root/drivers/media/radio/wl128x/fmdrv_common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fm_irq_call
  2. fm_irq_call_stage
  3. fm_irq_timeout_stage
  4. dump_tx_skb_data
  5. dump_rx_skb_data
  6. fmc_update_region_info
  7. recv_tasklet
  8. send_tasklet
  9. fm_send_cmd
  10. fmc_send_cmd
  11. check_cmdresp_status
  12. fm_irq_common_cmd_resp_helper
  13. int_timeout_handler
  14. fm_irq_send_flag_getcmd
  15. fm_irq_handle_flag_getcmd_resp
  16. fm_irq_handle_hw_malfunction
  17. fm_irq_handle_rds_start
  18. fm_irq_send_rdsdata_getcmd
  19. fm_rx_update_af_cache
  20. fm_rdsparse_swapbytes
  21. fm_irq_handle_rdsdata_getcmd_resp
  22. fm_irq_handle_rds_finish
  23. fm_irq_handle_tune_op_ended
  24. fm_irq_handle_power_enb
  25. fm_irq_handle_low_rssi_start
  26. fm_irq_afjump_set_pi
  27. fm_irq_handle_set_pi_resp
  28. fm_irq_afjump_set_pimask
  29. fm_irq_handle_set_pimask_resp
  30. fm_irq_afjump_setfreq
  31. fm_irq_handle_setfreq_resp
  32. fm_irq_afjump_enableint
  33. fm_irq_afjump_enableint_resp
  34. fm_irq_start_afjump
  35. fm_irq_handle_start_afjump_resp
  36. fm_irq_afjump_rd_freq
  37. fm_irq_afjump_rd_freq_resp
  38. fm_irq_handle_low_rssi_finish
  39. fm_irq_send_intmsk_cmd
  40. fm_irq_handle_intmsk_cmd_resp
  41. fmc_is_rds_data_available
  42. fmc_transfer_rds_from_internal_buff
  43. fmc_set_freq
  44. fmc_get_freq
  45. fmc_set_region
  46. fmc_set_mute_mode
  47. fmc_set_stereo_mono
  48. fmc_set_rds_mode
  49. fm_power_down
  50. fm_download_firmware
  51. load_default_rx_configuration
  52. fm_power_up
  53. fmc_set_mode
  54. fmc_get_mode
  55. fm_st_receive
  56. fm_st_reg_comp_cb
  57. fmc_prepare
  58. fmc_release
  59. fm_drv_init
  60. fm_drv_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  FM Driver for Connectivity chip of Texas Instruments.
   4  *
   5  *  This sub-module of FM driver is common for FM RX and TX
   6  *  functionality. This module is responsible for:
   7  *  1) Forming group of Channel-8 commands to perform particular
   8  *     functionality (eg., frequency set require more than
   9  *     one Channel-8 command to be sent to the chip).
  10  *  2) Sending each Channel-8 command to the chip and reading
  11  *     response back over Shared Transport.
  12  *  3) Managing TX and RX Queues and Tasklets.
  13  *  4) Handling FM Interrupt packet and taking appropriate action.
  14  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
  15  *     firmware files based on mode selection)
  16  *
  17  *  Copyright (C) 2011 Texas Instruments
  18  *  Author: Raja Mani <raja_mani@ti.com>
  19  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
  20  */
  21 
  22 #include <linux/module.h>
  23 #include <linux/firmware.h>
  24 #include <linux/delay.h>
  25 #include "fmdrv.h"
  26 #include "fmdrv_v4l2.h"
  27 #include "fmdrv_common.h"
  28 #include <linux/ti_wilink_st.h>
  29 #include "fmdrv_rx.h"
  30 #include "fmdrv_tx.h"
  31 
  32 /* Region info */
  33 static struct region_info region_configs[] = {
  34         /* Europe/US */
  35         {
  36          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
  37          .bot_freq = 87500,     /* 87.5 MHz */
  38          .top_freq = 108000,    /* 108 MHz */
  39          .fm_band = 0,
  40          },
  41         /* Japan */
  42         {
  43          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
  44          .bot_freq = 76000,     /* 76 MHz */
  45          .top_freq = 90000,     /* 90 MHz */
  46          .fm_band = 1,
  47          },
  48 };
  49 
  50 /* Band selection */
  51 static u8 default_radio_region; /* Europe/US */
  52 module_param(default_radio_region, byte, 0);
  53 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
  54 
  55 /* RDS buffer blocks */
  56 static u32 default_rds_buf = 300;
  57 module_param(default_rds_buf, uint, 0444);
  58 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
  59 
  60 /* Radio Nr */
  61 static u32 radio_nr = -1;
  62 module_param(radio_nr, int, 0444);
  63 MODULE_PARM_DESC(radio_nr, "Radio Nr");
  64 
  65 /* FM irq handlers forward declaration */
  66 static void fm_irq_send_flag_getcmd(struct fmdev *);
  67 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
  68 static void fm_irq_handle_hw_malfunction(struct fmdev *);
  69 static void fm_irq_handle_rds_start(struct fmdev *);
  70 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
  71 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
  72 static void fm_irq_handle_rds_finish(struct fmdev *);
  73 static void fm_irq_handle_tune_op_ended(struct fmdev *);
  74 static void fm_irq_handle_power_enb(struct fmdev *);
  75 static void fm_irq_handle_low_rssi_start(struct fmdev *);
  76 static void fm_irq_afjump_set_pi(struct fmdev *);
  77 static void fm_irq_handle_set_pi_resp(struct fmdev *);
  78 static void fm_irq_afjump_set_pimask(struct fmdev *);
  79 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
  80 static void fm_irq_afjump_setfreq(struct fmdev *);
  81 static void fm_irq_handle_setfreq_resp(struct fmdev *);
  82 static void fm_irq_afjump_enableint(struct fmdev *);
  83 static void fm_irq_afjump_enableint_resp(struct fmdev *);
  84 static void fm_irq_start_afjump(struct fmdev *);
  85 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
  86 static void fm_irq_afjump_rd_freq(struct fmdev *);
  87 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
  88 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
  89 static void fm_irq_send_intmsk_cmd(struct fmdev *);
  90 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
  91 
  92 /*
  93  * When FM common module receives interrupt packet, following handlers
  94  * will be executed one after another to service the interrupt(s)
  95  */
  96 enum fmc_irq_handler_index {
  97         FM_SEND_FLAG_GETCMD_IDX,
  98         FM_HANDLE_FLAG_GETCMD_RESP_IDX,
  99 
 100         /* HW malfunction irq handler */
 101         FM_HW_MAL_FUNC_IDX,
 102 
 103         /* RDS threshold reached irq handler */
 104         FM_RDS_START_IDX,
 105         FM_RDS_SEND_RDS_GETCMD_IDX,
 106         FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
 107         FM_RDS_FINISH_IDX,
 108 
 109         /* Tune operation ended irq handler */
 110         FM_HW_TUNE_OP_ENDED_IDX,
 111 
 112         /* TX power enable irq handler */
 113         FM_HW_POWER_ENB_IDX,
 114 
 115         /* Low RSSI irq handler */
 116         FM_LOW_RSSI_START_IDX,
 117         FM_AF_JUMP_SETPI_IDX,
 118         FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
 119         FM_AF_JUMP_SETPI_MASK_IDX,
 120         FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
 121         FM_AF_JUMP_SET_AF_FREQ_IDX,
