root/drivers/media/platform/vsp1/vsp1_video.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vsp1_video_remote_subdev
  2. vsp1_video_verify_format
  3. __vsp1_video_try_format
  4. vsp1_video_calculate_partition
  5. vsp1_video_pipeline_setup_partitions
  6. vsp1_video_complete_buffer
  7. vsp1_video_frame_end
  8. vsp1_video_pipeline_run_partition
  9. vsp1_video_pipeline_run
  10. vsp1_video_pipeline_frame_end
  11. vsp1_video_pipeline_build_branch
  12. vsp1_video_pipeline_build
  13. vsp1_video_pipeline_init
  14. vsp1_video_pipeline_get
  15. vsp1_video_pipeline_release
  16. vsp1_video_pipeline_put
  17. vsp1_video_queue_setup
  18. vsp1_video_buffer_prepare
  19. vsp1_video_buffer_queue
  20. vsp1_video_setup_pipeline
  21. vsp1_video_release_buffers
  22. vsp1_video_cleanup_pipeline
  23. vsp1_video_start_streaming
  24. vsp1_video_stop_streaming
  25. vsp1_video_querycap
  26. vsp1_video_get_format
  27. vsp1_video_try_format
  28. vsp1_video_set_format
  29. vsp1_video_streamon
  30. vsp1_video_open
  31. vsp1_video_release
  32. vsp1_video_suspend
  33. vsp1_video_resume
  34. vsp1_video_create
  35. vsp1_video_cleanup

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * vsp1_video.c  --  R-Car VSP1 Video Node
   4  *
   5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6  *
   7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8  */
   9 
  10 #include <linux/list.h>
  11 #include <linux/module.h>
  12 #include <linux/mutex.h>
  13 #include <linux/slab.h>
  14 #include <linux/v4l2-mediabus.h>
  15 #include <linux/videodev2.h>
  16 #include <linux/wait.h>
  17 
  18 #include <media/media-entity.h>
  19 #include <media/v4l2-dev.h>
  20 #include <media/v4l2-fh.h>
  21 #include <media/v4l2-ioctl.h>
  22 #include <media/v4l2-subdev.h>
  23 #include <media/videobuf2-v4l2.h>
  24 #include <media/videobuf2-dma-contig.h>
  25 
  26 #include "vsp1.h"
  27 #include "vsp1_brx.h"
  28 #include "vsp1_dl.h"
  29 #include "vsp1_entity.h"
  30 #include "vsp1_hgo.h"
  31 #include "vsp1_hgt.h"
  32 #include "vsp1_pipe.h"
  33 #include "vsp1_rwpf.h"
  34 #include "vsp1_uds.h"
  35 #include "vsp1_video.h"
  36 
  37 #define VSP1_VIDEO_DEF_FORMAT           V4L2_PIX_FMT_YUYV
  38 #define VSP1_VIDEO_DEF_WIDTH            1024
  39 #define VSP1_VIDEO_DEF_HEIGHT           768
  40 
  41 #define VSP1_VIDEO_MAX_WIDTH            8190U
  42 #define VSP1_VIDEO_MAX_HEIGHT           8190U
  43 
  44 /* -----------------------------------------------------------------------------
  45  * Helper functions
  46  */
  47 
  48 static struct v4l2_subdev *
  49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
  50 {
  51         struct media_pad *remote;
  52 
  53         remote = media_entity_remote_pad(local);
  54         if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
  55                 return NULL;
  56 
  57         if (pad)
  58                 *pad = remote->index;
  59 
  60         return media_entity_to_v4l2_subdev(remote->entity);
  61 }
  62 
  63 static int vsp1_video_verify_format(struct vsp1_video *video)
  64 {
  65         struct v4l2_subdev_format fmt;
  66         struct v4l2_subdev *subdev;
  67         int ret;
  68 
  69         subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
  70         if (subdev == NULL)
  71                 return -EINVAL;
  72 
  73         fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
  74         ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
  75         if (ret < 0)
  76                 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
  77 
  78         if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
  79             video->rwpf->format.height != fmt.format.height ||
  80             video->rwpf->format.width != fmt.format.width)
  81                 return -EINVAL;
  82 
  83         return 0;
  84 }
  85 
  86 static int __vsp1_video_try_format(struct vsp1_video *video,
  87                                    struct v4l2_pix_format_mplane *pix,
  88                                    const struct vsp1_format_info **fmtinfo)
  89 {
  90         static const u32 xrgb_formats[][2] = {
  91                 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
  92                 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
  93                 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
  94                 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
  95         };
  96 
  97         const struct vsp1_format_info *info;
  98         unsigned int width = pix->width;
  99         unsigned int height = pix->height;
 100         unsigned int i;
 101 
 102         /*
 103          * Backward compatibility: replace deprecated RGB formats by their XRGB
 104          * equivalent. This selects the format older userspace applications want
 105          * while still exposing the new format.
 106          */
 107         for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
 108                 if (xrgb_formats[i][0] == pix->pixelformat) {
 109                         pix->pixelformat = xrgb_formats[i][1];
 110                         break;
 111                 }
 112         }
 113 
 114         /*
 115          * Retrieve format information and select the default format if the
 116          * requested format isn't supported.
 117          */
 118         info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
 119         if (info == NULL)
 120                 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
 121 
 122         pix->pixelformat = info->fourcc;
 123         pix->colorspace = V4L2_COLORSPACE_SRGB;
 124         pix->field = V4L2_FIELD_NONE;
 125 
 126         if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
 127             info->fourcc == V4L2_PIX_FMT_HSV32)
 128                 pix->hsv_enc = V4L2_HSV_ENC_256;
 129 
 130         memset(pix->reserved, 0, sizeof(pix->reserved));
 131 
 132         /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
 133         width = round_down(width, info->hsub);
 134         height = round_down(height, info->vsub);
 135 
 136         /* Clamp the width and height. */
 137         pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
 138         pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
 139 
 140         /*
 141          * Compute and clamp the stride and image size. While not documented in
 142          * the datasheet, strides not aligned to a multiple of 128 bytes result
 143          * in image corruption.
