root/drivers/media/platform/omap3isp/isp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. omap3isp_flush
  2. isp_xclk_update
  3. isp_xclk_prepare
  4. isp_xclk_unprepare
  5. isp_xclk_enable
  6. isp_xclk_disable
  7. isp_xclk_recalc_rate
  8. isp_xclk_calc_divider
  9. isp_xclk_round_rate
  10. isp_xclk_set_rate
  11. isp_xclk_src_get
  12. isp_xclk_init
  13. isp_xclk_cleanup
  14. isp_enable_interrupts
  15. isp_disable_interrupts
  16. isp_core_init
  17. omap3isp_configure_bridge
  18. omap3isp_hist_dma_done
  19. isp_isr_dbg
  20. isp_isr_sbl
  21. isp_isr
  22. isp_pipeline_enable
  23. isp_pipeline_wait_resizer
  24. isp_pipeline_wait_preview
  25. isp_pipeline_wait_ccdc
  26. isp_pipeline_wait
  27. isp_pipeline_disable
  28. omap3isp_pipeline_set_stream
  29. omap3isp_pipeline_cancel_stream
  30. isp_pipeline_resume
  31. isp_pipeline_suspend
  32. isp_pipeline_is_last
  33. isp_suspend_module_pipeline
  34. isp_resume_module_pipeline
  35. isp_suspend_modules
  36. isp_resume_modules
  37. isp_reset
  38. isp_save_context
  39. isp_restore_context
  40. isp_save_ctx
  41. isp_restore_ctx
  42. omap3isp_sbl_enable
  43. omap3isp_sbl_disable
  44. omap3isp_module_sync_idle
  45. omap3isp_module_sync_is_stopping
  46. __isp_subclk_update
  47. omap3isp_subclk_enable
  48. omap3isp_subclk_disable
  49. isp_enable_clocks
  50. isp_disable_clocks
  51. isp_get_clocks
  52. __omap3isp_get
  53. omap3isp_get
  54. __omap3isp_put
  55. omap3isp_put
  56. omap3isp_print_status
  57. isp_pm_prepare
  58. isp_pm_suspend
  59. isp_pm_resume
  60. isp_pm_complete
  61. isp_unregister_entities
  62. isp_link_entity
  63. isp_register_entities
  64. isp_create_links
  65. isp_cleanup_modules
  66. isp_initialize_modules
  67. isp_detach_iommu
  68. isp_attach_iommu
  69. isp_remove
  70. isp_subdev_notifier_complete
  71. isp_parse_of_parallel_endpoint
  72. isp_parse_of_csi2_endpoint
  73. isp_parse_of_csi1_endpoint
  74. isp_alloc_isd
  75. isp_parse_of_endpoints
  76. isp_probe

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * isp.c
   4  *
   5  * TI OMAP3 ISP - Core
   6  *
   7  * Copyright (C) 2006-2010 Nokia Corporation
   8  * Copyright (C) 2007-2009 Texas Instruments, Inc.
   9  *
  10  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  11  *           Sakari Ailus <sakari.ailus@iki.fi>
  12  *
  13  * Contributors:
  14  *      Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  15  *      Sakari Ailus <sakari.ailus@iki.fi>
  16  *      David Cohen <dacohen@gmail.com>
  17  *      Stanimir Varbanov <svarbanov@mm-sol.com>
  18  *      Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
  19  *      Tuukka Toivonen <tuukkat76@gmail.com>
  20  *      Sergio Aguirre <saaguirre@ti.com>
  21  *      Antti Koskipaa <akoskipa@gmail.com>
  22  *      Ivan T. Ivanov <iivanov@mm-sol.com>
  23  *      RaniSuneela <r-m@ti.com>
  24  *      Atanas Filipov <afilipov@mm-sol.com>
  25  *      Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
  26  *      Hiroshi DOYU <hiroshi.doyu@nokia.com>
  27  *      Nayden Kanchev <nkanchev@mm-sol.com>
  28  *      Phil Carmody <ext-phil.2.carmody@nokia.com>
  29  *      Artem Bityutskiy <artem.bityutskiy@nokia.com>
  30  *      Dominic Curran <dcurran@ti.com>
  31  *      Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
  32  *      Pallavi Kulkarni <p-kulkarni@ti.com>
  33  *      Vaibhav Hiremath <hvaibhav@ti.com>
  34  *      Mohit Jalori <mjalori@ti.com>
  35  *      Sameer Venkatraman <sameerv@ti.com>
  36  *      Senthilvadivu Guruswamy <svadivu@ti.com>
  37  *      Thara Gopinath <thara@ti.com>
  38  *      Toni Leinonen <toni.leinonen@nokia.com>
  39  *      Troy Laramy <t-laramy@ti.com>
  40  */
  41 
  42 #include <asm/cacheflush.h>
  43 
  44 #include <linux/clk.h>
  45 #include <linux/clkdev.h>
  46 #include <linux/delay.h>
  47 #include <linux/device.h>
  48 #include <linux/dma-mapping.h>
  49 #include <linux/i2c.h>
  50 #include <linux/interrupt.h>
  51 #include <linux/mfd/syscon.h>
  52 #include <linux/module.h>
  53 #include <linux/omap-iommu.h>
  54 #include <linux/platform_device.h>
  55 #include <linux/property.h>
  56 #include <linux/regulator/consumer.h>
  57 #include <linux/slab.h>
  58 #include <linux/sched.h>
  59 #include <linux/vmalloc.h>
  60 
  61 #ifdef CONFIG_ARM_DMA_USE_IOMMU
  62 #include <asm/dma-iommu.h>
  63 #endif
  64 
  65 #include <media/v4l2-common.h>
  66 #include <media/v4l2-fwnode.h>
  67 #include <media/v4l2-device.h>
  68 #include <media/v4l2-mc.h>
  69 
  70 #include "isp.h"
  71 #include "ispreg.h"
  72 #include "ispccdc.h"
  73 #include "isppreview.h"
  74 #include "ispresizer.h"
  75 #include "ispcsi2.h"
  76 #include "ispccp2.h"
  77 #include "isph3a.h"
  78 #include "isphist.h"
  79 
  80 static unsigned int autoidle;
  81 module_param(autoidle, int, 0444);
  82 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
  83 
  84 static void isp_save_ctx(struct isp_device *isp);
  85 
  86 static void isp_restore_ctx(struct isp_device *isp);
  87 
  88 static const struct isp_res_mapping isp_res_maps[] = {
  89         {
  90                 .isp_rev = ISP_REVISION_2_0,
  91                 .offset = {
  92                         /* first MMIO area */
  93                         0x0000, /* base, len 0x0070 */
  94                         0x0400, /* ccp2, len 0x01f0 */
  95                         0x0600, /* ccdc, len 0x00a8 */
  96                         0x0a00, /* hist, len 0x0048 */
  97                         0x0c00, /* h3a, len 0x0060 */
  98                         0x0e00, /* preview, len 0x00a0 */
  99                         0x1000, /* resizer, len 0x00ac */
 100                         0x1200, /* sbl, len 0x00fc */
 101                         /* second MMIO area */
 102                         0x0000, /* csi2a, len 0x0170 */
 103                         0x0170, /* csiphy2, len 0x000c */
 104                 },
 105                 .phy_type = ISP_PHY_TYPE_3430,
 106         },
 107         {
 108                 .isp_rev = ISP_REVISION_15_0,
 109                 .offset = {
 110                         /* first MMIO area */
 111                         0x0000, /* base, len 0x0070 */
 112                         0x0400, /* ccp2, len 0x01f0 */
 113                         0x0600, /* ccdc, len 0x00a8 */
 114                         0x0a00, /* hist, len 0x0048 */
 115                         0x0c00, /* h3a, len 0x0060 */
 116                         0x0e00, /* preview, len 0x00a0 */
 117                         0x1000, /* resizer, len 0x00ac */
 118                         0x1200, /* sbl, len 0x00fc */
 119                         /* second MMIO area */
 120                         0x0000, /* csi2a, len 0x0170 (1st area) */
 121                         0x0170, /* csiphy2, len 0x000c */
 122                         0x01c0, /* csi2a, len 0x0040 (2nd area) */
 123                         0x0400, /* csi2c, len 0x0170 (1st area) */
 124                         0x0570, /* csiphy1, len 0x000c */
 125                         0x05c0, /* csi2c, len 0x0040 (2nd area) */
 126                 },
 127                 .phy_type = ISP_PHY_TYPE_3630,
 128         },
 129 };
 130 
 131 /* Structure for saving/restoring ISP module registers */
 132 static struct isp_reg isp_reg_list[] = {
 133         {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
 134         {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
 135         {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
 136         {0, ISP_TOK_TERM, 0}
 137 };
 138 
 139 /*
 140  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
 141  * @isp: OMAP3 ISP device
 142  *
 143  * In order to force posting of pending writes, we need to write and
 144  * readback the same register, in this case the revision register.
 145  *
 146  * See this link for reference:
 147  *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
 148  */
 149 void omap3isp_flush(struct isp_device *isp)
 150 {
 151         isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
 152         isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
 153 }
 154 
 155 /* -----------------------------------------------------------------------------
 156  * XCLK
 157  */
 158 
 159 #define to_isp_xclk(_hw)        container_of(_hw, struct isp_xclk, hw)
 160 
 161 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
 162 {
 163         switch (xclk->id) {
 164         case ISP_XCLK_A:
 165                 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
 166                                 ISPTCTRL_CTRL_DIVA_MASK,
 167                                 divider << ISPTCTRL_CTRL_DIVA_SHIFT);
 168                 break;
 169         case ISP_XCLK_B:
 170                 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
 171                                 ISPTCTRL_CTRL_DIVB_MASK,
 172                                 divider << ISPTCTRL_CTRL_DIVB_SHIFT);
 173                 break;
 174         }
 175 }
 176 
 177 static int isp_xclk_prepare(struct clk_hw *hw)
 178 {
 179         struct isp_xclk *xclk = to_isp_xclk(hw);
 180 
 181         omap3isp_get(xclk->isp);
 182 
 183         return 0;
 184 }
 185 
 186 static void isp_xclk_unprepare(struct clk_hw *hw)
 187 {
 188         struct isp_xclk *xclk = to_isp_xclk(hw);
 189 
 190         omap3isp_put(xclk->isp);
 191 }
 192 
 193 static int isp_xclk_enable(struct clk_hw *hw)
 194 {
 195         struct isp_xclk *xclk = to_isp_xclk(hw);
 196         unsigned long flags;
 197 
 198         spin_lock_irqsave(&xclk->lock, flags);
 199         isp_xclk_update(xclk, xclk->divider);
 200         xclk->enabled = true;
 201         spin_unlock_irqrestore(&xclk->lock, flags);
 202 
 203         return 0;
 204 }
 205 
 206 static void isp_xclk_disable(struct clk_hw *hw)
 207 {
 208         struct isp_xclk *xclk = to_isp_xclk(hw);
 209         unsigned long flags;
 210 
 211         spin_lock_irqsave(&xclk->lock, flags);
 212         isp_xclk_update(xclk, 0);
 213         xclk->enabled = false;
 214         spin_unlock_irqrestore(&xclk->lock, flags);
 215 }
 216 
 217 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
 218                                           unsigned long parent_rate)
 219 {
 220         struct isp_xclk *xclk = to_isp_xclk(hw);
 221 
 222         return parent_rate / xclk->divider;
 223 }
 224 
 225 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
 226 {
 227         u32 divider;
 228 
 229         if (*rate >= parent_rate) {
 230                 *rate = parent_rate;
 231                 return ISPTCTRL_CTRL_DIV_BYPASS;
 232         }
 233 
 234         if (*rate == 0)
 235                 *rate = 1;
 236 
 237         divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
 238         if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
 239                 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
 240 
 241         *rate = parent_rate / divider;
 242         return divider;
 243 }
 244 
 245 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
 246                                 unsigned long *parent_rate)
 247 {
 248         isp_xclk_calc_divider(&rate, *parent_rate);
 249         return rate;
 250 }
 251 
 252 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
 253                              unsigned long parent_rate)
 254 {
 255         struct isp_xclk *xclk = to_isp_xclk(hw);
 256         unsigned long flags;
 257         u32 divider;
 258 
 259         divider = isp_xclk_calc_divider(&rate, parent_rate);
 260 
 261         spin_lock_irqsave(&xclk->lock, flags);
 262 
 263         xclk->divider = divider;
 264         if (xclk->enabled)
 265                 isp_xclk_update(xclk, divider);
 266 
 267         spin_unlock_irqrestore(&xclk->lock, flags);
 268 
 269         dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
 270                 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
 271         return 0;
 272 }
 273 
 274 static const struct clk_ops isp_xclk_ops = {
 275         .prepare = isp_xclk_prepare,
 276         .unprepare = isp_xclk_unprepare,
 277         .enable = isp_xclk_enable,
 278         .disable = isp_xclk_disable,
 279         .recalc_rate = isp_xclk_recalc_rate,
 280         .round_rate = isp_xclk_round_rate,
 281         .set_rate = isp_xclk_set_rate,
 282 };
 283 
 284 static const char *isp_xclk_parent_name = "cam_mclk";
 285 
 286 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
 287 {
 288         unsigned int idx = clkspec->args[0];
 289         struct isp_device *isp = data;
 290 
 291         if (idx >= ARRAY_SIZE(isp->xclks))
 292                 return ERR_PTR(-ENOENT);
 293 
 294         return isp->xclks[idx].clk;
 295 }
 296 
 297 static int isp_xclk_init(struct isp_device *isp)
 298 {
 299         struct device_node *np = isp->dev->of_node;
 300         struct clk_init_data init = {};
 301         unsigned int i;
 302 
 303         for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
 304                 isp->xclks[i].clk = ERR_PTR(-EINVAL);
 305 
 306         for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
 307                 struct isp_xclk *xclk = &isp->xclks[i];
 308 
 309                 xclk->isp = isp;
 310                 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
 311                 xclk->divider = 1;
 312                 spin_lock_init(&xclk->lock);
 313 
 314                 init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
 315                 init.ops = &isp_xclk_ops;
 316                 init.parent_names = &isp_xclk_parent_name;
 317                 init.num_parents = 1;
 318 
 319                 xclk->hw.init = &init;
 320                 /*
 321                  * The first argument is NULL in order to avoid circular
 322                  * reference, as this driver takes reference on the
 323                  * sensor subdevice modules and the sensors would take
 324                  * reference on this module through clk_get().
 325                  */
 326                 xclk->clk = clk_register(NULL, &xclk->hw);
 327                 if (IS_ERR(xclk->clk))
 328                         return PTR_ERR(xclk->clk);
 329         }
 330 
 331         if (np)
 332                 of_clk_add_provider(np, isp_xclk_src_get, isp);
 333 
 334         return 0;
 335 }
 336 
 337 static void isp_xclk_cleanup(struct isp_device *isp)
 338 {
 339         struct device_node *np = isp->dev->of_node;
 340         unsigned int i;
 341 
 342         if (np)
 343                 of_clk_del_provider(np);
 344 
 345         for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
 346                 struct isp_xclk *xclk = &isp->xclks[i];
 347 
 348                 if (!IS_ERR(xclk->clk))
 349                         clk_unregister(xclk->clk);
 350         }
 351 }
 352 
 353 /* -----------------------------------------------------------------------------
 354  * Interrupts
 355  */
 356 
 357 /*
 358  * isp_enable_interrupts - Enable ISP interrupts.
 359  * @isp: OMAP3 ISP device
 360  */
 361 static void isp_enable_interrupts(struct isp_device *isp)
 362 {
 363         static const u32 irq = IRQ0ENABLE_CSIA_IRQ
 364                              | IRQ0ENABLE_CSIB_IRQ
 365                              | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
 366                              | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
 367                              | IRQ0ENABLE_CCDC_VD0_IRQ
 368                              | IRQ0ENABLE_CCDC_VD1_IRQ
 369                              | IRQ0ENABLE_HS_VS_IRQ
 370                              | IRQ0ENABLE_HIST_DONE_IRQ
 371                              | IRQ0ENABLE_H3A_AWB_DONE_IRQ
 372                              | IRQ0ENABLE_H3A_AF_DONE_IRQ
 373                              | IRQ0ENABLE_PRV_DONE_IRQ
 374                              | IRQ0ENABLE_RSZ_DONE_IRQ;
 375 
 376         isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
 377         isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
 378 }
 379 
 380 /*
 381  * isp_disable_interrupts - Disable ISP interrupts.
 382  * @isp: OMAP3 ISP device
 383  */
 384 static void isp_disable_interrupts(struct isp_device *isp)
 385 {
 386         isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
 387 }
 388 
 389 /*
 390  * isp_core_init - ISP core settings
 391  * @isp: OMAP3 ISP device
 392  * @idle: Consider idle state.
 393  *
 394  * Set the power settings for the ISP and SBL bus and configure the HS/VS
 395  * interrupt source.
 396  *
 397  * We need to configure the HS/VS interrupt source before interrupts get
 398  * enabled, as the sensor might be free-running and the ISP default setting
 399  * (HS edge) would put an unnecessary burden on the CPU.
 400  */
 401 static void isp_core_init(struct isp_device *isp, int idle)
 402 {
 403         isp_reg_writel(isp,
 404                        ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
 405                                 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
 406                         ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
 407                         ((isp->revision == ISP_REVISION_15_0) ?
 408                           ISP_SYSCONFIG_AUTOIDLE : 0),
 409                        OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
 410 
 411         isp_reg_writel(isp,
 412                        (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
 413                        ISPCTRL_SYNC_DETECT_VSRISE,
 414                        OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
 415 }
 416 
 417 /*
 418  * Configure the bridge and lane shifter. Valid inputs are
 419  *
 420  * CCDC_INPUT_PARALLEL: Parallel interface
 421  * CCDC_INPUT_CSI2A: CSI2a receiver
 422  * CCDC_INPUT_CCP2B: CCP2b receiver
 423  * CCDC_INPUT_CSI2C: CSI2c receiver
 424  *
 425  * The bridge and lane shifter are configured according to the selected input
 426  * and the ISP platform data.
 427  */
 428 void omap3isp_configure_bridge(struct isp_device *isp,
 429                                enum ccdc_input_entity input,
 430                                const struct isp_parallel_cfg *parcfg,
 431                                unsigned int shift, unsigned int bridge)
 432 {
 433         u32 ispctrl_val;
 434 
 435         ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
 436         ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
 437         ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
 438         ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
 439         ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
 440         ispctrl_val |= bridge;
 441 
 442         switch (input) {
 443         case CCDC_INPUT_PARALLEL:
 444                 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
 445                 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
 446                 shift += parcfg->data_lane_shift;
 447                 break;
 448 
 449         case CCDC_INPUT_CSI2A:
 450                 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
 451                 break;
 452 
 453         case CCDC_INPUT_CCP2B:
 454                 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
 455                 break;
 456 
 457         case CCDC_INPUT_CSI2C:
 458                 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
 459                 break;
 460 
 461         default:
 462                 return;
 463         }
 464 
 465         ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
 466 
 467         isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
 468 }
 469 
 470 void omap3isp_hist_dma_done(struct isp_device *isp)
 471 {
 472         if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
 473             omap3isp_stat_pcr_busy(&isp->isp_hist)) {
 474                 /* Histogram cannot be enabled in this frame anymore */
 475                 atomic_set(&isp->isp_hist.buf_err, 1);
 476                 dev_dbg(isp->dev,
 477                         "hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
 478         }
 479 }
 480 
 481 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
 482 {
 483         static const char *name[] = {
 484                 "CSIA_IRQ",
 485                 "res1",
 486                 "res2",
 487                 "CSIB_LCM_IRQ",
 488                 "CSIB_IRQ",
 489                 "res5",
 490                 "res6",
 491                 "res7",
 492                 "CCDC_VD0_IRQ",
 493                 "CCDC_VD1_IRQ",
 494                 "CCDC_VD2_IRQ",
 495                 "CCDC_ERR_IRQ",
 496                 "H3A_AF_DONE_IRQ",
 497                 "H3A_AWB_DONE_IRQ",
 498                 "res14",
 499                 "res15",
 500                 "HIST_DONE_IRQ",
 501                 "CCDC_LSC_DONE",
 502                 "CCDC_LSC_PREFETCH_COMPLETED",
 503                 "CCDC_LSC_PREFETCH_ERROR",
 504                 "PRV_DONE_IRQ",
 505                 "CBUFF_IRQ",
 506                 "res22",
 507                 "res23",
 508                 "RSZ_DONE_IRQ",
 509                 "OVF_IRQ",
 510                 "res26",
 511                 "res27",
 512                 "MMU_ERR_IRQ",
 513                 "OCP_ERR_IRQ",
 514                 "SEC_ERR_IRQ",
 515                 "HS_VS_IRQ",
 516         };
 517         int i;
 518 
 519         dev_dbg(isp->dev, "ISP IRQ: ");
 520 
 521         for (i = 0; i < ARRAY_SIZE(name); i++) {
 522                 if ((1 << i) & irqstatus)
 523                         printk(KERN_CONT "%s ", name[i]);
 524         }
 525         printk(KERN_CONT "\n");
 526 }
 527 
 528 static void isp_isr_sbl(struct isp_device *isp)
 529 {
 530         struct device *dev = isp->dev;
 531         struct isp_pipeline *pipe;
 532         u32 sbl_pcr;
 533 
 534         /*
 535          * Handle shared buffer logic overflows for video buffers.
