sd->header[sd->header_read - 6] = data[i];
1302                         sd->header_read++;
1303                         if (sd->header_read == header_size) {
1304                                 sd->header_read = 0;
1305                                 return data + i + 1;
1306                         }
1307                 }
1308         }
1309         return NULL;
1310 }
1311 
1312 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1313                         u8 *data,                       /* isoc packet */
1314                         int len)                        /* iso packet length */
1315 {
1316         int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
1317         struct sd *sd = (struct sd *) gspca_dev;
1318         struct cam *cam = &gspca_dev->cam;
1319         u8 *sof;
1320 
1321         sof = find_sof(gspca_dev, data, len);
1322         if (sof) {
1323                 if (sd->bridge == BRIDGE_103) {
1324                         fr_h_sz = 18;
1325                         lum_offset = 3;
1326                 } else {
1327                         fr_h_sz = 12;
1328                         lum_offset = 2;
1329                 }
1330 
1331                 len_after_sof = len - (sof - data);
1332                 len = (sof - data) - fr_h_sz;
1333                 if (len < 0)
1334                         len = 0;
1335         }
1336 
1337         if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1338                 /* In raw mode we sometimes get some garbage after the frame
1339                    ignore this */
1340                 int used;
1341                 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1342 
1343                 used = gspca_dev->image_len;
1344                 if (used + len > size)
1345                         len = size - used;
1346         }
1347 
1348         gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1349 
1350         if (sof) {
1351                 int  lum = sd->header[lum_offset] +
1352                           (sd->header[lum_offset + 1] << 8);
1353 
1354                 /* When exposure changes midway a frame we
1355                    get a lum of 0 in this case drop 2 frames
1356                    as the frames directly after an exposure
1357                    change have an unstable image. Sometimes lum
1358                    *really* is 0 (cam used in low light with
1359                    low exposure setting), so do not drop frames
1360                    if the previous lum was 0 too. */
1361                 if (lum == 0 && sd->prev_avg_lum != 0) {
1362                         lum = -1;
1363                         sd->frames_to_drop = 2;
1364                         sd->prev_avg_lum = 0;
1365                 } else
1366                         sd->prev_avg_lum = lum;
1367                 atomic_set(&sd->avg_lum, lum);
1368 
1369                 if (sd->frames_to_drop)
1370                         sd->frames_to_drop--;
1371                 else
1372                         gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
1373 
1374                 gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
1375         }
1376 }
1377 
1378 #if IS_ENABLED(CONFIG_INPUT)
1379 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1380                         u8 *data,               /* interrupt packet data */
1381                         int len)                /* interrupt packet length */
1382 {
1383         int ret = -EINVAL;
1384 
1385         if (len == 1 && data[0] == 1) {
1386                 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1387                 input_sync(gspca_dev->input_dev);
1388                 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1389                 input_sync(gspca_dev->input_dev);
1390                 ret = 0;
1391         }
1392 
1393         return ret;
1394 }
1395 #endif
1396 
1397 /* sub-driver description */
1398 static const struct sd_desc sd_desc = {
1399         .name = MODULE_NAME,
1400         .config = sd_config,
1401         .init = sd_init,
1402         .init_controls = sd_init_controls,
1403         .start = sd_start,
1404         .stopN = sd_stopN,
1405         .pkt_scan = sd_pkt_scan,
1406         .dq_callback = do_autogain,
1407 #if IS_ENABLED(CONFIG_INPUT)
1408         .int_pkt_scan = sd_int_pkt_scan,
1409 #endif
1410 };
1411 
1412 /* -- module initialisation -- */
1413 #define SB(sensor, bridge) \
1414         .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1415 
1416 
1417 static const struct usb_device_id device_table[] = {
1418         {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1419         {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
1420         {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1421         {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1422         {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1423         {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1424         {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1425         {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1426         {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1427         {USB_DEVICE(0x0c45, 0x6027), SB(OV7630, 101)}, /* Genius Eye 310 */
1428         {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1429         {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1430         {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
1431         /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1432         {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1433         {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1434         {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1435         /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1436         /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1437         {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
1438         {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
1439         /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1440         {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1441         {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
1442         {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1443         {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1444         {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1445         {}
1446 };
1447 MODULE_DEVICE_TABLE(usb, device_table);
1448 
1449 /* -- device connect -- */
1450 static int sd_probe(struct usb_interface *intf,
1451                         const struct usb_device_id *id)
1452 {
1453         return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1454                                 THIS_MODULE);
1455 }
1456 
1457 static struct usb_driver sd_driver = {
1458         .name = MODULE_NAME,
1459         .id_table = device_table,
1460         .probe = sd_probe,
1461         .disconnect = gspca_disconnect,
1462 #ifdef CONFIG_PM
1463         .suspend = gspca_suspend,
1464         .resume = gspca_resume,
1465         .reset_resume = gspca_resume,
1466 #endif
1467 };
1468 
1469 module_usb_driver(sd_driver);

/* [<][>][^][v][top][bottom][index][help] */