 122         FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
 123         FM_AF_JUMP_ENABLE_INT_IDX,
 124         FM_AF_JUMP_ENABLE_INT_RESP_IDX,
 125         FM_AF_JUMP_START_AFJUMP_IDX,
 126         FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
 127         FM_AF_JUMP_RD_FREQ_IDX,
 128         FM_AF_JUMP_RD_FREQ_RESP_IDX,
 129         FM_LOW_RSSI_FINISH_IDX,
 130 
 131         /* Interrupt process post action */
 132         FM_SEND_INTMSK_CMD_IDX,
 133         FM_HANDLE_INTMSK_CMD_RESP_IDX,
 134 };
 135 
 136 /* FM interrupt handler table */
 137 static int_handler_prototype int_handler_table[] = {
 138         fm_irq_send_flag_getcmd,
 139         fm_irq_handle_flag_getcmd_resp,
 140         fm_irq_handle_hw_malfunction,
 141         fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
 142         fm_irq_send_rdsdata_getcmd,
 143         fm_irq_handle_rdsdata_getcmd_resp,
 144         fm_irq_handle_rds_finish,
 145         fm_irq_handle_tune_op_ended,
 146         fm_irq_handle_power_enb, /* TX power enable irq handler */
 147         fm_irq_handle_low_rssi_start,
 148         fm_irq_afjump_set_pi,
 149         fm_irq_handle_set_pi_resp,
 150         fm_irq_afjump_set_pimask,
 151         fm_irq_handle_set_pimask_resp,
 152         fm_irq_afjump_setfreq,
 153         fm_irq_handle_setfreq_resp,
 154         fm_irq_afjump_enableint,
 155         fm_irq_afjump_enableint_resp,
 156         fm_irq_start_afjump,
 157         fm_irq_handle_start_afjump_resp,
 158         fm_irq_afjump_rd_freq,
 159         fm_irq_afjump_rd_freq_resp,
 160         fm_irq_handle_low_rssi_finish,
 161         fm_irq_send_intmsk_cmd, /* Interrupt process post action */
 162         fm_irq_handle_intmsk_cmd_resp
 163 };
 164 
 165 static long (*g_st_write) (struct sk_buff *skb);
 166 static struct completion wait_for_fmdrv_reg_comp;
 167 
 168 static inline void fm_irq_call(struct fmdev *fmdev)
 169 {
 170         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
 171 }
 172 
 173 /* Continue next function in interrupt handler table */
 174 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
 175 {
 176         fmdev->irq_info.stage = stage;
 177         fm_irq_call(fmdev);
 178 }
 179 
 180 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
 181 {
 182         fmdev->irq_info.stage = stage;
 183         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
 184 }
 185 
 186 #ifdef FM_DUMP_TXRX_PKT
 187  /* To dump outgoing FM Channel-8 packets */
 188 inline void dump_tx_skb_data(struct sk_buff *skb)
 189 {
 190         int len, len_org;
 191         u8 index;
 192         struct fm_cmd_msg_hdr *cmd_hdr;
 193 
 194         cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
 195         printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
 196                fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
 197                cmd_hdr->len, cmd_hdr->op,
 198                cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
 199 
 200         len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
 201         if (len_org > 0) {
 202                 printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
 203                 len = min(len_org, 14);
 204                 for (index = 0; index < len; index++)
 205                         printk(KERN_CONT "%x ",
 206                                skb->data[FM_CMD_MSG_HDR_SIZE + index]);
 207                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
 208         }
 209         printk(KERN_CONT "\n");
 210 }
 211 
 212  /* To dump incoming FM Channel-8 packets */
 213 inline void dump_rx_skb_data(struct sk_buff *skb)
 214 {
 215         int len, len_org;
 216         u8 index;
 217         struct fm_event_msg_hdr *evt_hdr;
 218 
 219         evt_hdr = (struct fm_event_msg_hdr *)skb->data;
 220         printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
 221                evt_hdr->hdr, evt_hdr->len,
 222                evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
 223                (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
 224 
 225         len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
 226         if (len_org > 0) {
 227                 printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
 228                 len = min(len_org, 14);
 229                 for (index = 0; index < len; index++)
 230                         printk(KERN_CONT "%x ",
 231                                skb->data[FM_EVT_MSG_HDR_SIZE + index]);
 232                 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
 233         }
 234         printk(KERN_CONT "\n");
 235 }
 236 #endif
 237 
 238 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
 239 {
 240         fmdev->rx.region = region_configs[region_to_set];
 241 }
 242 
 243 /*
 244  * FM common sub-module will schedule this tasklet whenever it receives
 245  * FM packet from ST driver.
 246  */
 247 static void recv_tasklet(unsigned long arg)
 248 {
 249         struct fmdev *fmdev;
 250         struct fm_irq *irq_info;
 251         struct fm_event_msg_hdr *evt_hdr;
 252         struct sk_buff *skb;
 253         u8 num_fm_hci_cmds;
 254         unsigned long flags;
 255 
 256         fmdev = (struct fmdev *)arg;
 257         irq_info = &fmdev->irq_info;
 258         /* Process all packets in the RX queue */
 259         while ((skb = skb_dequeue(&fmdev->rx_q))) {
 260                 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
 261                         fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
 262                               skb,
 263                               skb->len, sizeof(struct fm_event_msg_hdr));
 264                         kfree_skb(skb);
 265                         continue;
 266                 }
 267 
 268                 evt_hdr = (void *)skb->data;
 269                 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
 270 
 271                 /* FM interrupt packet? */
 272                 if (evt_hdr->op == FM_INTERRUPT) {
 273                         /* FM interrupt handler started already? */
 274                         if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
 275                                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
 276                                 if (irq_info->stage != 0) {
 277                                         fmerr("Inval stage resetting to zero\n");
 278                                         irq_info->stage = 0;
 279                                 }
 280 
 281                                 /*
 282                                  * Execute first function in interrupt handler
 283                                  * table.