 144          */
 145         for (i = 0; i < min(info->planes, 2U); ++i) {
 146                 unsigned int hsub = i > 0 ? info->hsub : 1;
 147                 unsigned int vsub = i > 0 ? info->vsub : 1;
 148                 unsigned int align = 128;
 149                 unsigned int bpl;
 150 
 151                 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
 152                               pix->width / hsub * info->bpp[i] / 8,
 153                               round_down(65535U, align));
 154 
 155                 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
 156                 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
 157                                             * pix->height / vsub;
 158         }
 159 
 160         if (info->planes == 3) {
 161                 /* The second and third planes must have the same stride. */
 162                 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
 163                 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
 164         }
 165 
 166         pix->num_planes = info->planes;
 167 
 168         if (fmtinfo)
 169                 *fmtinfo = info;
 170 
 171         return 0;
 172 }
 173 
 174 /* -----------------------------------------------------------------------------
 175  * VSP1 Partition Algorithm support
 176  */
 177 
 178 /**
 179  * vsp1_video_calculate_partition - Calculate the active partition output window
 180  *
 181  * @pipe: the pipeline
 182  * @partition: partition that will hold the calculated values
 183  * @div_size: pre-determined maximum partition division size
 184  * @index: partition index
 185  */
 186 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
 187                                            struct vsp1_partition *partition,
 188                                            unsigned int div_size,
 189                                            unsigned int index)
 190 {
 191         const struct v4l2_mbus_framefmt *format;
 192         struct vsp1_partition_window window;
 193         unsigned int modulus;
 194 
 195         /*
 196          * Partitions are computed on the size before rotation, use the format
 197          * at the WPF sink.
 198          */
 199         format = vsp1_entity_get_pad_format(&pipe->output->entity,
 200                                             pipe->output->entity.config,
 201                                             RWPF_PAD_SINK);
 202 
 203         /* A single partition simply processes the output size in full. */
 204         if (pipe->partitions <= 1) {
 205                 window.left = 0;
 206                 window.width = format->width;
 207 
 208                 vsp1_pipeline_propagate_partition(pipe, partition, index,
 209                                                   &window);
 210                 return;
 211         }
 212 
 213         /* Initialise the partition with sane starting conditions. */
 214         window.left = index * div_size;
 215         window.width = div_size;
 216 
 217         modulus = format->width % div_size;
 218 
 219         /*
 220          * We need to prevent the last partition from being smaller than the
 221          * *minimum* width of the hardware capabilities.
 222          *
 223          * If the modulus is less than half of the partition size,
 224          * the penultimate partition is reduced to half, which is added
 225          * to the final partition: |1234|1234|1234|12|341|
 226          * to prevent this:        |1234|1234|1234|1234|1|.
 227          */
 228         if (modulus) {
 229                 /*
 230                  * pipe->partitions is 1 based, whilst index is a 0 based index.
 231                  * Normalise this locally.
 232                  */
 233                 unsigned int partitions = pipe->partitions - 1;
 234 
 235                 if (modulus < div_size / 2) {
 236                         if (index == partitions - 1) {
 237                                 /* Halve the penultimate partition. */
 238                                 window.width = div_size / 2;
 239                         } else if (index == partitions) {
 240                                 /* Increase the final partition. */
 241                                 window.width = (div_size / 2) + modulus;
 242                                 window.left -= div_size / 2;
 243                         }
 244                 } else if (index == partitions) {
 245                         window.width = modulus;
 246                 }
 247         }
 248 
 249         vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
 250 }
 251 
 252 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
 253 {
 254         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
 255         const struct v4l2_mbus_framefmt *format;
 256         struct vsp1_entity *entity;
 257         unsigned int div_size;
 258         unsigned int i;
 259 
 260         /*
 261          * Partitions are computed on the size before rotation, use the format
 262          * at the WPF sink.
 263          */
 264         format = vsp1_entity_get_pad_format(&pipe->output->entity,
 265                                             pipe->output->entity.config,
 266                                             RWPF_PAD_SINK);
 267         div_size = format->width;
 268 
 269         /*
 270          * Only Gen3 hardware requires image partitioning, Gen2 will operate
 271          * with a single partition that covers the whole output.
 272          */
 273         if (vsp1->info->gen == 3) {
 274                 list_for_each_entry(entity, &pipe->entities, list_pipe) {
 275                         unsigned int entity_max;
 276 
 277                         if (!entity->ops->max_width)
 278                                 continue;
 279 
 280                         entity_max = entity->ops->max_width(entity, pipe);
 281                         if (entity_max)
 282                                 div_size = min(div_size, entity_max);
 283                 }
 284         }
 285 
 286         pipe->partitions = DIV_ROUND_UP(format->width, div_size);
 287         pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
 288                                    GFP_KERNEL);
 289         if (!pipe->part_table)
 290                 return -ENOMEM;
 291 
 292         for (i = 0; i < pipe->partitions; ++i)
 293                 vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
 294                                                div_size, i);
 295 
 296         return 0;
 297 }
 298 
 299 /* -----------------------------------------------------------------------------
 300  * Pipeline Management
 301  */
 302 
 303 /*
 304  * vsp1_video_complete_buffer - Complete the current buffer
 305  * @video: the video node
 306  *
 307  * This function completes the current buffer by filling its sequence number,
 308  * time stamp and payload size, and hands it back to the videobuf core.
