root/drivers/media/platform/vsp1/vsp1_rpf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vsp1_rpf_write
  2. rpf_configure_stream
  3. vsp1_rpf_configure_autofld
  4. rpf_configure_frame
  5. rpf_configure_partition
  6. rpf_partition
  7. vsp1_rpf_create

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
   4  *
   5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
   6  *
   7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8  */
   9 
  10 #include <linux/device.h>
  11 
  12 #include <media/v4l2-subdev.h>
  13 
  14 #include "vsp1.h"
  15 #include "vsp1_dl.h"
  16 #include "vsp1_pipe.h"
  17 #include "vsp1_rwpf.h"
  18 #include "vsp1_video.h"
  19 
  20 #define RPF_MAX_WIDTH                           8190
  21 #define RPF_MAX_HEIGHT                          8190
  22 
  23 /* Pre extended display list command data structure. */
  24 struct vsp1_extcmd_auto_fld_body {
  25         u32 top_y0;
  26         u32 bottom_y0;
  27         u32 top_c0;
  28         u32 bottom_c0;
  29         u32 top_c1;
  30         u32 bottom_c1;
  31         u32 reserved0;
  32         u32 reserved1;
  33 } __packed;
  34 
  35 /* -----------------------------------------------------------------------------
  36  * Device Access
  37  */
  38 
  39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
  40                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
  41 {
  42         vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
  43                                data);
  44 }
  45 
  46 /* -----------------------------------------------------------------------------
  47  * V4L2 Subdevice Operations
  48  */
  49 
  50 static const struct v4l2_subdev_ops rpf_ops = {
  51         .pad    = &vsp1_rwpf_pad_ops,
  52 };
  53 
  54 /* -----------------------------------------------------------------------------
  55  * VSP1 Entity Operations
  56  */
  57 
  58 static void rpf_configure_stream(struct vsp1_entity *entity,
  59                                  struct vsp1_pipeline *pipe,
  60                                  struct vsp1_dl_list *dl,
  61                                  struct vsp1_dl_body *dlb)
  62 {
  63         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
  64         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
  65         const struct v4l2_pix_format_mplane *format = &rpf->format;
  66         const struct v4l2_mbus_framefmt *source_format;
  67         const struct v4l2_mbus_framefmt *sink_format;
  68         unsigned int left = 0;
  69         unsigned int top = 0;
  70         u32 pstride;
  71         u32 infmt;
  72 
  73         /* Stride */
  74         pstride = format->plane_fmt[0].bytesperline
  75                 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
  76         if (format->num_planes > 1)
  77                 pstride |= format->plane_fmt[1].bytesperline
  78                         << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
  79 
  80         /*
  81          * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
  82          * of pstride by 2 is conveniently OK here as we are multiplying both
  83          * values.
  84          */
  85         if (pipe->interlaced)
  86                 pstride *= 2;
  87 
  88         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
  89 
  90         /* Format */
  91         sink_format = vsp1_entity_get_pad_format(&rpf->entity,
  92                                                  rpf->entity.config,
  93                                                  RWPF_PAD_SINK);
  94         source_format = vsp1_entity_get_pad_format(&rpf->entity,
  95                                                    rpf->entity.config,
  96                                                    RWPF_PAD_SOURCE);
  97 
  98         infmt = VI6_RPF_INFMT_CIPM
  99               | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
 100 
 101         if (fmtinfo->swap_yc)
 102                 infmt |= VI6_RPF_INFMT_SPYCS;
 103         if (fmtinfo->swap_uv)
 104                 infmt |= VI6_RPF_INFMT_SPUVS;
 105 
 106         if (sink_format->code != source_format->code)
 107                 infmt |= VI6_RPF_INFMT_CSC;
 108 
 109         vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
 110         vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
 111 
 112         /* Output location. */
 113         if (pipe->brx) {
 114                 const struct v4l2_rect *compose;
 115 
 116                 compose = vsp1_entity_get_pad_selection(pipe->brx,
 117                                                         pipe->brx->config,
 118                                                         rpf->brx_input,
 119                                                         V4L2_SEL_TGT_COMPOSE);
 120                 left = compose->left;
 121                 top = compose->top;
 122         }
 123 
 124         if (pipe->interlaced)
 125                 top /= 2;
 126 
 127         vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
 128                        (left << VI6_RPF_LOC_HCOORD_SHIFT) |
 129                        (top << VI6_RPF_LOC_VCOORD_SHIFT));
 130 
 131         /*
 132          * On Gen2 use the alpha channel (extended to 8 bits) when available or
 133          * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
 134          * otherwise.
 135          *
 136          * The Gen3 RPF has extended alpha capability and can both multiply the
 137          * alpha channel by a fixed global alpha value, and multiply the pixel
 138          * components to convert the input to premultiplied alpha.
 139          *
 140          * As alpha premultiplication is available in the BRx for both Gen2 and
 141          * Gen3 we handle it there and use the Gen3 alpha multiplier for global
 142          * alpha multiplication only. This however prevents conversion to
 143          * premultiplied alpha if no BRx is present in the pipeline. If that use
 144          * case turns out to be useful we will revisit the implementation (for
 145          * Gen3 only).
 146          *
 147          * We enable alpha multiplication on Gen3 using the fixed alpha value
 148          * set through the V4L2_CID_ALPHA_COMPONENT control when the input
 149          * contains an alpha channel. On Gen2 the global alpha is ignored in
 150          * that case.
 151          *
 152          * In all cases, disable color keying.
 153          */
 154         vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
 155                        (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
 156                                        : VI6_RPF_ALPH_SEL_ASEL_FIXED));
 157 
 158         if (entity->vsp1->info->gen == 3) {
 159                 u32 mult;
 160 
 161                 if (fmtinfo->alpha) {
 162                         /*
 163                          * When the input contains an alpha channel enable the
 164                          * alpha multiplier. If the input is premultiplied we
 165                          * need to multiply both the alpha channel and the pixel
 166                          * components by the global alpha value to keep them
 167                          * premultiplied. Otherwise multiply the alpha channel
 168                          * only.
 169                          */
 170                         bool premultiplied = format->flags
 171                                            & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
 172 
 173                         mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
 174                              | (premultiplied ?
 175                                 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
 176                                 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
 177                 } else {
 178                         /*
 179                          * When the input doesn't contain an alpha channel the
 180                          * global alpha value is applied in the unpacking unit,
 181                          * the alpha multiplier isn't needed and must be
 182                          * disabled.
 183                          */
 184                         mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
 185                              | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
 186                 }
 187 
 188                 rpf->mult_alpha = mult;
 189         }
 190 
 191         vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
 192         vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
 193 
 194 }
 195 
 196 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
 197                                        struct vsp1_dl_list *dl)
 198 {
 199         const struct v4l2_pix_format_mplane *format = &rpf->format;
 200         struct vsp1_dl_ext_cmd *cmd;
 201         struct vsp1_extcmd_auto_fld_body *auto_fld;
 202         u32 offset_y, offset_c;
 203 
 204         cmd = vsp1_dl_get_pre_cmd(dl);
 205         if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
 206                 return;
 207 
 208         /* Re-index our auto_fld to match the current RPF. */
 209         auto_fld = cmd->data;
 210         auto_fld = &auto_fld[rpf->entity.index];
 211 
 212         auto_fld->top_y0 = rpf->mem.addr[0];
 213         auto_fld->top_c0 = rpf->mem.addr[1];
 214         auto_fld->top_c1 = rpf->mem.addr[2];
 215 
 216         offset_y = format->plane_fmt[0].bytesperline;
 217         offset_c = format->plane_fmt[1].bytesperline;
 218 
 219         auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
 220         auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
 221         auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
 222 
 223         cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
 224 }
 225 
 226 static void rpf_configure_frame(struct vsp1_entity *entity,
 227                                 struct vsp1_pipeline *pipe,
 228                                 struct vsp1_dl_list *dl,
 229                                 struct vsp1_dl_body *dlb)
 230 {
 231         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 232 
 233         vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
 234                        rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
 235         vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
 236                        (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
 237 
 238         vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
 239 }
 240 
 241 static void rpf_configure_partition(struct vsp1_entity *entity,
 242                                     struct vsp1_pipeline *pipe,
 243                                     struct vsp1_dl_list *dl,
 244                                     struct vsp1_dl_body *dlb)
 245 {
 246         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
 247         struct vsp1_rwpf_memory mem = rpf->mem;
 248         struct vsp1_device *vsp1 = rpf->entity.vsp1;
 249         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
 250         const struct v4l2_pix_format_mplane *format = &rpf->format;
 251         struct v4l2_rect crop;
 252 
 253         /*
 254          * Source size and crop offsets.
 255          *
 256          * The crop offsets correspond to the location of the crop
 257          * rectangle top left corner in the plane buffer. Only two
 258          * offsets are needed, as planes 2 and 3 always have identical
 259          * strides.
 260          */
 261         crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
 262 
 263         /*
 264          * Partition Algorithm Control
 265          *
 266          * The partition algorithm can split this frame into multiple
 267          * slices. We must scale our partition window based on the pipe
 268          * configuration to match the destination partition window.
 269          * To achieve this, we adjust our crop to provide a 'sub-crop'
 270          * matching the expected partition window. Only 'left' and
 271          * 'width' need to be adjusted.
 272          */
 273         if (pipe->partitions > 1) {
 274                 crop.width = pipe->partition->rpf.width;
 275                 crop.left += pipe->partition->rpf.left;
 276         }
 277 
 278         if (pipe->interlaced) {
 279                 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
 280                 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
 281         }
 282 
 283         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
 284                        (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
 285                        (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
 286         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
 287                        (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
 288                        (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
 289 
 290         mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
 291                      + crop.left * fmtinfo->bpp[0] / 8;
 292 
 293         if (format->num_planes > 1) {
 294                 unsigned int offset;
 295 
 296                 offset = crop.top * format->plane_fmt[1].bytesperline
 297                        + crop.left / fmtinfo->hsub
 298                        * fmtinfo->bpp[1] / 8;
 299                 mem.addr[1] += offset;
 300                 mem.addr[2] += offset;
 301         }
 302 
 303         /*
 304          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
 305          * formats. Swap the U and V planes manually in that case.
 306          */
 307         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
 308             fmtinfo->swap_uv)
 309                 swap(mem.addr[1], mem.addr[2]);
 310 
 311         /*
 312          * Interlaced pipelines will use the extended pre-cmd to process
 313          * SRCM_ADDR_{Y,C0,C1}.
 314          */
 315         if (pipe->interlaced) {
 316                 vsp1_rpf_configure_autofld(rpf, dl);
 317         } else {
 318                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
 319                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
 320                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
 321         }
 322 }
 323 
 324 static void rpf_partition(struct vsp1_entity *entity,
 325                           struct vsp1_pipeline *pipe,
 326                           struct vsp1_partition *partition,
 327                           unsigned int partition_idx,
 328                           struct vsp1_partition_window *window)
 329 {
 330         partition->rpf = *window;
 331 }
 332 
 333 static const struct vsp1_entity_operations rpf_entity_ops = {
 334         .configure_stream = rpf_configure_stream,
 335         .configure_frame = rpf_configure_frame,
 336         .configure_partition = rpf_configure_partition,
 337         .partition = rpf_partition,
 338 };
 339 
 340 /* -----------------------------------------------------------------------------
 341  * Initialization and Cleanup
 342  */
 343 
 344 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
 345 {
 346         struct vsp1_rwpf *rpf;
 347         char name[6];
 348         int ret;
 349 
 350         rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
 351         if (rpf == NULL)
 352                 return ERR_PTR(-ENOMEM);
 353 
 354         rpf->max_width = RPF_MAX_WIDTH;
 355         rpf->max_height = RPF_MAX_HEIGHT;
 356 
 357         rpf->entity.ops = &rpf_entity_ops;
 358         rpf->entity.type = VSP1_ENTITY_RPF;
 359         rpf->entity.index = index;
 360 
 361         sprintf(name, "rpf.%u", index);
 362         ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
 363                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
 364         if (ret < 0)
 365                 return ERR_PTR(ret);
 366 
 367         /* Initialize the control handler. */
 368         ret = vsp1_rwpf_init_ctrls(rpf, 0);
 369         if (ret < 0) {
 370                 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
 371                         index);
 372                 goto error;
 373         }
 374 
 375         v4l2_ctrl_handler_setup(&rpf->ctrls);
 376 
 377         return rpf;
 378 
 379 error:
 380         vsp1_entity_destroy(&rpf->entity);
 381         return ERR_PTR(ret);
 382 }

/* [<][>][^][v][top][bottom][index][help] */