 284                                  */
 285                                 irq_info->handlers[irq_info->stage](fmdev);
 286                         } else {
 287                                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
 288                         }
 289                         kfree_skb(skb);
 290                 }
 291                 /* Anyone waiting for this with completion handler? */
 292                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
 293 
 294                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
 295                         fmdev->resp_skb = skb;
 296                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
 297                         complete(fmdev->resp_comp);
 298 
 299                         fmdev->resp_comp = NULL;
 300                         atomic_set(&fmdev->tx_cnt, 1);
 301                 }
 302                 /* Is this for interrupt handler? */
 303                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
 304                         if (fmdev->resp_skb != NULL)
 305                                 fmerr("Response SKB ptr not NULL\n");
 306 
 307                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
 308                         fmdev->resp_skb = skb;
 309                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
 310 
 311                         /* Execute interrupt handler where state index points */
 312                         irq_info->handlers[irq_info->stage](fmdev);
 313 
 314                         kfree_skb(skb);
 315                         atomic_set(&fmdev->tx_cnt, 1);
 316                 } else {
 317                         fmerr("Nobody claimed SKB(%p),purging\n", skb);
 318                 }
 319 
 320                 /*
 321                  * Check flow control field. If Num_FM_HCI_Commands field is
 322                  * not zero, schedule FM TX tasklet.
 323                  */
 324                 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
 325                         if (!skb_queue_empty(&fmdev->tx_q))
 326                                 tasklet_schedule(&fmdev->tx_task);
 327         }
 328 }
 329 
 330 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
 331 static void send_tasklet(unsigned long arg)
 332 {
 333         struct fmdev *fmdev;
 334         struct sk_buff *skb;
 335         int len;
 336 
 337         fmdev = (struct fmdev *)arg;
 338 
 339         if (!atomic_read(&fmdev->tx_cnt))
 340                 return;
 341 
 342         /* Check, is there any timeout happened to last transmitted packet */
 343         if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
 344                 fmerr("TX timeout occurred\n");
 345                 atomic_set(&fmdev->tx_cnt, 1);
 346         }
 347 
 348         /* Send queued FM TX packets */
 349         skb = skb_dequeue(&fmdev->tx_q);
 350         if (!skb)
 351                 return;
 352 
 353         atomic_dec(&fmdev->tx_cnt);
 354         fmdev->pre_op = fm_cb(skb)->fm_op;
 355 
 356         if (fmdev->resp_comp != NULL)
 357                 fmerr("Response completion handler is not NULL\n");
 358 
 359         fmdev->resp_comp = fm_cb(skb)->completion;
 360 
 361         /* Write FM packet to ST driver */
 362         len = g_st_write(skb);
 363         if (len < 0) {
 364                 kfree_skb(skb);
 365                 fmdev->resp_comp = NULL;
 366                 fmerr("TX tasklet failed to send skb(%p)\n", skb);
 367                 atomic_set(&fmdev->tx_cnt, 1);
 368         } else {
 369                 fmdev->last_tx_jiffies = jiffies;
 370         }
 371 }
 372 
 373 /*
 374  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
 375  * transmission
 376  */
 377 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
 378                 int payload_len, struct completion *wait_completion)
 379 {
 380         struct sk_buff *skb;
 381         struct fm_cmd_msg_hdr *hdr;
 382         int size;
 383 
 384         if (fm_op >= FM_INTERRUPT) {
 385                 fmerr("Invalid fm opcode - %d\n", fm_op);
 386                 return -EINVAL;
 387         }
 388         if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
 389                 fmerr("Payload data is NULL during fw download\n");
 390                 return -EINVAL;
 391         }
 392         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
 393                 size =
 394                     FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
 395         else
 396                 size = payload_len;
 397 
 398         skb = alloc_skb(size, GFP_ATOMIC);
 399         if (!skb) {
 400                 fmerr("No memory to create new SKB\n");
 401                 return -ENOMEM;
 402         }
 403         /*
 404          * Don't fill FM header info for the commands which come from
 405          * FM firmware file.
 406          */
 407         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
 408                         test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
 409                 /* Fill command header info */
 410                 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
 411                 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
 412 
 413                 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
 414                 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
 415 
 416                 /* FM opcode */
 417                 hdr->op = fm_op;
 418 
 419                 /* read/write type */
 420                 hdr->rd_wr = type;
 421                 hdr->dlen = payload_len;
 422                 fm_cb(skb)->fm_op = fm_op;
 423 
 424                 /*
 425                  * If firmware download has finished and the command is
 426                  * not a read command then payload is != NULL - a write
 427                  * command with u16 payload - convert to be16
 428                  */
 429                 if (payload != NULL)
 430                         *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
 431 
 432         } else if (payload != NULL) {
 433                 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
 434         }
 435         if (payload != NULL)
 436                 skb_put_data(skb, payload, payload_len);
 437 
 438         fm_cb(skb)->completion = wait_completion;
 439         skb_queue_tail(&fmdev->tx_q, skb);
 440         tasklet_schedule(&fmdev->tx_task);
 441 
 442         return 0;
 443 }
 444 
 445 /* Sends FM Channel-8 command to the chip and waits for the response */
 446 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
 447                 unsigned int payload_len, void *response, int *response_len)
 448 {
 449         struct sk_buff *skb;
 450         struct fm_event_msg_hdr *evt_hdr;
 451         unsigned long flags;
 452         int ret;
 453 
 454         init_completion(&fmdev->maintask_comp);
 455         ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
 456                             &fmdev->maintask_comp);
 457         if (ret)
 458                 return ret;
 459 
 460         if (!wait_for_completion_timeout(&fmdev->maintask_comp,
 461                                          FM_DRV_TX_TIMEOUT)) {
 462                 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
 463                            jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
 464                 return -ETIMEDOUT;
 465         }
 466         if (!fmdev->resp_skb) {
 467                 fmerr("Response SKB is missing\n");
 468                 return -EFAULT;
 469         }
 470         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
 471         skb = fmdev->resp_skb;
 472         fmdev->resp_skb = NULL;
 473         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
 474 
 475         evt_hdr = (void *)skb->data;
 476         if (evt_hdr->status != 0) {
 477                 fmerr("Received event pkt status(%d) is not zero\n",
 478                            evt_hdr->status);
 479                 kfree_skb(skb);
 480                 return -EIO;
 481         }
 482         /* Send response data to caller */
 483         if (response != NULL && response_len != NULL && evt_hdr->dlen &&
 484             evt_hdr->dlen <= payload_len) {
 485                 /* Skip header info and copy only response data */
 486                 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
 487                 memcpy(response, skb->data, evt_hdr->dlen);
 488                 *response_len = evt_hdr->dlen;
 489         } else if (response_len != NULL && evt_hdr->dlen == 0) {
 490                 *response_len = 0;
 491         }
 492         kfree_skb(skb);
 493 
 494         return 0;
 495 }
 496 
 497 /* --- Helper functions used in FM interrupt handlers ---*/
 498 static inline int check_cmdresp_status(struct fmdev *fmdev,
 499                 struct sk_buff **skb)
 500 {
 501         struct fm_event_msg_hdr *fm_evt_hdr;
 502         unsigned long flags;
 503 
 504         del_timer(&fmdev->irq_info.timer);
 505 
 506         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
 507         *skb = fmdev->resp_skb;
 508         fmdev->resp_skb = NULL;
 509         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
 510 
 511         fm_evt_hdr = (void *)(*skb)->data;
 512         if (fm_evt_hdr->status != 0) {
 513                 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
 514                                 fm_evt_hdr->op);
 515 
 516                 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
 517                 return -1;
 518         }
 519 
 520         return 0;
 521 }
 522 
 523 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
 524 {
 525         struct sk_buff *skb;
 526 
 527         if (!check_cmdresp_status(fmdev, &skb))
 528                 fm_irq_call_stage(fmdev, stage);
 529 }
 530 
 531 /*
 532  * Interrupt process timeout handler.
 533  * One of the irq handler did not get proper response from the chip. So take
 534  * recovery action here. FM interrupts are disabled in the beginning of
 535  * interrupt process. Therefore reset stage index to re-enable default
 536  * interrupts. So that next interrupt will be processed as usual.
 537  */
 538 static void int_timeout_handler(struct timer_list *t)
 539 {
 540         struct fmdev *fmdev;
 541         struct fm_irq *fmirq;
 542 
 543         fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
 544         fmdev = from_timer(fmdev, t, irq_info.timer);
 545         fmirq = &fmdev->irq_info;
 546         fmirq->retry++;
 547 
 548         if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
 549                 /* Stop recovery action (interrupt reenable process) and
 550                  * reset stage index & retry count values */
 551                 fmirq->stage = 0;
 552                 fmirq->retry = 0;
 553                 fmerr("Recovery action failed duringirq processing, max retry reached\n");
 554                 return;
 555         }
 556         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
 557 }
 558 
 559 /* --------- FM interrupt handlers ------------*/
 560 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
 561 {
 562         u16 flag;
 563 
 564         /* Send FLAG_GET command , to know the source of interrupt */
 565         if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
 566                 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
 567 }
 568 
 569 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
 570 {
 571         struct sk_buff *skb;
 572         struct fm_event_msg_hdr *fm_evt_hdr;
 573 
 574         if (check_cmdresp_status(fmdev, &skb))
 575                 return;
 576 
 577         fm_evt_hdr = (void *)skb->data;
 578         if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
 579                 return;
 580 
 581         /* Skip header info and copy only response data */
 582         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
 583         memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
 584 
 585         fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
 586         fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
 587 
 588         /* Continue next function in interrupt handler table */
 589         fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
 590 }
 591 
 592 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
 593 {
 594         if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
 595                 fmerr("irq: HW MAL int received - do nothing\n");
 596 
 597         /* Continue next function in interrupt handler table */
 598         fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
 599 }
 600 
 601 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
 602 {
 603         if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
 604                 fmdbg("irq: rds threshold reached\n");
 605                 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
 606         } else {
 607                 /* Continue next function in interrupt handler table */
 608                 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
 609         }
 610 
 611         fm_irq_call(fmdev);
 612 }
 613 
 614 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
 615 {
 616         /* Send the command to read RDS data from the chip */
 617         if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
 618                             (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
 619                 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
 620 }
 621 
 622 /* Keeps track of current RX channel AF (Alternate Frequency) */
 623 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
 624 {
 625         struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
 626         u8 reg_idx = fmdev->rx.region.fm_band;
 627         u8 index;
 628         u32 freq;
 629 
 630         /* First AF indicates the number of AF follows. Reset the list */
 631         if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
 632                 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
 633                 fmdev->rx.stat_info.afcache_size = 0;
 634                 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
 635                 return;
 636         }
 637 
 638         if (af < FM_RDS_MIN_AF)
 639                 return;
 640         if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
 641                 return;
 642         if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
 643                 return;
 644 
 645         freq = fmdev->rx.region.bot_freq + (af * 100);
 646         if (freq == fmdev->rx.freq) {
 647                 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
 648                                 fmdev->rx.freq, freq);
 649                 return;
 650         }
 651         /* Do check in AF cache */
 652         for (index = 0; index < stat_info->afcache_size; index++) {
 653                 if (stat_info->af_cache[index] == freq)
 654                         break;
 655         }
 656         /* Reached the limit of the list - ignore the next AF */
 657         if (index == stat_info->af_list_max) {
 658                 fmdbg("AF cache is full\n");
 659                 return;
 660         }
 661         /*
 662          * If we reached the end of the list then this AF is not
 663          * in the list - add it.
 664          */
 665         if (index == stat_info->afcache_size) {
 666                 fmdbg("Storing AF %d to cache index %d\n", freq, index);
 667                 stat_info->af_cache[index] = freq;
 668                 stat_info->afcache_size++;
 669         }
 670 }
 671 
 672 /*
 673  * Converts RDS buffer data from big endian format
 674  * to little endian format.
 675  */
 676 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
 677                 struct fm_rdsdata_format *rds_format)
 678 {
 679         u8 index = 0;
 680         u8 *rds_buff;
 681 
 682         /*
 683          * Since in Orca the 2 RDS Data bytes are in little endian and
 684          * in Dolphin they are in big endian, the parsing of the RDS data
 685          * is chip dependent
 686          */
 687         if (fmdev->asci_id != 0x6350) {
 688                 rds_buff = &rds_format->data.groupdatabuff.buff[0];
 689                 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
 690                         swap(rds_buff[index], rds_buff[index + 1]);
 691                         index += 2;
 692                 }
 693         }
 694 }
 695 
 696 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
 697 {
 698         struct sk_buff *skb;
 699         struct fm_rdsdata_format rds_fmt;
 700         struct fm_rds *rds = &fmdev->rx.rds;
 701         unsigned long group_idx, flags;
 702         u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
 703         u8 type, blk_idx;
 704         u16 cur_picode;
 705         u32 rds_len;
 706 
 707         if (check_cmdresp_status(fmdev, &skb))
 708                 return;
 709 
 710         /* Skip header info */
 711         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
 712         rds_data = skb->data;
 713         rds_len = skb->len;
 714 
 715         /* Parse the RDS data */
 716         while (rds_len >= FM_RDS_BLK_SIZE) {
 717                 meta_data = rds_data[2];
 718                 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
 719                 type = (meta_data & 0x07);
 720 
 721                 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
 722                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
 723                 fmdbg("Block index:%d(%s)\n", blk_idx,
 724                            (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
 725 
 726                 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
 727                         break;
 728 
 729                 if (blk_idx > FM_RDS_BLK_IDX_D) {
 730                         fmdbg("Block sequence mismatch\n");
 731                         rds->last_blk_idx = -1;
 732                         break;
 733                 }
 734 
 735                 /* Skip checkword (control) byte and copy only data byte */
 736                 memcpy(&rds_fmt.data.groupdatabuff.
 737                                 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
 738                                 rds_data, (FM_RDS_BLK_SIZE - 1));
 739 
 740                 rds->last_blk_idx = blk_idx;
 741 
 742                 /* If completed a whole group then handle it */
 743                 if (blk_idx == FM_RDS_BLK_IDX_D) {
 744                         fmdbg("Good block received\n");
 745                         fm_rdsparse_swapbytes(fmdev, &rds_fmt);
 746 
 747                         /*
 748                          * Extract PI code and store in local cache.
 749                          * We need this during AF switch processing.
 750                          */
 751                         cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
 752                         if (fmdev->rx.stat_info.picode != cur_picode)
 753                                 fmdev->rx.stat_info.picode = cur_picode;
 754 
 755                         fmdbg("picode:%d\n", cur_picode);
 756 
 757                         group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
 758                         fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
 759                                         (group_idx % 2) ? "B" : "A");
 760 
 761                         group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
 762                         if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
 763                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
 764                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
 765                         }
 766                 }
 767                 rds_len -= FM_RDS_BLK_SIZE;
 768                 rds_data += FM_RDS_BLK_SIZE;
 769         }
 770 
 771         /* Copy raw rds data to internal rds buffer */
 772         rds_data = skb->data;
 773         rds_len = skb->len;
 774 
 775         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
 776         while (rds_len > 0) {
 777                 /*
 778                  * Fill RDS buffer as per V4L2 specification.
 779                  * Store control byte
 780                  */
 781                 type = (rds_data[2] & 0x07);
 782                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
 783                 tmpbuf[2] = blk_idx;    /* Offset name */
 784                 tmpbuf[2] |= blk_idx << 3;      /* Received offset */
 785 
 786                 /* Store data byte */
 787                 tmpbuf[0] = rds_data[0];
 788                 tmpbuf[1] = rds_data[1];
 789 
 790                 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
 791                 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
 792 
 793                 /* Check for overflow & start over */
 794                 if (rds->wr_idx == rds->rd_idx) {
 795                         fmdbg("RDS buffer overflow\n");
 796                         rds->wr_idx = 0;
 797                         rds->rd_idx = 0;
 798                         break;
 799                 }
 800                 rds_len -= FM_RDS_BLK_SIZE;
 801                 rds_data += FM_RDS_BLK_SIZE;
 802         }
 803         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
 804 
 805         /* Wakeup read queue */
 806         if (rds->wr_idx != rds->rd_idx)
 807                 wake_up_interruptible(&rds->read_queue);
 808 
 809         fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
 810 }
 811 
 812 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
 813 {
 814         fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
 815 }
 816 
 817 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
 818 {
 819         if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
 820             irq_info.mask) {
 821                 fmdbg("irq: tune ended/bandlimit reached\n");
 822                 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
 823                         fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
 824                 } else {
 825                         complete(&fmdev->maintask_comp);
 826                         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
 827                 }
 828         } else
 829                 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
 830 
 831         fm_irq_call(fmdev);
 832 }
 833 
 834 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
 835 {
 836         if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
 837                 fmdbg("irq: Power Enabled/Disabled\n");
 838                 complete(&fmdev->maintask_comp);
 839         }
 840 
 841         fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
 842 }
 843 
 844 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
 845 {
 846         if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
 847             (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
 848             (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
 849             (fmdev->rx.stat_info.afcache_size != 0)) {
 850                 fmdbg("irq: rssi level has fallen below threshold level\n");
 851 
 852                 /* Disable further low RSSI interrupts */
 853                 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
 854 
 855                 fmdev->rx.afjump_idx = 0;
 856                 fmdev->rx.freq_before_jump = fmdev->rx.freq;
 857                 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
 858         } else {
 859                 /* Continue next function in interrupt handler table */
 860                 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
 861         }
 862 
 863         fm_irq_call(fmdev);
 864 }
 865 
 866 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
 867 {
 868         u16 payload;
 869 
 870         /* Set PI code - must be updated if the AF list is not empty */
 871         payload = fmdev->rx.stat_info.picode;
 872         if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
 873                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
 874 }
 875 
 876 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
 877 {
 878         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
 879 }
 880 
 881 /*
 882  * Set PI mask.
 883  * 0xFFFF = Enable PI code matching
 884  * 0x0000 = Disable PI code matching
 885  */
 886 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
 887 {
 888         u16 payload;
 889 
 890         payload = 0x0000;
 891         if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
 892                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
 893 }
 894 
 895 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
 896 {
 897         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
 898 }
 899 
 900 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
 901 {
 902         u16 frq_index;
 903         u16 payload;
 904 
 905         fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
 906         frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
 907              fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
 908 
 909         payload = frq_index;
 910         if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
 911                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
 912 }
 913 
 914 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
 915 {
 916         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
 917 }
 918 
 919 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
 920 {
 921         u16 payload;
 922 
 923         /* Enable FR (tuning operation ended) interrupt */
 924         payload = FM_FR_EVENT;
 925         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
 926                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
 927 }
 928 
 929 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
 930 {
 931         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
 932 }
 933 
 934 static void fm_irq_start_afjump(struct fmdev *fmdev)
 935 {
 936         u16 payload;
 937 
 938         payload = FM_TUNER_AF_JUMP_MODE;
 939         if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
 940                         sizeof(payload), NULL))
 941                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
 942 }
 943 
 944 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
 945 {
 946         struct sk_buff *skb;
 947 
 948         if (check_cmdresp_status(fmdev, &skb))
 949                 return;
 950 
 951         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
 952         set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
 953         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
 954 }
 955 
 956 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
 957 {
 958         u16 payload;
 959 
 960         if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
 961                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
 962 }
 963 
 964 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
 965 {
 966         struct sk_buff *skb;
 967         u16 read_freq;
 968         u32 curr_freq, jumped_freq;
 969 
 970         if (check_cmdresp_status(fmdev, &skb))
 971                 return;
 972 
 973         /* Skip header info and copy only response data */
 974         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
 975         memcpy(&read_freq, skb->data, sizeof(read_freq));
 976         read_freq = be16_to_cpu((__force __be16)read_freq);
 977         curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
 978 
 979         jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
 980 
 981         /* If the frequency was changed the jump succeeded */
 982         if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
 983                 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
 984                 fmdev->rx.freq = curr_freq;
 985                 fm_rx_reset_rds_cache(fmdev);
 986 
 987                 /* AF feature is on, enable low level RSSI interrupt */
 988                 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
 989                         fmdev->irq_info.mask |= FM_LEV_EVENT;
 990 
 991                 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
 992         } else {                /* jump to the next freq in the AF list */
 993                 fmdev->rx.afjump_idx++;
 994 
 995                 /* If we reached the end of the list - stop searching */
 996                 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
 997                         fmdbg("AF switch processing failed\n");
 998                         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
 999                 } else {        /* AF List is not over - try next one */
1000 
1001                         fmdbg("Trying next freq in AF cache\n");
1002                         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1003                 }
1004         }
1005         fm_irq_call(fmdev);
1006 }
1007 
1008 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1009 {
1010         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1011 }
1012 
1013 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1014 {
1015         u16 payload;
1016 
1017         /* Re-enable FM interrupts */
1018         payload = fmdev->irq_info.mask;
1019 
1020         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1021                         sizeof(payload), NULL))
1022                 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1023 }
1024 
1025 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1026 {
1027         struct sk_buff *skb;
1028 
1029         if (check_cmdresp_status(fmdev, &skb))
1030                 return;
1031         /*
1032          * This is last function in interrupt table to be executed.