 309  *
 310  * Return the next queued buffer or NULL if the queue is empty.
 311  */
 312 static struct vsp1_vb2_buffer *
 313 vsp1_video_complete_buffer(struct vsp1_video *video)
 314 {
 315         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
 316         struct vsp1_vb2_buffer *next = NULL;
 317         struct vsp1_vb2_buffer *done;
 318         unsigned long flags;
 319         unsigned int i;
 320 
 321         spin_lock_irqsave(&video->irqlock, flags);
 322 
 323         if (list_empty(&video->irqqueue)) {
 324                 spin_unlock_irqrestore(&video->irqlock, flags);
 325                 return NULL;
 326         }
 327 
 328         done = list_first_entry(&video->irqqueue,
 329                                 struct vsp1_vb2_buffer, queue);
 330 
 331         list_del(&done->queue);
 332 
 333         if (!list_empty(&video->irqqueue))
 334                 next = list_first_entry(&video->irqqueue,
 335                                         struct vsp1_vb2_buffer, queue);
 336 
 337         spin_unlock_irqrestore(&video->irqlock, flags);
 338 
 339         done->buf.sequence = pipe->sequence;
 340         done->buf.vb2_buf.timestamp = ktime_get_ns();
 341         for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
 342                 vb2_set_plane_payload(&done->buf.vb2_buf, i,
 343                                       vb2_plane_size(&done->buf.vb2_buf, i));
 344         vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
 345 
 346         return next;
 347 }
 348 
 349 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
 350                                  struct vsp1_rwpf *rwpf)
 351 {
 352         struct vsp1_video *video = rwpf->video;
 353         struct vsp1_vb2_buffer *buf;
 354 
 355         buf = vsp1_video_complete_buffer(video);
 356         if (buf == NULL)
 357                 return;
 358 
 359         video->rwpf->mem = buf->mem;
 360         pipe->buffers_ready |= 1 << video->pipe_index;
 361 }
 362 
 363 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
 364                                               struct vsp1_dl_list *dl,
 365                                               unsigned int partition)
 366 {
 367         struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
 368         struct vsp1_entity *entity;
 369 
 370         pipe->partition = &pipe->part_table[partition];
 371 
 372         list_for_each_entry(entity, &pipe->entities, list_pipe)
 373                 vsp1_entity_configure_partition(entity, pipe, dl, dlb);
 374 }
 375 
 376 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
 377 {
 378         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
 379         struct vsp1_entity *entity;
 380         struct vsp1_dl_body *dlb;
 381         struct vsp1_dl_list *dl;
 382         unsigned int partition;
 383 
 384         dl = vsp1_dl_list_get(pipe->output->dlm);
 385 
 386         /*
 387          * If the VSP hardware isn't configured yet (which occurs either when
 388          * processing the first frame or after a system suspend/resume), add the
 389          * cached stream configuration to the display list to perform a full
 390          * initialisation.
 391          */
 392         if (!pipe->configured)
 393                 vsp1_dl_list_add_body(dl, pipe->stream_config);
 394 
 395         dlb = vsp1_dl_list_get_body0(dl);
 396 
 397         list_for_each_entry(entity, &pipe->entities, list_pipe)
 398                 vsp1_entity_configure_frame(entity, pipe, dl, dlb);
 399 
 400         /* Run the first partition. */
 401         vsp1_video_pipeline_run_partition(pipe, dl, 0);
 402 
 403         /* Process consecutive partitions as necessary. */
 404         for (partition = 1; partition < pipe->partitions; ++partition) {
 405                 struct vsp1_dl_list *dl_next;
 406 
 407                 dl_next = vsp1_dl_list_get(pipe->output->dlm);
 408 
 409                 /*
 410                  * An incomplete chain will still function, but output only
 411                  * the partitions that had a dl available. The frame end
 412                  * interrupt will be marked on the last dl in the chain.
 413                  */
 414                 if (!dl_next) {
 415                         dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
 416                         break;
 417                 }
 418 
 419                 vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
 420                 vsp1_dl_list_add_chain(dl, dl_next);
 421         }
 422 
 423         /* Complete, and commit the head display list. */
 424         vsp1_dl_list_commit(dl, 0);
 425         pipe->configured = true;
 426 
 427         vsp1_pipeline_run(pipe);
 428 }
 429 
 430 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
 431                                           unsigned int completion)
 432 {
 433         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
 434         enum vsp1_pipeline_state state;
 435         unsigned long flags;
 436         unsigned int i;
 437 
 438         /* M2M Pipelines should never call here with an incomplete frame. */
 439         WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
 440 
 441         spin_lock_irqsave(&pipe->irqlock, flags);
 442 
 443         /* Complete buffers on all video nodes. */
 444         for (i = 0; i < vsp1->info->rpf_count; ++i) {
 445                 if (!pipe->inputs[i])
 446                         continue;
 447 
 448                 vsp1_video_frame_end(pipe, pipe->inputs[i]);
 449         }
 450 
 451         vsp1_video_frame_end(pipe, pipe->output);
 452 
 453         state = pipe->state;
 454         pipe->state = VSP1_PIPELINE_STOPPED;
 455 
 456         /*
 457          * If a stop has been requested, mark the pipeline as stopped and
 458          * return. Otherwise restart the pipeline if ready.
 459          */
 460         if (state == VSP1_PIPELINE_STOPPING)
 461                 wake_up(&pipe->wq);
 462         else if (vsp1_pipeline_ready(pipe))
 463                 vsp1_video_pipeline_run(pipe);
 464 
 465         spin_unlock_irqrestore(&pipe->irqlock, flags);
 466 }
 467 
 468 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
 469                                             struct vsp1_rwpf *input,
 470                                             struct vsp1_rwpf *output)
 471 {
 472         struct media_entity_enum ent_enum;
 473         struct vsp1_entity *entity;
 474         struct media_pad *pad;
 475         struct vsp1_brx *brx = NULL;
 476         int ret;
 477 
 478         ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
 479         if (ret < 0)
 480                 return ret;
 481 
 482         /*
 483          * The main data path doesn't include the HGO or HGT, use
 484          * vsp1_entity_remote_pad() to traverse the graph.
 485          */
 486 
 487         pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
 488 
 489         while (1) {
 490                 if (pad == NULL) {
 491                         ret = -EPIPE;
 492                         goto out;
 493                 }
 494 
 495                 /* We've reached a video node, that shouldn't have happened. */
 496                 if (!is_media_entity_v4l2_subdev(pad->entity)) {
 497                         ret = -EPIPE;
 498                         goto out;
 499                 }
 500 
 501                 entity = to_vsp1_entity(
 502                         media_entity_to_v4l2_subdev(pad->entity));
 503 
 504                 /*
 505                  * A BRU or BRS is present in the pipeline, store its input pad
 506                  * number in the input RPF for use when configuring the RPF.
 507                  */
 508                 if (entity->type == VSP1_ENTITY_BRU ||
 509                     entity->type == VSP1_ENTITY_BRS) {
 510                         /* BRU and BRS can't be chained. */
 511                         if (brx) {
 512                                 ret = -EPIPE;
 513                                 goto out;
 514                         }
 515 
 516                         brx = to_brx(&entity->subdev);
 517                         brx->inputs[pad->index].rpf = input;
 518                         input->brx_input = pad->index;
 519                 }
 520 
 521                 /* We've reached the WPF, we're done. */
 522                 if (entity->type == VSP1_ENTITY_WPF)
 523                         break;
 524 
 525                 /* Ensure the branch has no loop. */
 526                 if (media_entity_enum_test_and_set(&ent_enum,
 527                                                    &entity->subdev.entity)) {
 528                         ret = -EPIPE;
 529                         goto out;
 530                 }
 531 
 532                 /* UDS can't be chained. */
 533                 if (entity->type == VSP1_ENTITY_UDS) {
 534                         if (pipe->uds) {
 535                                 ret = -EPIPE;
 536                                 goto out;
 537                         }
 538 
 539                         pipe->uds = entity;
 540                         pipe->uds_input = brx ? &brx->entity : &input->entity;
 541                 }
 542 
 543                 /* Follow the source link, ignoring any HGO or HGT. */
 544                 pad = &entity->pads[entity->source_pad];
 545                 pad = vsp1_entity_remote_pad(pad);
 546         }
 547 
 548         /* The last entity must be the output WPF. */
 549         if (entity != &output->entity)
 550                 ret = -EPIPE;
 551 
 552 out:
 553         media_entity_enum_cleanup(&ent_enum);
 554 
 555         return ret;
 556 }
 557 
 558 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
 559                                      struct vsp1_video *video)
 560 {
 561         struct media_graph graph;
 562         struct media_entity *entity = &video->video.entity;
 563         struct media_device *mdev = entity->graph_obj.mdev;
 564         unsigned int i;
 565         int ret;
 566 
 567         /* Walk the graph to locate the entities and video nodes. */
 568         ret = media_graph_walk_init(&graph, mdev);
 569         if (ret)
 570                 return ret;
 571 
 572         media_graph_walk_start(&graph, entity);
 573 
 574         while ((entity = media_graph_walk_next(&graph))) {
 575                 struct v4l2_subdev *subdev;
 576                 struct vsp1_rwpf *rwpf;
 577                 struct vsp1_entity *e;
 578 
 579                 if (!is_media_entity_v4l2_subdev(entity))
 580                         continue;
 581 
 582                 subdev = media_entity_to_v4l2_subdev(entity);
 583                 e = to_vsp1_entity(subdev);
 584                 list_add_tail(&e->list_pipe, &pipe->entities);
 585                 e->pipe = pipe;
 586 
 587                 switch (e->type) {
 588                 case VSP1_ENTITY_RPF:
 589                         rwpf = to_rwpf(subdev);
 590                         pipe->inputs[rwpf->entity.index] = rwpf;
 591                         rwpf->video->pipe_index = ++pipe->num_inputs;
 592                         break;
 593 
 594                 case VSP1_ENTITY_WPF:
 595                         rwpf = to_rwpf(subdev);
 596                         pipe->output = rwpf;
 597                         rwpf->video->pipe_index = 0;
 598                         break;
 599 
 600                 case VSP1_ENTITY_LIF:
 601                         pipe->lif = e;
 602                         break;
 603 
 604                 case VSP1_ENTITY_BRU:
 605                 case VSP1_ENTITY_BRS:
 606                         pipe->brx = e;
 607                         break;
 608 
 609                 case VSP1_ENTITY_HGO:
 610                         pipe->hgo = e;
 611                         break;
 612 
 613                 case VSP1_ENTITY_HGT:
 614                         pipe->hgt = e;
 615                         break;
 616 
 617                 default:
 618                         break;
 619                 }
 620         }
 621 
 622         media_graph_walk_cleanup(&graph);
 623 
 624         /* We need one output and at least one input. */
 625         if (pipe->num_inputs == 0 || !pipe->output)
 626                 return -EPIPE;
 627 
 628         /*
 629          * Follow links downstream for each input and make sure the graph
 630          * contains no loop and that all branches end at the output WPF.
 631          */
 632         for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
 633                 if (!pipe->inputs[i])
 634                         continue;
 635 
 636                 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
 637                                                        pipe->output);
 638                 if (ret < 0)
 639                         return ret;
 640         }
 641 
 642         return 0;
 643 }
 644 
 645 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
 646                                     struct vsp1_video *video)
 647 {
 648         vsp1_pipeline_init(pipe);
 649 
 650         pipe->frame_end = vsp1_video_pipeline_frame_end;
 651 
 652         return vsp1_video_pipeline_build(pipe, video);
 653 }
 654 
 655 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
 656 {
 657         struct vsp1_pipeline *pipe;
 658         int ret;
 659 
 660         /*
 661          * Get a pipeline object for the video node. If a pipeline has already
 662          * been allocated just increment its reference count and return it.
 663          * Otherwise allocate a new pipeline and initialize it, it will be freed
 664          * when the last reference is released.
 665          */
 666         if (!video->rwpf->entity.pipe) {
 667                 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
 668                 if (!pipe)
 669                         return ERR_PTR(-ENOMEM);
 670 
 671                 ret = vsp1_video_pipeline_init(pipe, video);
 672                 if (ret < 0) {
 673                         vsp1_pipeline_reset(pipe);
 674                         kfree(pipe);
 675                         return ERR_PTR(ret);
 676                 }
 677         } else {
 678                 pipe = video->rwpf->entity.pipe;
 679                 kref_get(&pipe->kref);
 680         }
 681 
 682         return pipe;
 683 }
 684 
 685 static void vsp1_video_pipeline_release(struct kref *kref)
 686 {
 687         struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
 688 
 689         vsp1_pipeline_reset(pipe);
 690         kfree(pipe);
 691 }
 692 
 693 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
 694 {
 695         struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
 696 
 697         mutex_lock(&mdev->graph_mutex);
 698         kref_put(&pipe->kref, vsp1_video_pipeline_release);
 699         mutex_unlock(&mdev->graph_mutex);
 700 }
 701 
 702 /* -----------------------------------------------------------------------------
 703  * videobuf2 Queue Operations
 704  */
 705 
 706 static int
 707 vsp1_video_queue_setup(struct vb2_queue *vq,
 708                        unsigned int *nbuffers, unsigned int *nplanes,
 709                        unsigned int sizes[], struct device *alloc_devs[])
 710 {
 711         struct vsp1_video *video = vb2_get_drv_priv(vq);
 712         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
 713         unsigned int i;
 714 
 715         if (*nplanes) {
 716                 if (*nplanes != format->num_planes)
 717                         return -EINVAL;
 718 
 719                 for (i = 0; i < *nplanes; i++)
 720                         if (sizes[i] < format->plane_fmt[i].sizeimage)
 721                                 return -EINVAL;
 722                 return 0;
 723         }
 724 
 725         *nplanes = format->num_planes;
 726 
 727         for (i = 0; i < format->num_planes; ++i)
 728                 sizes[i] = format->plane_fmt[i].sizeimage;
 729 
 730         return 0;
 731 }
 732 
 733 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
 734 {
 735         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
 736         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
 737         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
 738         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
 739         unsigned int i;
 740 
 741         if (vb->num_planes < format->num_planes)
 742                 return -EINVAL;
 743 
 744         for (i = 0; i < vb->num_planes; ++i) {
 745                 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
 746 
 747                 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
 748                         return -EINVAL;
 749         }
 750 
 751         for ( ; i < 3; ++i)
 752                 buf->mem.addr[i] = 0;
 753 
 754         return 0;
 755 }
 756 
 757 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
 758 {
 759         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
 760         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
 761         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
 762         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
 763         unsigned long flags;
 764         bool empty;
 765 
 766         spin_lock_irqsave(&video->irqlock, flags);
 767         empty = list_empty(&video->irqqueue);
 768         list_add_tail(&buf->queue, &video->irqqueue);
 769         spin_unlock_irqrestore(&video->irqlock, flags);
 770 
 771         if (!empty)
 772                 return;
 773 
 774         spin_lock_irqsave(&pipe->irqlock, flags);
 775 
 776         video->rwpf->mem = buf->mem;
 777         pipe->buffers_ready |= 1 << video->pipe_index;
 778 
 779         if (vb2_is_streaming(&video->queue) &&
 780             vsp1_pipeline_ready(pipe))
 781                 vsp1_video_pipeline_run(pipe);
 782 
 783         spin_unlock_irqrestore(&pipe->irqlock, flags);
 784 }
 785 
 786 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
 787 {
 788         struct vsp1_entity *entity;
 789         int ret;
 790 
 791         /* Determine this pipelines sizes for image partitioning support. */
 792         ret = vsp1_video_pipeline_setup_partitions(pipe);
 793         if (ret < 0)
 794                 return ret;
 795 
 796         if (pipe->uds) {
 797                 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
 798 
 799                 /*
 800                  * If a BRU or BRS is present in the pipeline before the UDS,
 801                  * the alpha component doesn't need to be scaled as the BRU and
 802                  * BRS output alpha value is fixed to 255. Otherwise we need to
 803                  * scale the alpha component only when available at the input
 804                  * RPF.
 805                  */
 806                 if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
 807                     pipe->uds_input->type == VSP1_ENTITY_BRS) {
 808                         uds->scale_alpha = false;
 809                 } else {
 810                         struct vsp1_rwpf *rpf =
 811                                 to_rwpf(&pipe->uds_input->subdev);
 812 
 813                         uds->scale_alpha = rpf->fmtinfo->alpha;
 814                 }
 815         }
 816 
 817         /*
 818          * Compute and cache the stream configuration into a body. The cached
 819          * body will be added to the display list by vsp1_video_pipeline_run()
 820          * whenever the pipeline needs to be fully reconfigured.
 821          */
 822         pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
 823         if (!pipe->stream_config)
 824                 return -ENOMEM;
 825 
 826         list_for_each_entry(entity, &pipe->entities, list_pipe) {
 827                 vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
 828                 vsp1_entity_configure_stream(entity, pipe, NULL,
 829                                              pipe->stream_config);
 830         }
 831 
 832         return 0;
 833 }
 834 
 835 static void vsp1_video_release_buffers(struct vsp1_video *video)
 836 {
 837         struct vsp1_vb2_buffer *buffer;
 838         unsigned long flags;
 839 
 840         /* Remove all buffers from the IRQ queue. */
 841         spin_lock_irqsave(&video->irqlock, flags);
 842         list_for_each_entry(buffer, &video->irqqueue, queue)
 843                 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
 844         INIT_LIST_HEAD(&video->irqqueue);
 845         spin_unlock_irqrestore(&video->irqlock, flags);
 846 }
 847 
 848 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
 849 {
 850         lockdep_assert_held(&pipe->lock);
 851 
 852         /* Release any cached configuration from our output video. */
 853         vsp1_dl_body_put(pipe->stream_config);
 854         pipe->stream_config = NULL;
 855         pipe->configured = false;
 856 
 857         /* Release our partition table allocation. */
 858         kfree(pipe->part_table);
 859         pipe->part_table = NULL;
 860 }
 861 
 862 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
 863 {
 864         struct vsp1_video *video = vb2_get_drv_priv(vq);
 865         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
 866         bool start_pipeline = false;
 867         unsigned long flags;
 868         int ret;
 869 
 870         mutex_lock(&pipe->lock);
 871         if (pipe->stream_count == pipe->num_inputs) {
 872                 ret = vsp1_video_setup_pipeline(pipe);
 873                 if (ret < 0) {
 874                         vsp1_video_release_buffers(video);
 875                         vsp1_video_cleanup_pipeline(pipe);
 876                         mutex_unlock(&pipe->lock);
 877                         return ret;
 878                 }
 879 
 880                 start_pipeline = true;
 881         }
 882 
 883         pipe->stream_count++;
 884         mutex_unlock(&pipe->lock);
 885 
 886         /*
 887          * vsp1_pipeline_ready() is not sufficient to establish that all streams
 888          * are prepared and the pipeline is configured, as multiple streams
 889          * can race through streamon with buffers already queued; Therefore we
 890          * don't even attempt to start the pipeline until the last stream has
 891          * called through here.
 892          */
 893         if (!start_pipeline)
 894                 return 0;
 895 
 896         spin_lock_irqsave(&pipe->irqlock, flags);
 897         if (vsp1_pipeline_ready(pipe))
 898                 vsp1_video_pipeline_run(pipe);
 899         spin_unlock_irqrestore(&pipe->irqlock, flags);
 900 
 901         return 0;
 902 }
 903 
 904 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
 905 {
 906         struct vsp1_video *video = vb2_get_drv_priv(vq);
 907         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
 908         unsigned long flags;
 909         int ret;
 910 
 911         /*
 912          * Clear the buffers ready flag to make sure the device won't be started
 913          * by a QBUF on the video node on the other side of the pipeline.
 914          */
 915         spin_lock_irqsave(&video->irqlock, flags);
 916         pipe->buffers_ready &= ~(1 << video->pipe_index);
 917         spin_unlock_irqrestore(&video->irqlock, flags);
 918 
 919         mutex_lock(&pipe->lock);
 920         if (--pipe->stream_count == pipe->num_inputs) {
 921                 /* Stop the pipeline. */
 922                 ret = vsp1_pipeline_stop(pipe);
 923                 if (ret == -ETIMEDOUT)
 924                         dev_err(video->vsp1->dev, "pipeline stop timeout\n");
 925 
 926                 vsp1_video_cleanup_pipeline(pipe);
 927         }
 928         mutex_unlock(&pipe->lock);
 929 
 930         media_pipeline_stop(&video->video.entity);
 931         vsp1_video_release_buffers(video);
 932         vsp1_video_pipeline_put(pipe);
 933 }
 934 
 935 static const struct vb2_ops vsp1_video_queue_qops = {
 936         .queue_setup = vsp1_video_queue_setup,
 937         .buf_prepare = vsp1_video_buffer_prepare,
 938         .buf_queue = vsp1_video_buffer_queue,
 939         .wait_prepare = vb2_ops_wait_prepare,
 940         .wait_finish = vb2_ops_wait_finish,
 941         .start_streaming = vsp1_video_start_streaming,
 942         .stop_streaming = vsp1_video_stop_streaming,
 943 };
 944 
 945 /* -----------------------------------------------------------------------------
 946  * V4L2 ioctls
 947  */
 948 
 949 static int
 950 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
 951 {
 952         struct v4l2_fh *vfh = file->private_data;
 953         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
 954 
 955         cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
 956                           | V4L2_CAP_VIDEO_CAPTURE_MPLANE
 957                           | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
 958 
 959 
 960         strscpy(cap->driver, "vsp1", sizeof(cap->driver));
 961         strscpy(cap->card, video->video.name, sizeof(cap->card));
 962         snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
 963                  dev_name(video->vsp1->dev));
 964 
 965         return 0;
 966 }
 967 
 968 static int
 969 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
 970 {
 971         struct v4l2_fh *vfh = file->private_data;
 972         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
 973 
 974         if (format->type != video->queue.type)
 975                 return -EINVAL;
 976 
 977         mutex_lock(&video->lock);
 978         format->fmt.pix_mp = video->rwpf->format;
 979         mutex_unlock(&video->lock);
 980 
 981         return 0;
 982 }
 983 
 984 static int
 985 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
 986 {
 987         struct v4l2_fh *vfh = file->private_data;
 988         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
 989 
 990         if (format->type != video->queue.type)
 991                 return -EINVAL;
 992 
 993         return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
 994 }
 995 
 996 static int
 997 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
 998 {
 999         struct v4l2_fh *vfh = file->private_data;
1000         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1001         const struct vsp1_format_info *info;
1002         int ret;
1003 
1004         if (format->type != video->queue.type)
1005                 return -EINVAL;
1006 
1007         ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1008         if (ret < 0)
1009                 return ret;
1010 
1011         mutex_lock(&video->lock);
1012 
1013         if (vb2_is_busy(&video->queue)) {
1014                 ret = -EBUSY;
1015                 goto done;
1016         }
1017 
1018         video->rwpf->format = format->fmt.pix_mp;
1019         video->rwpf->fmtinfo = info;
1020 
1021 done:
1022         mutex_unlock(&video->lock);
1023         return ret;
1024 }
1025 
1026 static int
1027 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1028 {
1029         struct v4l2_fh *vfh = file->private_data;
1030         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1031         struct media_device *mdev = &video->vsp1->media_dev;
1032         struct vsp1_pipeline *pipe;
1033         int ret;
1034 
1035         if (video->queue.owner && video->queue.owner != file->private_data)
1036                 return -EBUSY;
1037 
1038         /*
1039          * Get a pipeline for the video node and start streaming on it. No link
1040          * touching an entity in the pipeline can be activated or deactivated
1041          * once streaming is started.
1042          */
1043         mutex_lock(&mdev->graph_mutex);
1044 
1045         pipe = vsp1_video_pipeline_get(video);
1046         if (IS_ERR(pipe)) {
1047                 mutex_unlock(&mdev->graph_mutex);
1048                 return PTR_ERR(pipe);
1049         }
1050 
1051         ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1052         if (ret < 0) {
1053                 mutex_unlock(&mdev->graph_mutex);
1054                 goto err_pipe;
1055         }
1056 
1057         mutex_unlock(&mdev->graph_mutex);
1058 
1059         /*
1060          * Verify that the configured format matches the output of the connected
1061          * subdev.
1062          */
1063         ret = vsp1_video_verify_format(video);
1064         if (ret < 0)
1065                 goto err_stop;
1066 
1067         /* Start the queue. */
1068         ret = vb2_streamon(&video->queue, type);
1069         if (ret < 0)
1070                 goto err_stop;
1071 
1072         return 0;
1073 
1074 err_stop:
1075         media_pipeline_stop(&video->video.entity);
1076 err_pipe:
1077         vsp1_video_pipeline_put(pipe);
1078         return ret;
1079 }
1080 
1081 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1082         .vidioc_querycap                = vsp1_video_querycap,
1083         .vidioc_g_fmt_vid_cap_mplane    = vsp1_video_get_format,
1084         .vidioc_s_fmt_vid_cap_mplane    = vsp1_video_set_format,
1085         .vidioc_try_fmt_vid_cap_mplane  = vsp1_video_try_format,
1086         .vidioc_g_fmt_vid_out_mplane    = vsp1_video_get_format,
1087         .vidioc_s_fmt_vid_out_mplane    = vsp1_video_set_format,
1088         .vidioc_try_fmt_vid_out_mplane  = vsp1_video_try_format,
1089         .vidioc_reqbufs                 = vb2_ioctl_reqbufs,
1090         .vidioc_querybuf                = vb2_ioctl_querybuf,
1091         .vidioc_qbuf                    = vb2_ioctl_qbuf,
1092         .vidioc_dqbuf                   = vb2_ioctl_dqbuf,
1093         .vidioc_expbuf                  = vb2_ioctl_expbuf,
1094         .vidioc_create_bufs             = vb2_ioctl_create_bufs,
1095         .vidioc_prepare_buf             = vb2_ioctl_prepare_buf,
1096         .vidioc_streamon                = vsp1_video_streamon,
1097         .vidioc_streamoff               = vb2_ioctl_streamoff,
1098 };
1099 
1100 /* -----------------------------------------------------------------------------
1101  * V4L2 File Operations
1102  */
1103 
1104 static int vsp1_video_open(struct file *file)
1105 {
1106         struct vsp1_video *video = video_drvdata(file);
1107         struct v4l2_fh *vfh;
1108         int ret = 0;
1109 
1110         vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1111         if (vfh == NULL)
1112                 return -ENOMEM;
1113 
1114         v4l2_fh_init(vfh, &video->video);
1115         v4l2_fh_add(vfh);
1116 
1117         file->private_data = vfh;
1118 
1119         ret = vsp1_device_get(video->vsp1);
1120         if (ret < 0) {
1121                 v4l2_fh_del(vfh);
1122                 v4l2_fh_exit(vfh);
1123                 kfree(vfh);
1124         }
1125 
1126         return ret;
1127 }
1128 
1129 static int vsp1_video_release(struct file *file)
1130 {
1131         struct vsp1_video *video = video_drvdata(file);
1132         struct v4l2_fh *vfh = file->private_data;
1133 
1134         mutex_lock(&video->lock);
1135         if (video->queue.owner == vfh) {
1136                 vb2_queue_release(&video->queue);
1137                 video->queue.owner = NULL;
1138         }
1139         mutex_unlock(&video->lock);
1140 
1141         vsp1_device_put(video->vsp1);
1142 
1143         v4l2_fh_release(file);
1144 
1145         file->private_data = NULL;
1146 
1147         return 0;
1148 }
1149 
1150 static const struct v4l2_file_operations vsp1_video_fops = {
1151         .owner = THIS_MODULE,
1152         .unlocked_ioctl = video_ioctl2,
1153         .open = vsp1_video_open,
1154         .release = vsp1_video_release,
1155         .poll = vb2_fop_poll,
1156         .mmap = vb2_fop_mmap,
1157 };
1158 
1159 /* -----------------------------------------------------------------------------
1160  * Suspend and Resume
1161  */
1162 
1163 void vsp1_video_suspend(struct vsp1_device *vsp1)
1164 {
1165         unsigned long flags;
1166         unsigned int i;
1167         int ret;
1168 
1169         /*
1170          * To avoid increasing the system suspend time needlessly, loop over the
1171          * pipelines twice, first to set them all to the stopping state, and
1172          * then to wait for the stop to complete.