 536          * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
 537          */
 538         sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
 539         isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
 540         sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
 541 
 542         if (sbl_pcr)
 543                 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
 544 
 545         if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
 546                 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
 547                 if (pipe != NULL)
 548                         pipe->error = true;
 549         }
 550 
 551         if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
 552                 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
 553                 if (pipe != NULL)
 554                         pipe->error = true;
 555         }
 556 
 557         if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
 558                 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
 559                 if (pipe != NULL)
 560                         pipe->error = true;
 561         }
 562 
 563         if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
 564                 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
 565                 if (pipe != NULL)
 566                         pipe->error = true;
 567         }
 568 
 569         if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
 570                        | ISPSBL_PCR_RSZ2_WBL_OVF
 571                        | ISPSBL_PCR_RSZ3_WBL_OVF
 572                        | ISPSBL_PCR_RSZ4_WBL_OVF)) {
 573                 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
 574                 if (pipe != NULL)
 575                         pipe->error = true;
 576         }
 577 
 578         if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
 579                 omap3isp_stat_sbl_overflow(&isp->isp_af);
 580 
 581         if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
 582                 omap3isp_stat_sbl_overflow(&isp->isp_aewb);
 583 }
 584 
 585 /*
 586  * isp_isr - Interrupt Service Routine for Camera ISP module.
 587  * @irq: Not used currently.
 588  * @_isp: Pointer to the OMAP3 ISP device
 589  *
 590  * Handles the corresponding callback if plugged in.
 591  */
 592 static irqreturn_t isp_isr(int irq, void *_isp)
 593 {
 594         static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
 595                                        IRQ0STATUS_CCDC_LSC_DONE_IRQ |
 596                                        IRQ0STATUS_CCDC_VD0_IRQ |
 597                                        IRQ0STATUS_CCDC_VD1_IRQ |
 598                                        IRQ0STATUS_HS_VS_IRQ;
 599         struct isp_device *isp = _isp;
 600         u32 irqstatus;
 601 
 602         irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
 603         isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
 604 
 605         isp_isr_sbl(isp);
 606 
 607         if (irqstatus & IRQ0STATUS_CSIA_IRQ)
 608                 omap3isp_csi2_isr(&isp->isp_csi2a);
 609 
 610         if (irqstatus & IRQ0STATUS_CSIB_IRQ)
 611                 omap3isp_ccp2_isr(&isp->isp_ccp2);
 612 
 613         if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
 614                 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
 615                         omap3isp_preview_isr_frame_sync(&isp->isp_prev);
 616                 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
 617                         omap3isp_resizer_isr_frame_sync(&isp->isp_res);
 618                 omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
 619                 omap3isp_stat_isr_frame_sync(&isp->isp_af);
 620                 omap3isp_stat_isr_frame_sync(&isp->isp_hist);
 621         }
 622 
 623         if (irqstatus & ccdc_events)
 624                 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
 625 
 626         if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
 627                 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
 628                         omap3isp_resizer_isr_frame_sync(&isp->isp_res);
 629                 omap3isp_preview_isr(&isp->isp_prev);
 630         }
 631 
 632         if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
 633                 omap3isp_resizer_isr(&isp->isp_res);
 634 
 635         if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
 636                 omap3isp_stat_isr(&isp->isp_aewb);
 637 
 638         if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
 639                 omap3isp_stat_isr(&isp->isp_af);
 640 
 641         if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
 642                 omap3isp_stat_isr(&isp->isp_hist);
 643 
 644         omap3isp_flush(isp);
 645 
 646 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
 647         isp_isr_dbg(isp, irqstatus);
 648 #endif
 649 
 650         return IRQ_HANDLED;
 651 }
 652 
 653 static const struct media_device_ops isp_media_ops = {
 654         .link_notify = v4l2_pipeline_link_notify,
 655 };
 656 
 657 /* -----------------------------------------------------------------------------
 658  * Pipeline stream management
 659  */
 660 
 661 /*
 662  * isp_pipeline_enable - Enable streaming on a pipeline
 663  * @pipe: ISP pipeline
 664  * @mode: Stream mode (single shot or continuous)
 665  *
 666  * Walk the entities chain starting at the pipeline output video node and start
 667  * all modules in the chain in the given mode.
 668  *
 669  * Return 0 if successful, or the return value of the failed video::s_stream
 670  * operation otherwise.
 671  */
 672 static int isp_pipeline_enable(struct isp_pipeline *pipe,
 673                                enum isp_pipeline_stream_state mode)
 674 {
 675         struct isp_device *isp = pipe->output->isp;
 676         struct media_entity *entity;
 677         struct media_pad *pad;
 678         struct v4l2_subdev *subdev;
 679         unsigned long flags;
 680         int ret;
 681 
 682         /* Refuse to start streaming if an entity included in the pipeline has
 683          * crashed. This check must be performed before the loop below to avoid
 684          * starting entities if the pipeline won't start anyway (those entities
 685          * would then likely fail to stop, making the problem worse).
 686          */
 687         if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
 688                 return -EIO;
 689 
 690         spin_lock_irqsave(&pipe->lock, flags);
 691         pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
 692         spin_unlock_irqrestore(&pipe->lock, flags);
 693 
 694         pipe->do_propagation = false;
 695 
 696         entity = &pipe->output->video.entity;
 697         while (1) {
 698                 pad = &entity->pads[0];
 699                 if (!(pad->flags & MEDIA_PAD_FL_SINK))
 700                         break;
 701 
 702                 pad = media_entity_remote_pad(pad);
 703                 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
 704                         break;
 705 
 706                 entity = pad->entity;
 707                 subdev = media_entity_to_v4l2_subdev(entity);
 708 
 709                 ret = v4l2_subdev_call(subdev, video, s_stream, mode);
 710                 if (ret < 0 && ret != -ENOIOCTLCMD)
 711                         return ret;
 712 
 713                 if (subdev == &isp->isp_ccdc.subdev) {
 714                         v4l2_subdev_call(&isp->isp_aewb.subdev, video,
 715                                         s_stream, mode);
 716                         v4l2_subdev_call(&isp->isp_af.subdev, video,
 717                                         s_stream, mode);
 718                         v4l2_subdev_call(&isp->isp_hist.subdev, video,
 719                                         s_stream, mode);
 720                         pipe->do_propagation = true;
 721                 }
 722 
 723                 /* Stop at the first external sub-device. */
 724                 if (subdev->dev != isp->dev)
 725                         break;
 726         }
 727 
 728         return 0;
 729 }
 730 
 731 static int isp_pipeline_wait_resizer(struct isp_device *isp)
 732 {
 733         return omap3isp_resizer_busy(&isp->isp_res);
 734 }
 735 
 736 static int isp_pipeline_wait_preview(struct isp_device *isp)
 737 {
 738         return omap3isp_preview_busy(&isp->isp_prev);
 739 }
 740 
 741 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
 742 {
 743         return omap3isp_stat_busy(&isp->isp_af)
 744             || omap3isp_stat_busy(&isp->isp_aewb)
 745             || omap3isp_stat_busy(&isp->isp_hist)
 746             || omap3isp_ccdc_busy(&isp->isp_ccdc);
 747 }
 748 
 749 #define ISP_STOP_TIMEOUT        msecs_to_jiffies(1000)
 750 
 751 static int isp_pipeline_wait(struct isp_device *isp,
 752                              int(*busy)(struct isp_device *isp))
 753 {
 754         unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
 755 
 756         while (!time_after(jiffies, timeout)) {
 757                 if (!busy(isp))
 758                         return 0;
 759         }
 760 
 761         return 1;
 762 }
 763 
 764 /*
 765  * isp_pipeline_disable - Disable streaming on a pipeline
 766  * @pipe: ISP pipeline
 767  *
 768  * Walk the entities chain starting at the pipeline output video node and stop
 769  * all modules in the chain. Wait synchronously for the modules to be stopped if
 770  * necessary.
 771  *
 772  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
 773  * can't be stopped (in which case a software reset of the ISP is probably
 774  * necessary).
 775  */
 776 static int isp_pipeline_disable(struct isp_pipeline *pipe)
 777 {
 778         struct isp_device *isp = pipe->output->isp;
 779         struct media_entity *entity;
 780         struct media_pad *pad;
 781         struct v4l2_subdev *subdev;
 782         int failure = 0;
 783         int ret;
 784 
 785         /*
 786          * We need to stop all the modules after CCDC first or they'll
 787          * never stop since they may not get a full frame from CCDC.
 788          */
 789         entity = &pipe->output->video.entity;
 790         while (1) {
 791                 pad = &entity->pads[0];
 792                 if (!(pad->flags & MEDIA_PAD_FL_SINK))
 793                         break;
 794 
 795                 pad = media_entity_remote_pad(pad);
 796                 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
 797                         break;
 798 
 799                 entity = pad->entity;
 800                 subdev = media_entity_to_v4l2_subdev(entity);
 801 
 802                 if (subdev == &isp->isp_ccdc.subdev) {
 803                         v4l2_subdev_call(&isp->isp_aewb.subdev,
 804                                          video, s_stream, 0);
 805                         v4l2_subdev_call(&isp->isp_af.subdev,
 806                                          video, s_stream, 0);
 807                         v4l2_subdev_call(&isp->isp_hist.subdev,
 808                                          video, s_stream, 0);
 809                 }
 810 
 811                 ret = v4l2_subdev_call(subdev, video, s_stream, 0);
 812 
 813                 if (subdev == &isp->isp_res.subdev)
 814                         ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
 815                 else if (subdev == &isp->isp_prev.subdev)
 816                         ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
 817                 else if (subdev == &isp->isp_ccdc.subdev)
 818                         ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
 819 
 820                 /* Handle stop failures. An entity that fails to stop can
 821                  * usually just be restarted. Flag the stop failure nonetheless
 822                  * to trigger an ISP reset the next time the device is released,
 823                  * just in case.
 824                  *
 825                  * The preview engine is a special case. A failure to stop can
 826                  * mean a hardware crash. When that happens the preview engine
 827                  * won't respond to read/write operations on the L4 bus anymore,
 828                  * resulting in a bus fault and a kernel oops next time it gets
 829                  * accessed. Mark it as crashed to prevent pipelines including
 830                  * it from being started.
 831                  */
 832                 if (ret) {
 833                         dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
 834                         isp->stop_failure = true;
 835                         if (subdev == &isp->isp_prev.subdev)
 836                                 media_entity_enum_set(&isp->crashed,
 837                                                       &subdev->entity);
 838                         failure = -ETIMEDOUT;
 839                 }
 840 
 841                 /* Stop at the first external sub-device. */
 842                 if (subdev->dev != isp->dev)
 843                         break;
 844         }
 845 
 846         return failure;
 847 }
 848 
 849 /*
 850  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
 851  * @pipe: ISP pipeline
 852  * @state: Stream state (stopped, single shot or continuous)
 853  *
 854  * Set the pipeline to the given stream state. Pipelines can be started in
 855  * single-shot or continuous mode.
 856  *
 857  * Return 0 if successful, or the return value of the failed video::s_stream
 858  * operation otherwise. The pipeline state is not updated when the operation
 859  * fails, except when stopping the pipeline.
 860  */
 861 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
 862                                  enum isp_pipeline_stream_state state)
 863 {
 864         int ret;
 865 
 866         if (state == ISP_PIPELINE_STREAM_STOPPED)
 867                 ret = isp_pipeline_disable(pipe);
 868         else
 869                 ret = isp_pipeline_enable(pipe, state);
 870 
 871         if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
 872                 pipe->stream_state = state;
 873 
 874         return ret;
 875 }
 876 
 877 /*
 878  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
 879  * @pipe: ISP pipeline
 880  *
 881  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
 882  * erroneous and makes sure no new buffer can be queued. This function is called
 883  * when a fatal error that prevents any further operation on the pipeline
 884  * occurs.
 885  */
 886 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
 887 {
 888         if (pipe->input)
 889                 omap3isp_video_cancel_stream(pipe->input);
 890         if (pipe->output)
 891                 omap3isp_video_cancel_stream(pipe->output);
 892 }
 893 
 894 /*
 895  * isp_pipeline_resume - Resume streaming on a pipeline
 896  * @pipe: ISP pipeline
 897  *
 898  * Resume video output and input and re-enable pipeline.
 899  */
 900 static void isp_pipeline_resume(struct isp_pipeline *pipe)
 901 {
 902         int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
 903 
 904         omap3isp_video_resume(pipe->output, !singleshot);
 905         if (singleshot)
 906                 omap3isp_video_resume(pipe->input, 0);
 907         isp_pipeline_enable(pipe, pipe->stream_state);
 908 }
 909 
 910 /*
 911  * isp_pipeline_suspend - Suspend streaming on a pipeline
 912  * @pipe: ISP pipeline
 913  *
 914  * Suspend pipeline.
 915  */
 916 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
 917 {
 918         isp_pipeline_disable(pipe);
 919 }
 920 
 921 /*
 922  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
 923  *                        video node
 924  * @me: ISP module's media entity
 925  *
 926  * Returns 1 if the entity has an enabled link to the output video node or 0
 927  * otherwise. It's true only while pipeline can have no more than one output
 928  * node.
 929  */
 930 static int isp_pipeline_is_last(struct media_entity *me)
 931 {
 932         struct isp_pipeline *pipe;
 933         struct media_pad *pad;
 934 
 935         if (!me->pipe)
 936                 return 0;
 937         pipe = to_isp_pipeline(me);
 938         if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
 939                 return 0;
 940         pad = media_entity_remote_pad(&pipe->output->pad);
 941         return pad->entity == me;
 942 }
 943 
 944 /*
 945  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
 946  * @me: ISP module's media entity
 947  *
 948  * Suspend the whole pipeline if module's entity has an enabled link to the
 949  * output video node. It works only while pipeline can have no more than one
 950  * output node.
 951  */
 952 static void isp_suspend_module_pipeline(struct media_entity *me)
 953 {
 954         if (isp_pipeline_is_last(me))
 955                 isp_pipeline_suspend(to_isp_pipeline(me));
 956 }
 957 
 958 /*
 959  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
 960  * @me: ISP module's media entity
 961  *
 962  * Resume the whole pipeline if module's entity has an enabled link to the
 963  * output video node. It works only while pipeline can have no more than one
 964  * output node.
 965  */
 966 static void isp_resume_module_pipeline(struct media_entity *me)
 967 {
 968         if (isp_pipeline_is_last(me))
 969                 isp_pipeline_resume(to_isp_pipeline(me));
 970 }
 971 
 972 /*
 973  * isp_suspend_modules - Suspend ISP submodules.
 974  * @isp: OMAP3 ISP device
 975  *
 976  * Returns 0 if suspend left in idle state all the submodules properly,
 977  * or returns 1 if a general Reset is required to suspend the submodules.
 978  */
 979 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
 980 {
 981         unsigned long timeout;
 982 
 983         omap3isp_stat_suspend(&isp->isp_aewb);
 984         omap3isp_stat_suspend(&isp->isp_af);
 985         omap3isp_stat_suspend(&isp->isp_hist);
 986         isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
 987         isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
 988         isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
 989         isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
 990         isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
 991 
 992         timeout = jiffies + ISP_STOP_TIMEOUT;
 993         while (omap3isp_stat_busy(&isp->isp_af)
 994             || omap3isp_stat_busy(&isp->isp_aewb)
 995             || omap3isp_stat_busy(&isp->isp_hist)
 996             || omap3isp_preview_busy(&isp->isp_prev)
 997             || omap3isp_resizer_busy(&isp->isp_res)
 998             || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
 999                 if (time_after(jiffies, timeout)) {
1000                         dev_info(isp->dev, "can't stop modules.\n");
1001                         return 1;
1002                 }
1003                 msleep(1);
1004         }
1005 
1006         return 0;
1007 }
1008 
1009 /*
1010  * isp_resume_modules - Resume ISP submodules.
1011  * @isp: OMAP3 ISP device
1012  */
1013 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1014 {
1015         omap3isp_stat_resume(&isp->isp_aewb);
1016         omap3isp_stat_resume(&isp->isp_af);
1017         omap3isp_stat_resume(&isp->isp_hist);
1018         isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1019         isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1020         isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1021         isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1022         isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1023 }
1024 
1025 /*
1026  * isp_reset - Reset ISP with a timeout wait for idle.
1027  * @isp: OMAP3 ISP device
1028  */
1029 static int isp_reset(struct isp_device *isp)
1030 {
1031         unsigned long timeout = 0;
1032 
1033         isp_reg_writel(isp,
1034                        isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1035                        | ISP_SYSCONFIG_SOFTRESET,
1036                        OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1037         while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1038                                ISP_SYSSTATUS) & 0x1)) {
1039                 if (timeout++ > 10000) {
1040                         dev_alert(isp->dev, "cannot reset ISP\n");
1041                         return -ETIMEDOUT;
1042                 }
1043                 udelay(1);
1044         }
1045 
1046         isp->stop_failure = false;
1047         media_entity_enum_zero(&isp->crashed);
1048         return 0;
1049 }
1050 
1051 /*
1052  * isp_save_context - Saves the values of the ISP module registers.
1053  * @isp: OMAP3 ISP device
1054  * @reg_list: Structure containing pairs of register address and value to
1055  *            modify on OMAP.
1056  */
1057 static void
1058 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1059 {
1060         struct isp_reg *next = reg_list;
1061 
1062         for (; next->reg != ISP_TOK_TERM; next++)
1063                 next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1064 }
1065 
1066 /*
1067  * isp_restore_context - Restores the values of the ISP module registers.
1068  * @isp: OMAP3 ISP device
1069  * @reg_list: Structure containing pairs of register address and value to
1070  *            modify on OMAP.
1071  */
1072 static void
1073 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1074 {
1075         struct isp_reg *next = reg_list;
1076 
1077         for (; next->reg != ISP_TOK_TERM; next++)
1078                 isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1079 }
1080 
1081 /*
1082  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1083  * @isp: OMAP3 ISP device
1084  *
1085  * Routine for saving the context of each module in the ISP.
1086  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1087  */
1088 static void isp_save_ctx(struct isp_device *isp)
1089 {
1090         isp_save_context(isp, isp_reg_list);
1091         omap_iommu_save_ctx(isp->dev);
1092 }
1093 
1094 /*
1095  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1096  * @isp: OMAP3 ISP device
1097  *
1098  * Routine for restoring the context of each module in the ISP.
1099  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1100  */
1101 static void isp_restore_ctx(struct isp_device *isp)
1102 {
1103         isp_restore_context(isp, isp_reg_list);
1104         omap_iommu_restore_ctx(isp->dev);
1105         omap3isp_ccdc_restore_context(isp);
1106         omap3isp_preview_restore_context(isp);
1107 }
1108 
1109 /* -----------------------------------------------------------------------------
1110  * SBL resources management
1111  */
1112 #define OMAP3_ISP_SBL_READ      (OMAP3_ISP_SBL_CSI1_READ | \
1113                                  OMAP3_ISP_SBL_CCDC_LSC_READ | \
1114                                  OMAP3_ISP_SBL_PREVIEW_READ | \
1115                                  OMAP3_ISP_SBL_RESIZER_READ)
1116 #define OMAP3_ISP_SBL_WRITE     (OMAP3_ISP_SBL_CSI1_WRITE | \
1117                                  OMAP3_ISP_SBL_CSI2A_WRITE | \
1118                                  OMAP3_ISP_SBL_CSI2C_WRITE | \
1119                                  OMAP3_ISP_SBL_CCDC_WRITE | \
1120                                  OMAP3_ISP_SBL_PREVIEW_WRITE)
1121 
1122 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1123 {
1124         u32 sbl = 0;
1125 
1126         isp->sbl_resources |= res;
1127 
1128         if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1129                 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1130 
1131         if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1132                 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1133 
1134         if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1135                 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1136 
1137         if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1138                 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1139 
1140         if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1141                 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1142 
1143         if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1144                 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1145 
1146         isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1147 }
1148 
1149 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1150 {
1151         u32 sbl = 0;
1152 
1153         isp->sbl_resources &= ~res;
1154 
1155         if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1156                 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1157 
1158         if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1159                 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1160 
1161         if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1162                 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1163 
1164         if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1165                 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1166 
1167         if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1168                 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1169 
1170         if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1171                 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1172 
1173         isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1174 }
1175 
1176 /*
1177  * isp_module_sync_idle - Helper to sync module with its idle state
1178  * @me: ISP submodule's media entity
1179  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1180  * @stopping: flag which tells module wants to stop
1181  *
1182  * This function checks if ISP submodule needs to wait for next interrupt. If
1183  * yes, makes the caller to sleep while waiting for such event.
1184  */
1185 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1186                               atomic_t *stopping)
1187 {
1188         struct isp_pipeline *pipe = to_isp_pipeline(me);
1189 
1190         if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1191             (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1192              !isp_pipeline_ready(pipe)))
1193                 return 0;
1194 
1195         /*
1196          * atomic_set() doesn't include memory barrier on ARM platform for SMP
1197          * scenario. We'll call it here to avoid race conditions.
1198          */
1199         atomic_set(stopping, 1);
1200         smp_mb();
1201 
1202         /*
1203          * If module is the last one, it's writing to memory. In this case,
1204          * it's necessary to check if the module is already paused due to
1205          * DMA queue underrun or if it has to wait for next interrupt to be
1206          * idle.
1207          * If it isn't the last one, the function won't sleep but *stopping
1208          * will still be set to warn next submodule caller's interrupt the
1209          * module wants to be idle.
1210          */
1211         if (isp_pipeline_is_last(me)) {
1212                 struct isp_video *video = pipe->output;
1213                 unsigned long flags;
1214                 spin_lock_irqsave(&video->irqlock, flags);
1215                 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1216                         spin_unlock_irqrestore(&video->irqlock, flags);
1217                         atomic_set(stopping, 0);
1218                         smp_mb();
1219                         return 0;
1220                 }
1221                 spin_unlock_irqrestore(&video->irqlock, flags);
1222                 if (!wait_event_timeout(*wait, !atomic_read(stopping),
1223                                         msecs_to_jiffies(1000))) {
1224                         atomic_set(stopping, 0);
1225                         smp_mb();
1226                         return -ETIMEDOUT;
1227                 }
1228         }
1229 
1230         return 0;
1231 }
1232 
1233 /*
1234  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1235  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1236  * @stopping: flag which tells module wants to stop
1237  *
1238  * This function checks if ISP submodule was stopping. In case of yes, it
1239  * notices the caller by setting stopping to 0 and waking up the wait queue.
1240  * Returns 1 if it was stopping or 0 otherwise.
1241  */
1242 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1243                                      atomic_t *stopping)
1244 {
1245         if (atomic_cmpxchg(stopping, 1, 0)) {
1246                 wake_up(wait);
1247                 return 1;
1248         }
1249 
1250         return 0;
1251 }
1252 
1253 /* --------------------------------------------------------------------------
1254  * Clock management
1255  */
1256 
1257 #define ISPCTRL_CLKS_MASK       (ISPCTRL_H3A_CLK_EN | \
1258                                  ISPCTRL_HIST_CLK_EN | \
1259                                  ISPCTRL_RSZ_CLK_EN | \
1260                                  (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1261                                  (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1262 
1263 static void __isp_subclk_update(struct isp_device *isp)
1264 {
1265         u32 clk = 0;
1266 
1267         /* AEWB and AF share the same clock. */
1268         if (isp->subclk_resources &
1269             (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1270                 clk |= ISPCTRL_H3A_CLK_EN;
1271 
1272         if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1273                 clk |= ISPCTRL_HIST_CLK_EN;
1274 
1275         if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1276                 clk |= ISPCTRL_RSZ_CLK_EN;
1277 
1278         /* NOTE: For CCDC & Preview submodules, we need to affect internal
1279          *       RAM as well.
1280          */
1281         if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1282                 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1283 
1284         if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1285                 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1286 
1287         isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1288                         ISPCTRL_CLKS_MASK, clk);
1289 }
1290 
1291 void omap3isp_subclk_enable(struct isp_device *isp,
1292                             enum isp_subclk_resource res)
1293 {
1294         isp->subclk_resources |= res;
1295 
1296         __isp_subclk_update(isp);
1297 }
1298 
1299 void omap3isp_subclk_disable(struct isp_device *isp,
1300                              enum isp_subclk_resource res)
1301 {
1302         isp->subclk_resources &= ~res;
1303 
1304         __isp_subclk_update(isp);
1305 }
1306 
1307 /*
1308  * isp_enable_clocks - Enable ISP clocks
1309  * @isp: OMAP3 ISP device
1310  *
1311  * Return 0 if successful, or clk_prepare_enable return value if any of them
1312  * fails.
1313  */
1314 static int isp_enable_clocks(struct isp_device *isp)
1315 {
1316         int r;
1317         unsigned long rate;
1318 
1319         r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1320         if (r) {
1321                 dev_err(isp->dev, "failed to enable cam_ick clock\n");
1322                 goto out_clk_enable_ick;
1323         }
1324         r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1325         if (r) {
1326                 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1327                 goto out_clk_enable_mclk;
1328         }
1329         r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1330         if (r) {
1331                 dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1332                 goto out_clk_enable_mclk;
1333         }
1334         rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1335         if (rate != CM_CAM_MCLK_HZ)
1336                 dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1337                                    " expected : %d\n"
1338                                    " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1339         r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1340         if (r) {
1341                 dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1342                 goto out_clk_enable_csi2_fclk;
1343         }
1344         return 0;
1345 
1346 out_clk_enable_csi2_fclk:
1347         clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1348 out_clk_enable_mclk:
1349         clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1350 out_clk_enable_ick:
1351         return r;
1352 }
1353 
1354 /*
1355  * isp_disable_clocks - Disable ISP clocks
1356  * @isp: OMAP3 ISP device
1357  */
1358 static void isp_disable_clocks(struct isp_device *isp)
1359 {
1360         clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1361         clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1362         clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1363 }
1364 
1365 static const char *isp_clocks[] = {
1366         "cam_ick",
1367         "cam_mclk",
1368         "csi2_96m_fck",
1369         "l3_ick",
1370 };
1371 
1372 static int isp_get_clocks(struct isp_device *isp)
1373 {
1374         struct clk *clk;
1375         unsigned int i;
1376 
1377         for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1378                 clk = devm_clk_get(isp->dev, isp_clocks[i]);
1379                 if (IS_ERR(clk)) {
1380                         dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1381                         return PTR_ERR(clk);
1382                 }
1383 
1384                 isp->clock[i] = clk;
1385         }
1386 
1387         return 0;
1388 }
1389 
1390 /*
1391  * omap3isp_get - Acquire the ISP resource.
1392  *
1393  * Initializes the clocks for the first acquire.
1394  *
1395  * Increment the reference count on the ISP. If the first reference is taken,
1396  * enable clocks and power-up all submodules.
1397  *
1398  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1399  */
1400 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1401 {
1402         struct isp_device *__isp = isp;
1403 
1404         if (isp == NULL)
1405                 return NULL;
1406 
1407         mutex_lock(&isp->isp_mutex);
1408         if (isp->ref_count > 0)
1409                 goto out;
1410 
1411         if (isp_enable_clocks(isp) < 0) {
1412                 __isp = NULL;
1413                 goto out;
1414         }
1415 
1416         /* We don't want to restore context before saving it! */
1417         if (isp->has_context)
1418                 isp_restore_ctx(isp);
1419 
1420         if (irq)
1421                 isp_enable_interrupts(isp);
1422 
1423 out:
1424         if (__isp != NULL)
1425                 isp->ref_count++;
1426         mutex_unlock(&isp->isp_mutex);
1427 
1428         return __isp;
1429 }
1430 
1431 struct isp_device *omap3isp_get(struct isp_device *isp)
1432 {
1433         return __omap3isp_get(isp, true);
1434 }
1435 
1436 /*
1437  * omap3isp_put - Release the ISP
1438  *
1439  * Decrement the reference count on the ISP. If the last reference is released,
1440  * power-down all submodules, disable clocks and free temporary buffers.
1441  */
1442 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1443 {
1444         if (isp == NULL)
1445                 return;
1446 
1447         mutex_lock(&isp->isp_mutex);
1448         BUG_ON(isp->ref_count == 0);
1449         if (--isp->ref_count == 0) {
1450                 isp_disable_interrupts(isp);
1451                 if (save_ctx) {
1452                         isp_save_ctx(isp);
1453                         isp->has_context = 1;
1454                 }
1455                 /* Reset the ISP if an entity has failed to stop. This is the
1456                  * only way to recover from such conditions.
1457                  */
1458                 if (!media_entity_enum_empty(&isp->crashed) ||
1459                     isp->stop_failure)
1460                         isp_reset(isp);
1461                 isp_disable_clocks(isp);
1462         }
1463         mutex_unlock(&isp->isp_mutex);
1464 }
1465 
1466 void omap3isp_put(struct isp_device *isp)
1467 {
1468         __omap3isp_put(isp, true);
1469 }
1470 
1471 /* --------------------------------------------------------------------------
1472  * Platform device driver
1473  */
1474 
1475 /*
1476  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1477  * @isp: OMAP3 ISP device
1478  */
1479 #define ISP_PRINT_REGISTER(isp, name)\
1480         dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1481                 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1482 #define SBL_PRINT_REGISTER(isp, name)\
1483         dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1484                 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1485 
1486 void omap3isp_print_status(struct isp_device *isp)
1487 {
1488         dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1489 
1490         ISP_PRINT_REGISTER(isp, SYSCONFIG);
1491         ISP_PRINT_REGISTER(isp, SYSSTATUS);
1492         ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1493         ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1494         ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1495         ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1496         ISP_PRINT_REGISTER(isp, CTRL);
1497         ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1498         ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1499         ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1500         ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1501         ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1502         ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1503         ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1504         ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1505 
1506         SBL_PRINT_REGISTER(isp, PCR);
1507         SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1508 
1509         dev_dbg(isp->dev, "--------------------------------------------\n");
1510 }
1511 
1512 #ifdef CONFIG_PM
1513 
1514 /*
1515  * Power management support.