1033          * So, reset stage index to 0.
1034          */
1035         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1036 
1037         /* Start processing any pending interrupt */
1038         if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1039                 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1040         else
1041                 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1042 }
1043 
1044 /* Returns availability of RDS data in internal buffer */
1045 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1046                                 struct poll_table_struct *pts)
1047 {
1048         poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1049         if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1050                 return 0;
1051 
1052         return -EAGAIN;
1053 }
1054 
1055 /* Copies RDS data from internal buffer to user buffer */
1056 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1057                 u8 __user *buf, size_t count)
1058 {
1059         u32 block_count;
1060         u8 tmpbuf[FM_RDS_BLK_SIZE];
1061         unsigned long flags;
1062         int ret;
1063 
1064         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1065                 if (file->f_flags & O_NONBLOCK)
1066                         return -EWOULDBLOCK;
1067 
1068                 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1069                                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1070                 if (ret)
1071                         return -EINTR;
1072         }
1073 
1074         /* Calculate block count from byte count */
1075         count /= FM_RDS_BLK_SIZE;
1076         block_count = 0;
1077         ret = 0;
1078 
1079         while (block_count < count) {
1080                 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1081 
1082                 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1083                         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1084                         break;
1085                 }
1086                 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1087                                         FM_RDS_BLK_SIZE);
1088                 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1089                 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1090                         fmdev->rx.rds.rd_idx = 0;
1091 
1092                 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1093 
1094                 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1095                         break;
1096 
1097                 block_count++;
1098                 buf += FM_RDS_BLK_SIZE;
1099                 ret += FM_RDS_BLK_SIZE;
1100         }
1101         return ret;
1102 }
1103 
1104 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1105 {
1106         switch (fmdev->curr_fmmode) {
1107         case FM_MODE_RX:
1108                 return fm_rx_set_freq(fmdev, freq_to_set);
1109 
1110         case FM_MODE_TX:
1111                 return fm_tx_set_freq(fmdev, freq_to_set);
1112 
1113         default:
1114                 return -EINVAL;
1115         }
1116 }
1117 
1118 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1119 {
1120         if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1121                 fmerr("RX frequency is not set\n");
1122                 return -EPERM;
1123         }
1124         if (cur_tuned_frq == NULL) {
1125                 fmerr("Invalid memory\n");
1126                 return -ENOMEM;
1127         }
1128 
1129         switch (fmdev->curr_fmmode) {
1130         case FM_MODE_RX:
1131                 *cur_tuned_frq = fmdev->rx.freq;
1132                 return 0;
1133 
1134         case FM_MODE_TX:
1135                 *cur_tuned_frq = 0;     /* TODO : Change this later */
1136                 return 0;
1137 
1138         default:
1139                 return -EINVAL;
1140         }
1141 
1142 }
1143 
1144 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1145 {
1146         switch (fmdev->curr_fmmode) {
1147         case FM_MODE_RX:
1148                 return fm_rx_set_region(fmdev, region_to_set);
1149 
1150         case FM_MODE_TX:
1151                 return fm_tx_set_region(fmdev, region_to_set);
1152 
1153         default:
1154                 return -EINVAL;
1155         }
1156 }
1157 
1158 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1159 {
1160         switch (fmdev->curr_fmmode) {
1161         case FM_MODE_RX:
1162                 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1163 
1164         case FM_MODE_TX:
1165                 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1166 
1167         default:
1168                 return -EINVAL;
1169         }
1170 }
1171 
1172 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1173 {
1174         switch (fmdev->curr_fmmode) {
1175         case FM_MODE_RX:
1176                 return fm_rx_set_stereo_mono(fmdev, mode);
1177 
1178         case FM_MODE_TX:
1179                 return fm_tx_set_stereo_mono(fmdev, mode);
1180 
1181         default:
1182                 return -EINVAL;
1183         }
1184 }
1185 
1186 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1187 {
1188         switch (fmdev->curr_fmmode) {
1189         case FM_MODE_RX:
1190                 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1191 
1192         case FM_MODE_TX:
1193                 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1194 
1195         default:
1196                 return -EINVAL;
1197         }
1198 }
1199 
1200 /* Sends power off command to the chip */
1201 static int fm_power_down(struct fmdev *fmdev)
1202 {
1203         u16 payload;
1204         int ret;
1205 
1206         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1207                 fmerr("FM core is not ready\n");
1208                 return -EPERM;
1209         }
1210         if (fmdev->curr_fmmode == FM_MODE_OFF) {
1211                 fmdbg("FM chip is already in OFF state\n");
1212                 return 0;
1213         }
1214 
1215         payload = 0x0;
1216         ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1217                 sizeof(payload), NULL, NULL);
1218         if (ret < 0)
1219                 return ret;
1220 
1221         return fmc_release(fmdev);
1222 }
1223 
1224 /* Reads init command from FM firmware file and loads to the chip */
1225 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1226 {
1227         const struct firmware *fw_entry;
1228         struct bts_header *fw_header;
1229         struct bts_action *action;
1230         struct bts_action_delay *delay;
1231         u8 *fw_data;
1232         int ret, fw_len, cmd_cnt;
1233 
1234         cmd_cnt = 0;
1235         set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1236 
1237         ret = request_firmware(&fw_entry, fw_name,
1238                                 &fmdev->radio_dev->dev);
1239         if (ret < 0) {
1240                 fmerr("Unable to read firmware(%s) content\n", fw_name);
1241                 return ret;
1242         }
1243         fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1244 
1245         fw_data = (void *)fw_entry->data;
1246         fw_len = fw_entry->size;
1247 
1248         fw_header = (struct bts_header *)fw_data;
1249         if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1250                 fmerr("%s not a legal TI firmware file\n", fw_name);
1251                 ret = -EINVAL;
1252                 goto rel_fw;
1253         }
1254         fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1255 
1256         /* Skip file header info , we already verified it */
1257         fw_data += sizeof(struct bts_header);
1258         fw_len -= sizeof(struct bts_header);
1259 
1260         while (fw_data && fw_len > 0) {
1261                 action = (struct bts_action *)fw_data;
1262 
1263                 switch (action->type) {
1264                 case ACTION_SEND_COMMAND:       /* Send */
1265                         ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1266                                            action->size, NULL, NULL);
1267                         if (ret)
1268                                 goto rel_fw;
1269 
1270                         cmd_cnt++;
1271                         break;
1272 
1273                 case ACTION_DELAY:      /* Delay */
1274                         delay = (struct bts_action_delay *)action->data;
1275                         mdelay(delay->msec);
1276                         break;
1277                 }
1278 
1279                 fw_data += (sizeof(struct bts_action) + (action->size));
1280                 fw_len -= (sizeof(struct bts_action) + (action->size));
1281         }
1282         fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1283 rel_fw:
1284         release_firmware(fw_entry);
1285         clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1286 
1287         return ret;
1288 }
1289 
1290 /* Loads default RX configuration to the chip */
1291 static int load_default_rx_configuration(struct fmdev *fmdev)
1292 {
1293         int ret;
1294 
1295         ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1296         if (ret < 0)
1297                 return ret;
1298 
1299         return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1300 }
1301 
1302 /* Does FM power on sequence */
1303 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1304 {
1305         u16 payload;
1306         __be16 asic_id = 0, asic_ver = 0;
1307         int resp_len, ret;
1308         u8 fw_name[50];
1309 
1310         if (mode >= FM_MODE_ENTRY_MAX) {
1311                 fmerr("Invalid firmware download option\n");
1312                 return -EINVAL;
1313         }
1314 
1315         /*
1316          * Initialize FM common module. FM GPIO toggling is
1317          * taken care in Shared Transport driver.
1318          */
1319         ret = fmc_prepare(fmdev);
1320         if (ret < 0) {
1321                 fmerr("Unable to prepare FM Common\n");
1322                 return ret;
1323         }
1324 
1325         payload = FM_ENABLE;
1326         if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1327                         sizeof(payload), NULL, NULL))
1328                 goto rel;
1329 
1330         /* Allow the chip to settle down in Channel-8 mode */
1331         msleep(20);
1332 
1333         if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1334                         sizeof(asic_id), &asic_id, &resp_len))
1335                 goto rel;
1336 
1337         if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1338                         sizeof(asic_ver), &asic_ver, &resp_len))
1339                 goto rel;
1340 
1341         fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1342                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1343 
1344         sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1345                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1346 
1347         ret = fm_download_firmware(fmdev, fw_name);
1348         if (ret < 0) {
1349                 fmdbg("Failed to download firmware file %s\n", fw_name);
1350                 goto rel;
1351         }
1352         sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1353                         FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1354                         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355 
1356         ret = fm_download_firmware(fmdev, fw_name);
1357         if (ret < 0) {
1358                 fmdbg("Failed to download firmware file %s\n", fw_name);
1359                 goto rel;
1360         } else
1361                 return ret;
1362 rel:
1363         return fmc_release(fmdev);
1364 }
1365 
1366 /* Set FM Modes(TX, RX, OFF) */
1367 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1368 {
1369         int ret = 0;
1370 
1371         if (fm_mode >= FM_MODE_ENTRY_MAX) {
1372                 fmerr("Invalid FM mode\n");
1373                 return -EINVAL;
1374         }
1375         if (fmdev->curr_fmmode == fm_mode) {
1376                 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1377                 return ret;
1378         }
1379 
1380         switch (fm_mode) {
1381         case FM_MODE_OFF:       /* OFF Mode */
1382                 ret = fm_power_down(fmdev);
1383                 if (ret < 0) {
1384                         fmerr("Failed to set OFF mode\n");
1385                         return ret;
1386                 }
1387                 break;
1388 
1389         case FM_MODE_TX:        /* TX Mode */
1390         case FM_MODE_RX:        /* RX Mode */
1391                 /* Power down before switching to TX or RX mode */
1392                 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1393                         ret = fm_power_down(fmdev);
1394                         if (ret < 0) {
1395                                 fmerr("Failed to set OFF mode\n");
1396                                 return ret;
1397                         }
1398                         msleep(30);
1399                 }
1400                 ret = fm_power_up(fmdev, fm_mode);
1401                 if (ret < 0) {
1402                         fmerr("Failed to load firmware\n");
1403                         return ret;
1404                 }
1405         }
1406         fmdev->curr_fmmode = fm_mode;
1407 
1408         /* Set default configuration */
1409         if (fmdev->curr_fmmode == FM_MODE_RX) {
1410                 fmdbg("Loading default rx configuration..\n");
1411                 ret = load_default_rx_configuration(fmdev);
1412                 if (ret < 0)
1413                         fmerr("Failed to load default values\n");
1414         }
1415 
1416         return ret;
1417 }
1418 
1419 /* Returns current FM mode (TX, RX, OFF) */
1420 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1421 {
1422         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1423                 fmerr("FM core is not ready\n");
1424                 return -EPERM;
1425         }
1426         if (fmmode == NULL) {
1427                 fmerr("Invalid memory\n");
1428                 return -ENOMEM;
1429         }
1430 
1431         *fmmode = fmdev->curr_fmmode;
1432         return 0;
1433 }
1434 
1435 /* Called by ST layer when FM packet is available */
1436 static long fm_st_receive(void *arg, struct sk_buff *skb)
1437 {
1438         struct fmdev *fmdev;
1439 
1440         fmdev = (struct fmdev *)arg;
1441 
1442         if (skb == NULL) {
1443                 fmerr("Invalid SKB received from ST\n");
1444                 return -EFAULT;
1445         }
1446 
1447         if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1448                 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1449                 return -EINVAL;
1450         }
1451 
1452         memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1453         skb_queue_tail(&fmdev->rx_q, skb);
1454         tasklet_schedule(&fmdev->rx_task);
1455 
1456         return 0;
1457 }
1458 
1459 /*
1460  * Called by ST layer to indicate protocol registration completion
1461  * status.
1462  */
1463 static void fm_st_reg_comp_cb(void *arg, int data)
1464 {
1465         struct fmdev *fmdev;
1466 
1467         fmdev = (struct fmdev *)arg;
1468         fmdev->streg_cbdata = data;
1469         complete(&wait_for_fmdrv_reg_comp);
1470 }
1471 
1472 /*
1473  * This function will be called from FM V4L2 open function.