1173          */
1174         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1175                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1176                 struct vsp1_pipeline *pipe;
1177 
1178                 if (wpf == NULL)
1179                         continue;
1180 
1181                 pipe = wpf->entity.pipe;
1182                 if (pipe == NULL)
1183                         continue;
1184 
1185                 spin_lock_irqsave(&pipe->irqlock, flags);
1186                 if (pipe->state == VSP1_PIPELINE_RUNNING)
1187                         pipe->state = VSP1_PIPELINE_STOPPING;
1188                 spin_unlock_irqrestore(&pipe->irqlock, flags);
1189         }
1190 
1191         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1192                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1193                 struct vsp1_pipeline *pipe;
1194 
1195                 if (wpf == NULL)
1196                         continue;
1197 
1198                 pipe = wpf->entity.pipe;
1199                 if (pipe == NULL)
1200                         continue;
1201 
1202                 ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1203                                          msecs_to_jiffies(500));
1204                 if (ret == 0)
1205                         dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1206                                  wpf->entity.index);
1207         }
1208 }
1209 
1210 void vsp1_video_resume(struct vsp1_device *vsp1)
1211 {
1212         unsigned long flags;
1213         unsigned int i;
1214 
1215         /* Resume all running pipelines. */
1216         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1217                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1218                 struct vsp1_pipeline *pipe;
1219 
1220                 if (wpf == NULL)
1221                         continue;
1222 
1223                 pipe = wpf->entity.pipe;
1224                 if (pipe == NULL)
1225                         continue;
1226 
1227                 /*
1228                  * The hardware may have been reset during a suspend and will
1229                  * need a full reconfiguration.
1230                  */
1231                 pipe->configured = false;
1232 
1233                 spin_lock_irqsave(&pipe->irqlock, flags);
1234                 if (vsp1_pipeline_ready(pipe))
1235                         vsp1_video_pipeline_run(pipe);
1236                 spin_unlock_irqrestore(&pipe->irqlock, flags);
1237         }
1238 }
1239 
1240 /* -----------------------------------------------------------------------------
1241  * Initialization and Cleanup
1242  */
1243 
1244 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1245                                      struct vsp1_rwpf *rwpf)
1246 {
1247         struct vsp1_video *video;
1248         const char *direction;
1249         int ret;
1250 
1251         video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1252         if (!video)
1253                 return ERR_PTR(-ENOMEM);
1254 
1255         rwpf->video = video;
1256 
1257         video->vsp1 = vsp1;
1258         video->rwpf = rwpf;
1259 
1260         if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1261                 direction = "input";
1262                 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1263                 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1264                 video->video.vfl_dir = VFL_DIR_TX;
1265                 video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1266                                            V4L2_CAP_STREAMING;
1267         } else {
1268                 direction = "output";
1269                 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1270                 video->pad.flags = MEDIA_PAD_FL_SINK;
1271                 video->video.vfl_dir = VFL_DIR_RX;
1272                 video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1273                                            V4L2_CAP_STREAMING;
1274         }
1275 
1276         mutex_init(&video->lock);
1277         spin_lock_init(&video->irqlock);
1278         INIT_LIST_HEAD(&video->irqqueue);
1279 
1280         /* Initialize the media entity... */
1281         ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1282         if (ret < 0)
1283                 return ERR_PTR(ret);
1284 
1285         /* ... and the format ... */
1286         rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1287         rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1288         rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1289         __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1290 
1291         /* ... and the video node... */
1292         video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1293         video->video.fops = &vsp1_video_fops;
1294         snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1295                  rwpf->entity.subdev.name, direction);
1296         video->video.vfl_type = VFL_TYPE_GRABBER;
1297         video->video.release = video_device_release_empty;
1298         video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1299 
1300         video_set_drvdata(&video->video, video);
1301 
1302         video->queue.type = video->type;
1303         video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1304         video->queue.lock = &video->lock;
1305         video->queue.drv_priv = video;
1306         video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1307         video->queue.ops = &vsp1_video_queue_qops;
1308         video->queue.mem_ops = &vb2_dma_contig_memops;
1309         video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1310         video->queue.dev = video->vsp1->bus_master;
1311         ret = vb2_queue_init(&video->queue);
1312         if (ret < 0) {
1313                 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1314                 goto error;
1315         }
1316 
1317         /* ... and register the video device. */
1318         video->video.queue = &video->queue;
1319         ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1320         if (ret < 0) {
1321                 dev_err(video->vsp1->dev, "failed to register video device\n");
1322                 goto error;
1323         }
1324 
1325         return video;
1326 
1327 error:
1328         vsp1_video_cleanup(video);
1329         return ERR_PTR(ret);
1330 }
1331 
1332 void vsp1_video_cleanup(struct vsp1_video *video)
1333 {
1334         if (video_is_registered(&video->video))
1335                 video_unregister_device(&video->video);
1336 
1337         media_entity_cleanup(&video->video.entity);
1338 }

/* [<][>][^][v][top][bottom][index][help] */