1516  *
1517  * As the ISP can't properly handle an input video stream interruption on a non
1518  * frame boundary, the ISP pipelines need to be stopped before sensors get
1519  * suspended. However, as suspending the sensors can require a running clock,
1520  * which can be provided by the ISP, the ISP can't be completely suspended
1521  * before the sensor.
1522  *
1523  * To solve this problem power management support is split into prepare/complete
1524  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1525  * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1526  * resume(), and the the pipelines are restarted in complete().
1527  *
1528  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1529  * yet.
1530  */
1531 static int isp_pm_prepare(struct device *dev)
1532 {
1533         struct isp_device *isp = dev_get_drvdata(dev);
1534         int reset;
1535 
1536         WARN_ON(mutex_is_locked(&isp->isp_mutex));
1537 
1538         if (isp->ref_count == 0)
1539                 return 0;
1540 
1541         reset = isp_suspend_modules(isp);
1542         isp_disable_interrupts(isp);
1543         isp_save_ctx(isp);
1544         if (reset)
1545                 isp_reset(isp);
1546 
1547         return 0;
1548 }
1549 
1550 static int isp_pm_suspend(struct device *dev)
1551 {
1552         struct isp_device *isp = dev_get_drvdata(dev);
1553 
1554         WARN_ON(mutex_is_locked(&isp->isp_mutex));
1555 
1556         if (isp->ref_count)
1557                 isp_disable_clocks(isp);
1558 
1559         return 0;
1560 }
1561 
1562 static int isp_pm_resume(struct device *dev)
1563 {
1564         struct isp_device *isp = dev_get_drvdata(dev);
1565 
1566         if (isp->ref_count == 0)
1567                 return 0;
1568 
1569         return isp_enable_clocks(isp);
1570 }
1571 
1572 static void isp_pm_complete(struct device *dev)
1573 {
1574         struct isp_device *isp = dev_get_drvdata(dev);
1575 
1576         if (isp->ref_count == 0)
1577                 return;
1578 
1579         isp_restore_ctx(isp);
1580         isp_enable_interrupts(isp);
1581         isp_resume_modules(isp);
1582 }
1583 
1584 #else
1585 
1586 #define isp_pm_prepare  NULL
1587 #define isp_pm_suspend  NULL
1588 #define isp_pm_resume   NULL
1589 #define isp_pm_complete NULL
1590 
1591 #endif /* CONFIG_PM */
1592 
1593 static void isp_unregister_entities(struct isp_device *isp)
1594 {
1595         media_device_unregister(&isp->media_dev);
1596 
1597         omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1598         omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1599         omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1600         omap3isp_preview_unregister_entities(&isp->isp_prev);
1601         omap3isp_resizer_unregister_entities(&isp->isp_res);
1602         omap3isp_stat_unregister_entities(&isp->isp_aewb);
1603         omap3isp_stat_unregister_entities(&isp->isp_af);
1604         omap3isp_stat_unregister_entities(&isp->isp_hist);
1605 
1606         v4l2_device_unregister(&isp->v4l2_dev);
1607         media_device_cleanup(&isp->media_dev);
1608 }
1609 
1610 static int isp_link_entity(
1611         struct isp_device *isp, struct media_entity *entity,
1612         enum isp_interface_type interface)
1613 {
1614         struct media_entity *input;
1615         unsigned int flags;
1616         unsigned int pad;
1617         unsigned int i;
1618 
1619         /* Connect the sensor to the correct interface module.
1620          * Parallel sensors are connected directly to the CCDC, while
1621          * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1622          * receiver through CSIPHY1 or CSIPHY2.
1623          */
1624         switch (interface) {
1625         case ISP_INTERFACE_PARALLEL:
1626                 input = &isp->isp_ccdc.subdev.entity;
1627                 pad = CCDC_PAD_SINK;
1628                 flags = 0;
1629                 break;
1630 
1631         case ISP_INTERFACE_CSI2A_PHY2:
1632                 input = &isp->isp_csi2a.subdev.entity;
1633                 pad = CSI2_PAD_SINK;
1634                 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1635                 break;
1636 
1637         case ISP_INTERFACE_CCP2B_PHY1:
1638         case ISP_INTERFACE_CCP2B_PHY2:
1639                 input = &isp->isp_ccp2.subdev.entity;
1640                 pad = CCP2_PAD_SINK;
1641                 flags = 0;
1642                 break;
1643 
1644         case ISP_INTERFACE_CSI2C_PHY1:
1645                 input = &isp->isp_csi2c.subdev.entity;
1646                 pad = CSI2_PAD_SINK;
1647                 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1648                 break;
1649 
1650         default:
1651                 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1652                         interface);
1653                 return -EINVAL;
1654         }
1655 
1656         /*
1657          * Not all interfaces are available on all revisions of the
1658          * ISP. The sub-devices of those interfaces aren't initialised
1659          * in such a case. Check this by ensuring the num_pads is
1660          * non-zero.
1661          */
1662         if (!input->num_pads) {
1663                 dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1664                         interface);
1665                 return -EINVAL;
1666         }
1667 
1668         for (i = 0; i < entity->num_pads; i++) {
1669                 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1670                         break;
1671         }
1672         if (i == entity->num_pads) {
1673                 dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1674                         __func__, entity->name);
1675                 return -EINVAL;
1676         }
1677 
1678         return media_create_pad_link(entity, i, input, pad, flags);
1679 }
1680 
1681 static int isp_register_entities(struct isp_device *isp)
1682 {
1683         int ret;
1684 
1685         isp->media_dev.dev = isp->dev;
1686         strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1687                 sizeof(isp->media_dev.model));
1688         isp->media_dev.hw_revision = isp->revision;
1689         isp->media_dev.ops = &isp_media_ops;
1690         media_device_init(&isp->media_dev);
1691 
1692         isp->v4l2_dev.mdev = &isp->media_dev;
1693         ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1694         if (ret < 0) {
1695                 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1696                         __func__, ret);
1697                 goto done;
1698         }
1699 
1700         /* Register internal entities */
1701         ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1702         if (ret < 0)
1703                 goto done;
1704 
1705         ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1706         if (ret < 0)
1707                 goto done;
1708 
1709         ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1710         if (ret < 0)
1711                 goto done;
1712 
1713         ret = omap3isp_preview_register_entities(&isp->isp_prev,
1714                                                  &isp->v4l2_dev);
1715         if (ret < 0)
1716                 goto done;
1717 
1718         ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1719         if (ret < 0)
1720                 goto done;
1721 
1722         ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1723         if (ret < 0)
1724                 goto done;
1725 
1726         ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1727         if (ret < 0)
1728                 goto done;
1729 
1730         ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1731         if (ret < 0)
1732                 goto done;
1733 
1734 done:
1735         if (ret < 0)
1736                 isp_unregister_entities(isp);
1737 
1738         return ret;
1739 }
1740 
1741 /*
1742  * isp_create_links() - Create links for internal and external ISP entities
1743  * @isp : Pointer to ISP device
1744  *
1745  * This function creates all links between ISP internal and external entities.
1746  *
1747  * Return: A negative error code on failure or zero on success. Possible error
1748  * codes are those returned by media_create_pad_link().
1749  */
1750 static int isp_create_links(struct isp_device *isp)
1751 {
1752         int ret;
1753 
1754         /* Create links between entities and video nodes. */
1755         ret = media_create_pad_link(
1756                         &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1757                         &isp->isp_csi2a.video_out.video.entity, 0, 0);
1758         if (ret < 0)
1759                 return ret;
1760 
1761         ret = media_create_pad_link(
1762                         &isp->isp_ccp2.video_in.video.entity, 0,
1763                         &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1764         if (ret < 0)
1765                 return ret;
1766 
1767         ret = media_create_pad_link(
1768                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1769                         &isp->isp_ccdc.video_out.video.entity, 0, 0);
1770         if (ret < 0)
1771                 return ret;
1772 
1773         ret = media_create_pad_link(
1774                         &isp->isp_prev.video_in.video.entity, 0,
1775                         &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1776         if (ret < 0)
1777                 return ret;
1778 
1779         ret = media_create_pad_link(
1780                         &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1781                         &isp->isp_prev.video_out.video.entity, 0, 0);
1782         if (ret < 0)
1783                 return ret;
1784 
1785         ret = media_create_pad_link(
1786                         &isp->isp_res.video_in.video.entity, 0,
1787                         &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1788         if (ret < 0)
1789                 return ret;
1790 
1791         ret = media_create_pad_link(
1792                         &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1793                         &isp->isp_res.video_out.video.entity, 0, 0);
1794 
1795         if (ret < 0)
1796                 return ret;
1797 
1798         /* Create links between entities. */
1799         ret = media_create_pad_link(
1800                         &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1801                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1802         if (ret < 0)
1803                 return ret;
1804 
1805         ret = media_create_pad_link(
1806                         &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1807                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1808         if (ret < 0)
1809                 return ret;
1810 
1811         ret = media_create_pad_link(
1812                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1813                         &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1814         if (ret < 0)
1815                 return ret;
1816 
1817         ret = media_create_pad_link(
1818                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1819                         &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1820         if (ret < 0)
1821                 return ret;
1822 
1823         ret = media_create_pad_link(
1824                         &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1825                         &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1826         if (ret < 0)
1827                 return ret;
1828 
1829         ret = media_create_pad_link(
1830                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1831                         &isp->isp_aewb.subdev.entity, 0,
1832                         MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1833         if (ret < 0)
1834                 return ret;
1835 
1836         ret = media_create_pad_link(
1837                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1838                         &isp->isp_af.subdev.entity, 0,
1839                         MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1840         if (ret < 0)
1841                 return ret;
1842 
1843         ret = media_create_pad_link(
1844                         &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1845                         &isp->isp_hist.subdev.entity, 0,
1846                         MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1847         if (ret < 0)
1848                 return ret;
1849 
1850         return 0;
1851 }
1852 
1853 static void isp_cleanup_modules(struct isp_device *isp)
1854 {
1855         omap3isp_h3a_aewb_cleanup(isp);
1856         omap3isp_h3a_af_cleanup(isp);
1857         omap3isp_hist_cleanup(isp);
1858         omap3isp_resizer_cleanup(isp);
1859         omap3isp_preview_cleanup(isp);
1860         omap3isp_ccdc_cleanup(isp);
1861         omap3isp_ccp2_cleanup(isp);
1862         omap3isp_csi2_cleanup(isp);
1863         omap3isp_csiphy_cleanup(isp);
1864 }
1865 
1866 static int isp_initialize_modules(struct isp_device *isp)
1867 {
1868         int ret;
1869 
1870         ret = omap3isp_csiphy_init(isp);
1871         if (ret < 0) {
1872                 dev_err(isp->dev, "CSI PHY initialization failed\n");
1873                 return ret;
1874         }
1875 
1876         ret = omap3isp_csi2_init(isp);
1877         if (ret < 0) {
1878                 dev_err(isp->dev, "CSI2 initialization failed\n");
1879                 goto error_csi2;
1880         }
1881 
1882         ret = omap3isp_ccp2_init(isp);
1883         if (ret < 0) {
1884                 if (ret != -EPROBE_DEFER)
1885                         dev_err(isp->dev, "CCP2 initialization failed\n");
1886                 goto error_ccp2;
1887         }
1888 
1889         ret = omap3isp_ccdc_init(isp);
1890         if (ret < 0) {
1891                 dev_err(isp->dev, "CCDC initialization failed\n");
1892                 goto error_ccdc;
1893         }
1894 
1895         ret = omap3isp_preview_init(isp);
1896         if (ret < 0) {
1897                 dev_err(isp->dev, "Preview initialization failed\n");
1898                 goto error_preview;
1899         }
1900 
1901         ret = omap3isp_resizer_init(isp);
1902         if (ret < 0) {
1903                 dev_err(isp->dev, "Resizer initialization failed\n");
1904                 goto error_resizer;
1905         }
1906 
1907         ret = omap3isp_hist_init(isp);
1908         if (ret < 0) {
1909                 dev_err(isp->dev, "Histogram initialization failed\n");
1910                 goto error_hist;
1911         }
1912 
1913         ret = omap3isp_h3a_aewb_init(isp);
1914         if (ret < 0) {
1915                 dev_err(isp->dev, "H3A AEWB initialization failed\n");
1916                 goto error_h3a_aewb;
1917         }
1918 
1919         ret = omap3isp_h3a_af_init(isp);
1920         if (ret < 0) {
1921                 dev_err(isp->dev, "H3A AF initialization failed\n");
1922                 goto error_h3a_af;
1923         }
1924 
1925         return 0;
1926 
1927 error_h3a_af:
1928         omap3isp_h3a_aewb_cleanup(isp);
1929 error_h3a_aewb:
1930         omap3isp_hist_cleanup(isp);
1931 error_hist:
1932         omap3isp_resizer_cleanup(isp);
1933 error_resizer:
1934         omap3isp_preview_cleanup(isp);
1935 error_preview:
1936         omap3isp_ccdc_cleanup(isp);
1937 error_ccdc:
1938         omap3isp_ccp2_cleanup(isp);
1939 error_ccp2:
1940         omap3isp_csi2_cleanup(isp);
1941 error_csi2:
1942         omap3isp_csiphy_cleanup(isp);
1943 
1944         return ret;
1945 }
1946 
1947 static void isp_detach_iommu(struct isp_device *isp)
1948 {
1949 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1950         arm_iommu_detach_device(isp->dev);
1951         arm_iommu_release_mapping(isp->mapping);
1952         isp->mapping = NULL;
1953 #endif
1954 }
1955 
1956 static int isp_attach_iommu(struct isp_device *isp)
1957 {
1958 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1959         struct dma_iommu_mapping *mapping;
1960         int ret;
1961 
1962         /*
1963          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1964          * VAs. This will allocate a corresponding IOMMU domain.
1965          */
1966         mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1967         if (IS_ERR(mapping)) {
1968                 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1969                 return PTR_ERR(mapping);
1970         }
1971 
1972         isp->mapping = mapping;
1973 
1974         /* Attach the ARM VA mapping to the device. */
1975         ret = arm_iommu_attach_device(isp->dev, mapping);
1976         if (ret < 0) {
1977                 dev_err(isp->dev, "failed to attach device to VA mapping\n");
1978                 goto error;
1979         }
1980 
1981         return 0;
1982 
1983 error:
1984         arm_iommu_release_mapping(isp->mapping);
1985         isp->mapping = NULL;
1986         return ret;
1987 #else
1988         return -ENODEV;
1989 #endif
1990 }
1991 
1992 /*
1993  * isp_remove - Remove ISP platform device
1994  * @pdev: Pointer to ISP platform device
1995  *
1996  * Always returns 0.
1997  */
1998 static int isp_remove(struct platform_device *pdev)
1999 {
2000         struct isp_device *isp = platform_get_drvdata(pdev);
2001 
2002         v4l2_async_notifier_unregister(&isp->notifier);
2003         isp_unregister_entities(isp);
2004         isp_cleanup_modules(isp);
2005         isp_xclk_cleanup(isp);
2006 
2007         __omap3isp_get(isp, false);
2008         isp_detach_iommu(isp);
2009         __omap3isp_put(isp, false);
2010 
2011         media_entity_enum_cleanup(&isp->crashed);
2012         v4l2_async_notifier_cleanup(&isp->notifier);
2013 
2014         kfree(isp);
2015 
2016         return 0;
2017 }
2018 
2019 enum isp_of_phy {
2020         ISP_OF_PHY_PARALLEL = 0,
2021         ISP_OF_PHY_CSIPHY1,
2022         ISP_OF_PHY_CSIPHY2,
2023 };
2024 
2025 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2026 {
2027         struct isp_device *isp = container_of(async, struct isp_device,
2028                                               notifier);
2029         struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2030         struct v4l2_subdev *sd;
2031         int ret;
2032 
2033         ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2034         if (ret)
2035                 return ret;
2036 
2037         list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2038                 if (sd->notifier != &isp->notifier)
2039                         continue;
2040 
2041                 ret = isp_link_entity(isp, &sd->entity,
2042                                       v4l2_subdev_to_bus_cfg(sd)->interface);
2043                 if (ret < 0)
2044                         return ret;
2045         }
2046 
2047         ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2048         if (ret < 0)
2049                 return ret;
2050 
2051         return media_device_register(&isp->media_dev);
2052 }
2053 
2054 static void isp_parse_of_parallel_endpoint(struct device *dev,
2055                                            struct v4l2_fwnode_endpoint *vep,
2056                                            struct isp_bus_cfg *buscfg)
2057 {
2058         buscfg->interface = ISP_INTERFACE_PARALLEL;
2059         buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2060         buscfg->bus.parallel.clk_pol =
2061                 !!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2062         buscfg->bus.parallel.hs_pol =
2063                 !!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2064         buscfg->bus.parallel.vs_pol =
2065                 !!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2066         buscfg->bus.parallel.fld_pol =
2067                 !!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2068         buscfg->bus.parallel.data_pol =
2069                 !!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2070         buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2071 }
2072 
2073 static void isp_parse_of_csi2_endpoint(struct device *dev,
2074                                        struct v4l2_fwnode_endpoint *vep,
2075                                        struct isp_bus_cfg *buscfg)
2076 {
2077         unsigned int i;
2078 
2079         buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2080         buscfg->bus.csi2.lanecfg.clk.pol =
2081                 vep->bus.mipi_csi2.lane_polarities[0];
2082         dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2083                 buscfg->bus.csi2.lanecfg.clk.pol,
2084                 buscfg->bus.csi2.lanecfg.clk.pos);
2085 
2086         buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2087 
2088         for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2089                 buscfg->bus.csi2.lanecfg.data[i].pos =
2090                         vep->bus.mipi_csi2.data_lanes[i];
2091                 buscfg->bus.csi2.lanecfg.data[i].pol =
2092                         vep->bus.mipi_csi2.lane_polarities[i + 1];
2093                 dev_dbg(dev,
2094                         "data lane %u polarity %u, pos %u\n", i,
2095                         buscfg->bus.csi2.lanecfg.data[i].pol,
2096                         buscfg->bus.csi2.lanecfg.data[i].pos);
2097         }
2098         /*
2099          * FIXME: now we assume the CRC is always there. Implement a way to
2100          * obtain this information from the sensor. Frame descriptors, perhaps?
2101          */
2102         buscfg->bus.csi2.crc = 1;
2103 }
2104 
2105 static void isp_parse_of_csi1_endpoint(struct device *dev,
2106                                        struct v4l2_fwnode_endpoint *vep,
2107                                        struct isp_bus_cfg *buscfg)
2108 {
2109         buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2110         buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2111         dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2112                 buscfg->bus.ccp2.lanecfg.clk.pol,
2113         buscfg->bus.ccp2.lanecfg.clk.pos);
2114 
2115         buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2116         buscfg->bus.ccp2.lanecfg.data[0].pol =
2117                 vep->bus.mipi_csi1.lane_polarity[1];
2118 
2119         dev_dbg(dev, "data lane polarity %u, pos %u\n",
2120                 buscfg->bus.ccp2.lanecfg.data[0].pol,
2121                 buscfg->bus.ccp2.lanecfg.data[0].pos);
2122 
2123         buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2124         buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2125         buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2126         buscfg->bus.ccp2.vp_clk_pol = 1;
2127 
2128         buscfg->bus.ccp2.crc = 1;
2129 }
2130 
2131 static int isp_alloc_isd(struct isp_async_subdev **isd,
2132                          struct isp_bus_cfg **buscfg)
2133 {
2134         struct isp_async_subdev *__isd;
2135 
2136         __isd = kzalloc(sizeof(*__isd), GFP_KERNEL);
2137         if (!__isd)
2138                 return -ENOMEM;
2139 
2140         *isd = __isd;
2141         *buscfg = &__isd->bus;
2142 
2143         return 0;
2144 }
2145 
2146 static struct {
2147         u32 phy;
2148         u32 csi2_if;
2149         u32 csi1_if;
2150 } isp_bus_interfaces[2] = {
2151         { ISP_OF_PHY_CSIPHY1,
2152           ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2153         { ISP_OF_PHY_CSIPHY2,
2154           ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2155 };
2156 
2157 static int isp_parse_of_endpoints(struct isp_device *isp)
2158 {
2159         struct fwnode_handle *ep;
2160         struct isp_async_subdev *isd = NULL;
2161         struct isp_bus_cfg *buscfg;
2162         unsigned int i;
2163 
2164         ep = fwnode_graph_get_endpoint_by_id(
2165                 dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2166                 FWNODE_GRAPH_ENDPOINT_NEXT);
2167 
2168         if (ep) {
2169                 struct v4l2_fwnode_endpoint vep = {
2170                         .bus_type = V4L2_MBUS_PARALLEL
2171                 };
2172                 int ret;
2173 
2174                 dev_dbg(isp->dev, "parsing parallel interface\n");
2175 
2176                 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2177 
2178                 if (!ret) {
2179                         ret = isp_alloc_isd(&isd, &buscfg);
2180                         if (ret)
2181                                 return ret;
2182                 }
2183 
2184                 if (!ret) {
2185                         isp_parse_of_parallel_endpoint(isp->dev, &vep, buscfg);
2186                         ret = v4l2_async_notifier_add_fwnode_remote_subdev(
2187                                 &isp->notifier, ep, &isd->asd);
2188                 }
2189 
2190                 fwnode_handle_put(ep);
2191                 if (ret)
2192                         kfree(isd);
2193         }
2194 
2195         for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2196                 struct v4l2_fwnode_endpoint vep = {
2197                         .bus_type = V4L2_MBUS_CSI2_DPHY
2198                 };
2199                 int ret;
2200 
2201                 ep = fwnode_graph_get_endpoint_by_id(
2202                         dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2203                         FWNODE_GRAPH_ENDPOINT_NEXT);
2204 
2205                 if (!ep)
2206                         continue;
2207 
2208                 dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2209                         to_of_node(ep));
2210 
2211                 ret = isp_alloc_isd(&isd, &buscfg);
2212                 if (ret)
2213                         return ret;
2214 
2215                 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2216                 if (!ret) {
2217                         buscfg->interface = isp_bus_interfaces[i].csi2_if;
2218                         isp_parse_of_csi2_endpoint(isp->dev, &vep, buscfg);
2219                 } else if (ret == -ENXIO) {
2220                         vep = (struct v4l2_fwnode_endpoint)
2221                                 { .bus_type = V4L2_MBUS_CSI1 };
2222                         ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2223 
2224                         if (ret == -ENXIO) {
2225                                 vep = (struct v4l2_fwnode_endpoint)
2226                                         { .bus_type = V4L2_MBUS_CCP2 };
2227                                 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2228                         }
2229                         if (!ret) {
2230                                 buscfg->interface =
2231                                         isp_bus_interfaces[i].csi1_if;
2232                                 isp_parse_of_csi1_endpoint(isp->dev, &vep,
2233                                                            buscfg);
2234                         }
2235                 }
2236 
2237                 if (!ret)
2238                         ret = v4l2_async_notifier_add_fwnode_remote_subdev(
2239                                 &isp->notifier, ep, &isd->asd);
2240 
2241                 fwnode_handle_put(ep);
2242                 if (ret)
2243                         kfree(isd);
2244         }
2245 
2246         return 0;
2247 }
2248 
2249 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2250         .complete = isp_subdev_notifier_complete,
2251 };
2252 
2253 /*
2254  * isp_probe - Probe ISP platform device
2255  * @pdev: Pointer to ISP platform device
2256  *
2257  * Returns 0 if successful,
2258  *   -ENOMEM if no memory available,
2259  *   -ENODEV if no platform device resources found
2260  *     or no space for remapping registers,
2261  *   -EINVAL if couldn't install ISR,
2262  *   or clk_get return error value.
2263  */
2264 static int isp_probe(struct platform_device *pdev)
2265 {
2266         struct isp_device *isp;
2267         struct resource *mem;
2268         int ret;
2269         int i, m;
2270 
2271         isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2272         if (!isp) {
2273                 dev_err(&pdev->dev, "could not allocate memory\n");
2274                 return -ENOMEM;
2275         }
2276 
2277         ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2278                                        "ti,phy-type", &isp->phy_type);
2279         if (ret)
2280                 goto error_release_isp;
2281 
2282         isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2283                                                       "syscon");
2284         if (IS_ERR(isp->syscon)) {
2285                 ret = PTR_ERR(isp->syscon);
2286                 goto error_release_isp;
2287         }
2288 
2289         ret = of_property_read_u32_index(pdev->dev.of_node,
2290                                          "syscon", 1, &isp->syscon_offset);
2291         if (ret)
2292                 goto error_release_isp;
2293 
2294         isp->autoidle = autoidle;
2295 
2296         mutex_init(&isp->isp_mutex);
2297         spin_lock_init(&isp->stat_lock);
2298         v4l2_async_notifier_init(&isp->notifier);
2299         isp->dev = &pdev->dev;
2300 
2301         ret = isp_parse_of_endpoints(isp);
2302         if (ret < 0)
2303                 goto error;
2304 
2305         isp->ref_count = 0;
2306 
2307         ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2308         if (ret)
2309                 goto error;
2310 
2311         platform_set_drvdata(pdev, isp);
2312 
2313         /* Regulators */
2314         isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2315         isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2316 
2317         /* Clocks
2318          *
2319          * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2320          * manually to read the revision before calling __omap3isp_get().
2321          *
2322          * Start by mapping the ISP MMIO area, which is in two pieces.
2323          * The ISP IOMMU is in between. Map both now, and fill in the
2324          * ISP revision specific portions a little later in the
2325          * function.
2326          */
2327         for (i = 0; i < 2; i++) {
2328                 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2329 
2330                 mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2331                 isp->mmio_base[map_idx] =
2332                         devm_ioremap_resource(isp->dev, mem);
2333                 if (IS_ERR(isp->mmio_base[map_idx]))
2334                         return PTR_ERR(isp->mmio_base[map_idx]);
2335         }
2336 
2337         ret = isp_get_clocks(isp);
2338         if (ret < 0)
2339                 goto error;
2340 
2341         ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2342         if (ret < 0)
2343                 goto error;
2344 
2345         isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2346         dev_info(isp->dev, "Revision %d.%d found\n",
2347                  (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2348 
2349         clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2350 
2351         if (__omap3isp_get(isp, false) == NULL) {
2352                 ret = -ENODEV;
2353                 goto error;
2354         }
2355 
2356         ret = isp_reset(isp);
2357         if (ret < 0)
2358                 goto error_isp;
2359 
2360         ret = isp_xclk_init(isp);
2361         if (ret < 0)
2362                 goto error_isp;
2363 
2364         /* Memory resources */
2365         for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2366                 if (isp->revision == isp_res_maps[m].isp_rev)
2367                         break;
2368 
2369         if (m == ARRAY_SIZE(isp_res_maps)) {
2370                 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2371                         (isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2372                 ret = -ENODEV;
2373                 goto error_isp;
2374         }
2375 
2376         for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2377                 isp->mmio_base[i] =
2378                         isp->mmio_base[0] + isp_res_maps[m].offset[i];
2379 
2380         for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2381                 isp->mmio_base[i] =
2382                         isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2383                         + isp_res_maps[m].offset[i];
2384 
2385         isp->mmio_hist_base_phys =
2386                 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2387 
2388         /* IOMMU */
2389         ret = isp_attach_iommu(isp);
2390         if (ret < 0) {
2391                 dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2392                 goto error_isp;
2393         }
2394 
2395         /* Interrupt */
2396         ret = platform_get_irq(pdev, 0);
2397         if (ret <= 0) {
2398                 ret = -ENODEV;
2399                 goto error_iommu;
2400         }
2401         isp->irq_num = ret;
2402 
2403         if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2404                              "OMAP3 ISP", isp)) {
2405                 dev_err(isp->dev, "Unable to request IRQ\n");
2406                 ret = -EINVAL;
2407                 goto error_iommu;
2408         }
2409 
2410         /* Entities */
2411         ret = isp_initialize_modules(isp);
2412         if (ret < 0)
2413                 goto error_iommu;
2414 
2415         ret = isp_register_entities(isp);
2416         if (ret < 0)
2417                 goto error_modules;
2418 
2419         ret = isp_create_links(isp);
2420         if (ret < 0)
2421                 goto error_register_entities;
2422 
2423         isp->notifier.ops = &isp_subdev_notifier_ops;
2424 
2425         ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2426         if (ret)
2427                 goto error_register_entities;
2428 
2429         isp_core_init(isp, 1);
2430         omap3isp_put(isp);
2431 
2432         return 0;
2433 
2434 error_register_entities:
2435         isp_unregister_entities(isp);
2436 error_modules:
2437         isp_cleanup_modules(isp);
2438 error_iommu:
2439         isp_detach_iommu(isp);
2440 error_isp:
2441         isp_xclk_cleanup(isp);
2442         __omap3isp_put(isp, false);
2443 error:
2444         v4l2_async_notifier_cleanup(&isp->notifier);
2445         mutex_destroy(&isp->isp_mutex);
2446 error_release_isp:
2447         kfree(isp);
2448 
2449         return ret;
2450 }
2451 
2452 static const struct dev_pm_ops omap3isp_pm_ops = {
2453         .prepare = isp_pm_prepare,
2454         .suspend = isp_pm_suspend,
2455         .resume = isp_pm_resume,
2456         .complete = isp_pm_complete,
2457 };
2458 
2459 static const struct platform_device_id omap3isp_id_table[] = {
2460         { "omap3isp", 0 },
2461         { },
2462 };
2463 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2464 
2465 static const struct of_device_id omap3isp_of_table[] = {
2466         { .compatible = "ti,omap3-isp" },
2467         { },
2468 };
2469 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2470 
2471 static struct platform_driver omap3isp_driver = {
2472         .probe = isp_probe,
2473         .remove = isp_remove,
2474         .id_table = omap3isp_id_table,
2475         .driver = {
2476                 .name = "omap3isp",
2477                 .pm     = &omap3isp_pm_ops,
2478                 .of_match_table = omap3isp_of_table,
2479         },
2480 };
2481 
2482 module_platform_driver(omap3isp_driver);
2483 
2484 MODULE_AUTHOR("Nokia Corporation");
2485 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2486 MODULE_LICENSE("GPL");
2487 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);

/* [<][>][^][v][top][bottom][index][help] */