1474  * Register with ST driver and initialize driver data.
1475  */
1476 int fmc_prepare(struct fmdev *fmdev)
1477 {
1478         static struct st_proto_s fm_st_proto;
1479         int ret;
1480 
1481         if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1482                 fmdbg("FM Core is already up\n");
1483                 return 0;
1484         }
1485 
1486         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1487         fm_st_proto.recv = fm_st_receive;
1488         fm_st_proto.match_packet = NULL;
1489         fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1490         fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1491         fm_st_proto.priv_data = fmdev;
1492         fm_st_proto.chnl_id = 0x08;
1493         fm_st_proto.max_frame_size = 0xff;
1494         fm_st_proto.hdr_len = 1;
1495         fm_st_proto.offset_len_in_hdr = 0;
1496         fm_st_proto.len_size = 1;
1497         fm_st_proto.reserve = 1;
1498 
1499         ret = st_register(&fm_st_proto);
1500         if (ret == -EINPROGRESS) {
1501                 init_completion(&wait_for_fmdrv_reg_comp);
1502                 fmdev->streg_cbdata = -EINPROGRESS;
1503                 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1504 
1505                 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1506                                                  FM_ST_REG_TIMEOUT)) {
1507                         fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1508                                         jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1509                         return -ETIMEDOUT;
1510                 }
1511                 if (fmdev->streg_cbdata != 0) {
1512                         fmerr("ST reg comp CB called with error status %d\n",
1513                               fmdev->streg_cbdata);
1514                         return -EAGAIN;
1515                 }
1516 
1517                 ret = 0;
1518         } else if (ret < 0) {
1519                 fmerr("st_register failed %d\n", ret);
1520                 return -EAGAIN;
1521         }
1522 
1523         if (fm_st_proto.write != NULL) {
1524                 g_st_write = fm_st_proto.write;
1525         } else {
1526                 fmerr("Failed to get ST write func pointer\n");
1527                 ret = st_unregister(&fm_st_proto);
1528                 if (ret < 0)
1529                         fmerr("st_unregister failed %d\n", ret);
1530                 return -EAGAIN;
1531         }
1532 
1533         spin_lock_init(&fmdev->rds_buff_lock);
1534         spin_lock_init(&fmdev->resp_skb_lock);
1535 
1536         /* Initialize TX queue and TX tasklet */
1537         skb_queue_head_init(&fmdev->tx_q);
1538         tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1539 
1540         /* Initialize RX Queue and RX tasklet */
1541         skb_queue_head_init(&fmdev->rx_q);
1542         tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1543 
1544         fmdev->irq_info.stage = 0;
1545         atomic_set(&fmdev->tx_cnt, 1);
1546         fmdev->resp_comp = NULL;
1547 
1548         timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1549         /*TODO: add FM_STIC_EVENT later */
1550         fmdev->irq_info.mask = FM_MAL_EVENT;
1551 
1552         /* Region info */
1553         fmdev->rx.region = region_configs[default_radio_region];
1554 
1555         fmdev->rx.mute_mode = FM_MUTE_OFF;
1556         fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1557         fmdev->rx.rds.flag = FM_RDS_DISABLE;
1558         fmdev->rx.freq = FM_UNDEFINED_FREQ;
1559         fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1560         fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1561         fmdev->irq_info.retry = 0;
1562 
1563         fm_rx_reset_rds_cache(fmdev);
1564         init_waitqueue_head(&fmdev->rx.rds.read_queue);
1565 
1566         fm_rx_reset_station_info(fmdev);
1567         set_bit(FM_CORE_READY, &fmdev->flag);
1568 
1569         return ret;
1570 }
1571 
1572 /*
1573  * This function will be called from FM V4L2 release function.
1574  * Unregister from ST driver.
1575  */
1576 int fmc_release(struct fmdev *fmdev)
1577 {
1578         static struct st_proto_s fm_st_proto;
1579         int ret;
1580 
1581         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1582                 fmdbg("FM Core is already down\n");
1583                 return 0;
1584         }
1585         /* Service pending read */
1586         wake_up_interruptible(&fmdev->rx.rds.read_queue);
1587 
1588         tasklet_kill(&fmdev->tx_task);
1589         tasklet_kill(&fmdev->rx_task);
1590 
1591         skb_queue_purge(&fmdev->tx_q);
1592         skb_queue_purge(&fmdev->rx_q);
1593 
1594         fmdev->resp_comp = NULL;
1595         fmdev->rx.freq = 0;
1596 
1597         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1598         fm_st_proto.chnl_id = 0x08;
1599 
1600         ret = st_unregister(&fm_st_proto);
1601 
1602         if (ret < 0)
1603                 fmerr("Failed to de-register FM from ST %d\n", ret);
1604         else
1605                 fmdbg("Successfully unregistered from ST\n");
1606 
1607         clear_bit(FM_CORE_READY, &fmdev->flag);
1608         return ret;
1609 }
1610 
1611 /*
1612  * Module init function. Ask FM V4L module to register video device.
1613  * Allocate memory for FM driver context and RX RDS buffer.
1614  */
1615 static int __init fm_drv_init(void)
1616 {
1617         struct fmdev *fmdev = NULL;
1618         int ret = -ENOMEM;
1619 
1620         fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1621 
1622         fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1623         if (NULL == fmdev) {
1624                 fmerr("Can't allocate operation structure memory\n");
1625                 return ret;
1626         }
1627         fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1628         fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1629         if (NULL == fmdev->rx.rds.buff) {
1630                 fmerr("Can't allocate rds ring buffer\n");
1631                 goto rel_dev;
1632         }
1633 
1634         ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1635         if (ret < 0)
1636                 goto rel_rdsbuf;
1637 
1638         fmdev->irq_info.handlers = int_handler_table;
1639         fmdev->curr_fmmode = FM_MODE_OFF;
1640         fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1641         fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1642         return ret;
1643 
1644 rel_rdsbuf:
1645         kfree(fmdev->rx.rds.buff);
1646 rel_dev:
1647         kfree(fmdev);
1648 
1649         return ret;
1650 }
1651 
1652 /* Module exit function. Ask FM V4L module to unregister video device */
1653 static void __exit fm_drv_exit(void)
1654 {
1655         struct fmdev *fmdev = NULL;
1656 
1657         fmdev = fm_v4l2_deinit_video_device();
1658         if (fmdev != NULL) {
1659                 kfree(fmdev->rx.rds.buff);
1660                 kfree(fmdev);
1661         }
1662 }
1663 
1664 module_init(fm_drv_init);
1665 module_exit(fm_drv_exit);
1666 
1667 /* ------------- Module Info ------------- */
1668 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1669 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1670 MODULE_VERSION(FM_DRV_VERSION);
1671 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */