root/drivers/media/platform/ti-vpe/sc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sc_dump_regs
  2. sc_set_hs_coeffs
  3. sc_set_vs_coeffs
  4. sc_config_scaler
  5. sc_create

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Scaler library
   4  *
   5  * Copyright (c) 2013 Texas Instruments Inc.
   6  *
   7  * David Griego, <dagriego@biglakesoftware.com>
   8  * Dale Farnsworth, <dale@farnsworth.org>
   9  * Archit Taneja, <archit@ti.com>
  10  */
  11 
  12 #include <linux/err.h>
  13 #include <linux/io.h>
  14 #include <linux/module.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/slab.h>
  17 
  18 #include "sc.h"
  19 #include "sc_coeff.h"
  20 
  21 void sc_dump_regs(struct sc_data *sc)
  22 {
  23         struct device *dev = &sc->pdev->dev;
  24 
  25 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \
  26         ioread32(sc->base + CFG_##r))
  27 
  28         dev_dbg(dev, "SC Registers @ %pa:\n", &sc->res->start);
  29 
  30         DUMPREG(SC0);
  31         DUMPREG(SC1);
  32         DUMPREG(SC2);
  33         DUMPREG(SC3);
  34         DUMPREG(SC4);
  35         DUMPREG(SC5);
  36         DUMPREG(SC6);
  37         DUMPREG(SC8);
  38         DUMPREG(SC9);
  39         DUMPREG(SC10);
  40         DUMPREG(SC11);
  41         DUMPREG(SC12);
  42         DUMPREG(SC13);
  43         DUMPREG(SC17);
  44         DUMPREG(SC18);
  45         DUMPREG(SC19);
  46         DUMPREG(SC20);
  47         DUMPREG(SC21);
  48         DUMPREG(SC22);
  49         DUMPREG(SC23);
  50         DUMPREG(SC24);
  51         DUMPREG(SC25);
  52 
  53 #undef DUMPREG
  54 }
  55 EXPORT_SYMBOL(sc_dump_regs);
  56 
  57 /*
  58  * set the horizontal scaler coefficients according to the ratio of output to
  59  * input widths, after accounting for up to two levels of decimation
  60  */
  61 void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
  62                 unsigned int dst_w)
  63 {
  64         int sixteenths;
  65         int idx;
  66         int i, j;
  67         u16 *coeff_h = addr;
  68         const u16 *cp;
  69 
  70         if (dst_w > src_w) {
  71                 idx = HS_UP_SCALE;
  72         } else {
  73                 if ((dst_w << 1) < src_w)
  74                         dst_w <<= 1;    /* first level decimation */
  75                 if ((dst_w << 1) < src_w)
  76                         dst_w <<= 1;    /* second level decimation */
  77 
  78                 if (dst_w == src_w) {
  79                         idx = HS_LE_16_16_SCALE;
  80                 } else {
  81                         sixteenths = (dst_w << 4) / src_w;
  82                         if (sixteenths < 8)
  83                                 sixteenths = 8;
  84                         idx = HS_LT_9_16_SCALE + sixteenths - 8;
  85                 }
  86         }
  87 
  88         cp = scaler_hs_coeffs[idx];
  89 
  90         for (i = 0; i < SC_NUM_PHASES * 2; i++) {
  91                 for (j = 0; j < SC_H_NUM_TAPS; j++)
  92                         *coeff_h++ = *cp++;
  93                 /*
  94                  * for each phase, the scaler expects space for 8 coefficients
  95                  * in it's memory. For the horizontal scaler, we copy the first
  96                  * 7 coefficients and skip the last slot to move to the next
  97                  * row to hold coefficients for the next phase
  98                  */
  99                 coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
 100         }
 101 
 102         sc->load_coeff_h = true;
 103 }
 104 EXPORT_SYMBOL(sc_set_hs_coeffs);
 105 
 106 /*
 107  * set the vertical scaler coefficients according to the ratio of output to
 108  * input heights
 109  */
 110 void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
 111                 unsigned int dst_h)
 112 {
 113         int sixteenths;
 114         int idx;
 115         int i, j;
 116         u16 *coeff_v = addr;
 117         const u16 *cp;
 118 
 119         if (dst_h > src_h) {
 120                 idx = VS_UP_SCALE;
 121         } else if (dst_h == src_h) {
 122                 idx = VS_1_TO_1_SCALE;
 123         } else {
 124                 sixteenths = (dst_h << 4) / src_h;
 125                 if (sixteenths < 8)
 126                         sixteenths = 8;
 127                 idx = VS_LT_9_16_SCALE + sixteenths - 8;
 128         }
 129 
 130         cp = scaler_vs_coeffs[idx];
 131 
 132         for (i = 0; i < SC_NUM_PHASES * 2; i++) {
 133                 for (j = 0; j < SC_V_NUM_TAPS; j++)
 134                         *coeff_v++ = *cp++;
 135                 /*
 136                  * for the vertical scaler, we copy the first 5 coefficients and
 137                  * skip the last 3 slots to move to the next row to hold
 138                  * coefficients for the next phase
 139                  */
 140                 coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
 141         }
 142 
 143         sc->load_coeff_v = true;
 144 }
 145 EXPORT_SYMBOL(sc_set_vs_coeffs);
 146 
 147 void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
 148                 u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
 149                 unsigned int dst_w, unsigned int dst_h)
 150 {
 151         struct device *dev = &sc->pdev->dev;
 152         u32 val;
 153         int dcm_x, dcm_shift;
 154         bool use_rav;
 155         unsigned long lltmp;
 156         u32 lin_acc_inc, lin_acc_inc_u;
 157         u32 col_acc_offset;
 158         u16 factor = 0;
 159         int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
 160         u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
 161         /*
 162          * location of SC register in payload memory with respect to the first
 163          * register in the mmr address data block
 164          */
 165         u32 *sc_reg9 = sc_reg8 + 1;
 166         u32 *sc_reg12 = sc_reg8 + 4;
 167         u32 *sc_reg13 = sc_reg8 + 5;
 168         u32 *sc_reg24 = sc_reg17 + 7;
 169 
 170         val = sc_reg0[0];
 171 
 172         /* clear all the features(they may get enabled elsewhere later) */
 173         val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
 174                 CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
 175                 CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
 176                 CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
 177 
 178         if (src_w == dst_w && src_h == dst_h) {
 179                 val |= CFG_SC_BYPASS;
 180                 sc_reg0[0] = val;
 181                 return;
 182         }
 183 
 184         /* we only support linear scaling for now */
 185         val |= CFG_LINEAR;
 186 
 187         /* configure horizontal scaler */
 188 
 189         /* enable 2X or 4X decimation */
 190         dcm_x = src_w / dst_w;
 191         if (dcm_x > 4) {
 192                 val |= CFG_DCM_4X;
 193                 dcm_shift = 2;
 194         } else if (dcm_x > 2) {
 195                 val |= CFG_DCM_2X;
 196                 dcm_shift = 1;
 197         } else {
 198                 dcm_shift = 0;
 199         }
 200 
 201         lltmp = dst_w - 1;
 202         lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
 203         lin_acc_inc_u = 0;
 204         col_acc_offset = 0;
 205 
 206         dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
 207                 src_w, dst_w, dcm_shift == 2 ? "4x" :
 208                 (dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
 209 
 210         /* configure vertical scaler */
 211 
 212         /* use RAV for vertical scaler if vertical downscaling is > 4x */
 213         if (dst_h < (src_h >> 2)) {
 214                 use_rav = true;
 215                 val |= CFG_USE_RAV;
 216         } else {
 217                 use_rav = false;
 218         }
 219 
 220         if (use_rav) {
 221                 /* use RAV */
 222                 factor = (u16) ((dst_h << 10) / src_h);
 223 
 224                 row_acc_init_rav = factor + ((1 + factor) >> 1);
 225                 if (row_acc_init_rav >= 1024)
 226                         row_acc_init_rav -= 1024;
 227 
 228                 row_acc_init_rav_b = row_acc_init_rav +
 229                                 (1 + (row_acc_init_rav >> 1)) -
 230                                 (1024 >> 1);
 231 
 232                 if (row_acc_init_rav_b < 0) {
 233                         row_acc_init_rav_b += row_acc_init_rav;
 234                         row_acc_init_rav *= 2;
 235                 }
 236 
 237                 dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
 238                         src_h, dst_h, factor, row_acc_init_rav,
 239                         row_acc_init_rav_b);
 240         } else {
 241                 /* use polyphase */
 242                 row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
 243                 row_acc_offset = 0;
 244                 row_acc_offset_b = 0;
 245 
 246                 dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
 247                         src_h, dst_h, row_acc_inc);
 248         }
 249 
 250 
 251         sc_reg0[0] = val;
 252         sc_reg0[1] = row_acc_inc;
 253         sc_reg0[2] = row_acc_offset;
 254         sc_reg0[3] = row_acc_offset_b;
 255 
 256         sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
 257                         CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
 258                         (dst_h << CFG_TAR_H_SHIFT);
 259 
 260         sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
 261 
 262         sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
 263                 (row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
 264 
 265         *sc_reg9 = lin_acc_inc;
 266 
 267         *sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
 268 
 269         *sc_reg13 = factor;
 270 
 271         *sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
 272 }
 273 EXPORT_SYMBOL(sc_config_scaler);
 274 
 275 struct sc_data *sc_create(struct platform_device *pdev, const char *res_name)
 276 {
 277         struct sc_data *sc;
 278 
 279         dev_dbg(&pdev->dev, "sc_create\n");
 280 
 281         sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
 282         if (!sc) {
 283                 dev_err(&pdev->dev, "couldn't alloc sc_data\n");
 284                 return ERR_PTR(-ENOMEM);
 285         }
 286 
 287         sc->pdev = pdev;
 288 
 289         sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 290         if (!sc->res) {
 291                 dev_err(&pdev->dev, "missing '%s' platform resources data\n",
 292                         res_name);
 293                 return ERR_PTR(-ENODEV);
 294         }
 295 
 296         sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
 297         if (IS_ERR(sc->base)) {
 298                 dev_err(&pdev->dev, "failed to ioremap\n");
 299                 return ERR_CAST(sc->base);
 300         }
 301 
 302         return sc;
 303 }
 304 EXPORT_SYMBOL(sc_create);
 305 
 306 MODULE_DESCRIPTION("TI VIP/VPE Scaler");
 307 MODULE_AUTHOR("Texas Instruments Inc.");
 308 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */