root/drivers/bluetooth/hci_intel.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. intel_convert_speed
  2. intel_wait_booting
  3. intel_wait_lpm_transaction
  4. intel_lpm_suspend
  5. intel_lpm_resume
  6. intel_lpm_host_wake
  7. intel_irq
  8. intel_set_power
  9. intel_busy_work
  10. intel_open
  11. intel_close
  12. intel_flush
  13. inject_cmd_complete
  14. intel_set_baudrate
  15. intel_setup
  16. intel_recv_event
  17. intel_recv_lpm_notify
  18. intel_recv_lpm
  19. intel_recv
  20. intel_enqueue
  21. intel_dequeue
  22. intel_suspend_device
  23. intel_resume_device
  24. intel_suspend
  25. intel_resume
  26. intel_probe
  27. intel_remove
  28. intel_init
  29. intel_deinit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *
   4  *  Bluetooth HCI UART driver for Intel devices
   5  *
   6  *  Copyright (C) 2015  Intel Corporation
   7  */
   8 
   9 #include <linux/kernel.h>
  10 #include <linux/errno.h>
  11 #include <linux/skbuff.h>
  12 #include <linux/firmware.h>
  13 #include <linux/module.h>
  14 #include <linux/wait.h>
  15 #include <linux/tty.h>
  16 #include <linux/platform_device.h>
  17 #include <linux/gpio/consumer.h>
  18 #include <linux/acpi.h>
  19 #include <linux/interrupt.h>
  20 #include <linux/pm_runtime.h>
  21 
  22 #include <net/bluetooth/bluetooth.h>
  23 #include <net/bluetooth/hci_core.h>
  24 
  25 #include "hci_uart.h"
  26 #include "btintel.h"
  27 
  28 #define STATE_BOOTLOADER        0
  29 #define STATE_DOWNLOADING       1
  30 #define STATE_FIRMWARE_LOADED   2
  31 #define STATE_FIRMWARE_FAILED   3
  32 #define STATE_BOOTING           4
  33 #define STATE_LPM_ENABLED       5
  34 #define STATE_TX_ACTIVE         6
  35 #define STATE_SUSPENDED         7
  36 #define STATE_LPM_TRANSACTION   8
  37 
  38 #define HCI_LPM_WAKE_PKT 0xf0
  39 #define HCI_LPM_PKT 0xf1
  40 #define HCI_LPM_MAX_SIZE 10
  41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
  42 
  43 #define LPM_OP_TX_NOTIFY 0x00
  44 #define LPM_OP_SUSPEND_ACK 0x02
  45 #define LPM_OP_RESUME_ACK 0x03
  46 
  47 #define LPM_SUSPEND_DELAY_MS 1000
  48 
  49 struct hci_lpm_pkt {
  50         __u8 opcode;
  51         __u8 dlen;
  52         __u8 data[0];
  53 } __packed;
  54 
  55 struct intel_device {
  56         struct list_head list;
  57         struct platform_device *pdev;
  58         struct gpio_desc *reset;
  59         struct hci_uart *hu;
  60         struct mutex hu_lock;
  61         int irq;
  62 };
  63 
  64 static LIST_HEAD(intel_device_list);
  65 static DEFINE_MUTEX(intel_device_list_lock);
  66 
  67 struct intel_data {
  68         struct sk_buff *rx_skb;
  69         struct sk_buff_head txq;
  70         struct work_struct busy_work;
  71         struct hci_uart *hu;
  72         unsigned long flags;
  73 };
  74 
  75 static u8 intel_convert_speed(unsigned int speed)
  76 {
  77         switch (speed) {
  78         case 9600:
  79                 return 0x00;
  80         case 19200:
  81                 return 0x01;
  82         case 38400:
  83                 return 0x02;
  84         case 57600:
  85                 return 0x03;
  86         case 115200:
  87                 return 0x04;
  88         case 230400:
  89                 return 0x05;
  90         case 460800:
  91                 return 0x06;
  92         case 921600:
  93                 return 0x07;
  94         case 1843200:
  95                 return 0x08;
  96         case 3250000:
  97                 return 0x09;
  98         case 2000000:
  99                 return 0x0a;
 100         case 3000000:
 101                 return 0x0b;
 102         default:
 103                 return 0xff;
 104         }
 105 }
 106 
 107 static int intel_wait_booting(struct hci_uart *hu)
 108 {
 109         struct intel_data *intel = hu->priv;
 110         int err;
 111 
 112         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
 113                                   TASK_INTERRUPTIBLE,
 114                                   msecs_to_jiffies(1000));
 115 
 116         if (err == -EINTR) {
 117                 bt_dev_err(hu->hdev, "Device boot interrupted");
 118                 return -EINTR;
 119         }
 120 
 121         if (err) {
 122                 bt_dev_err(hu->hdev, "Device boot timeout");
 123                 return -ETIMEDOUT;
 124         }
 125 
 126         return err;
 127 }
 128 
 129 #ifdef CONFIG_PM
 130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
 131 {
 132         struct intel_data *intel = hu->priv;
 133         int err;
 134 
 135         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
 136                                   TASK_INTERRUPTIBLE,
 137                                   msecs_to_jiffies(1000));
 138 
 139         if (err == -EINTR) {
 140                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
 141                 return -EINTR;
 142         }
 143 
 144         if (err) {
 145                 bt_dev_err(hu->hdev, "LPM transaction timeout");
 146                 return -ETIMEDOUT;
 147         }
 148 
 149         return err;
 150 }
 151 
 152 static int intel_lpm_suspend(struct hci_uart *hu)
 153 {
 154         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
 155         struct intel_data *intel = hu->priv;
 156         struct sk_buff *skb;
 157 
 158         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 159             test_bit(STATE_SUSPENDED, &intel->flags))
 160                 return 0;
 161 
 162         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
 163                 return -EAGAIN;
 164 
 165         bt_dev_dbg(hu->hdev, "Suspending");
 166 
 167         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
 168         if (!skb) {
 169                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 170                 return -ENOMEM;
 171         }
 172 
 173         skb_put_data(skb, suspend, sizeof(suspend));
 174         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 175 
 176         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 177 
 178         /* LPM flow is a priority, enqueue packet at list head */
 179         skb_queue_head(&intel->txq, skb);
 180         hci_uart_tx_wakeup(hu);
 181 
 182         intel_wait_lpm_transaction(hu);
 183         /* Even in case of failure, continue and test the suspended flag */
 184 
 185         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 186 
 187         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
 188                 bt_dev_err(hu->hdev, "Device suspend error");
 189                 return -EINVAL;
 190         }
 191 
 192         bt_dev_dbg(hu->hdev, "Suspended");
 193 
 194         hci_uart_set_flow_control(hu, true);
 195 
 196         return 0;
 197 }
 198 
 199 static int intel_lpm_resume(struct hci_uart *hu)
 200 {
 201         struct intel_data *intel = hu->priv;
 202         struct sk_buff *skb;
 203 
 204         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 205             !test_bit(STATE_SUSPENDED, &intel->flags))
 206                 return 0;
 207 
 208         bt_dev_dbg(hu->hdev, "Resuming");
 209 
 210         hci_uart_set_flow_control(hu, false);
 211 
 212         skb = bt_skb_alloc(0, GFP_KERNEL);
 213         if (!skb) {
 214                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 215                 return -ENOMEM;
 216         }
 217 
 218         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
 219 
 220         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 221 
 222         /* LPM flow is a priority, enqueue packet at list head */
 223         skb_queue_head(&intel->txq, skb);
 224         hci_uart_tx_wakeup(hu);
 225 
 226         intel_wait_lpm_transaction(hu);
 227         /* Even in case of failure, continue and test the suspended flag */
 228 
 229         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 230 
 231         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
 232                 bt_dev_err(hu->hdev, "Device resume error");
 233                 return -EINVAL;
 234         }
 235 
 236         bt_dev_dbg(hu->hdev, "Resumed");
 237 
 238         return 0;
 239 }
 240 #endif /* CONFIG_PM */
 241 
 242 static int intel_lpm_host_wake(struct hci_uart *hu)
 243 {
 244         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
 245         struct intel_data *intel = hu->priv;
 246         struct sk_buff *skb;
 247 
 248         hci_uart_set_flow_control(hu, false);
 249 
 250         clear_bit(STATE_SUSPENDED, &intel->flags);
 251 
 252         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
 253         if (!skb) {
 254                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 255                 return -ENOMEM;
 256         }
 257 
 258         skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
 259         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 260 
 261         /* LPM flow is a priority, enqueue packet at list head */
 262         skb_queue_head(&intel->txq, skb);
 263         hci_uart_tx_wakeup(hu);
 264 
 265         bt_dev_dbg(hu->hdev, "Resumed by controller");
 266 
 267         return 0;
 268 }
 269 
 270 static irqreturn_t intel_irq(int irq, void *dev_id)
 271 {
 272         struct intel_device *idev = dev_id;
 273 
 274         dev_info(&idev->pdev->dev, "hci_intel irq\n");
 275 
 276         mutex_lock(&idev->hu_lock);
 277         if (idev->hu)
 278                 intel_lpm_host_wake(idev->hu);
 279         mutex_unlock(&idev->hu_lock);
 280 
 281         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
 282         pm_runtime_get(&idev->pdev->dev);
 283         pm_runtime_mark_last_busy(&idev->pdev->dev);
 284         pm_runtime_put_autosuspend(&idev->pdev->dev);
 285 
 286         return IRQ_HANDLED;
 287 }
 288 
 289 static int intel_set_power(struct hci_uart *hu, bool powered)
 290 {
 291         struct list_head *p;
 292         int err = -ENODEV;
 293 
 294         if (!hu->tty->dev)
 295                 return err;
 296 
 297         mutex_lock(&intel_device_list_lock);
 298 
 299         list_for_each(p, &intel_device_list) {
 300                 struct intel_device *idev = list_entry(p, struct intel_device,
 301                                                        list);
 302 
 303                 /* tty device and pdev device should share the same parent
 304                  * which is the UART port.
 305                  */
 306                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
 307                         continue;
 308 
 309                 if (!idev->reset) {
 310                         err = -ENOTSUPP;
 311                         break;
 312                 }
 313 
 314                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
 315                         hu, dev_name(&idev->pdev->dev), powered);
 316 
 317                 gpiod_set_value(idev->reset, powered);
 318 
 319                 /* Provide to idev a hu reference which is used to run LPM
 320                  * transactions (lpm suspend/resume) from PM callbacks.
 321                  * hu needs to be protected against concurrent removing during
 322                  * these PM ops.
 323                  */
 324                 mutex_lock(&idev->hu_lock);
 325                 idev->hu = powered ? hu : NULL;
 326                 mutex_unlock(&idev->hu_lock);
 327 
 328                 if (idev->irq < 0)
 329                         break;
 330 
 331                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
 332                         err = devm_request_threaded_irq(&idev->pdev->dev,
 333                                                         idev->irq, NULL,
 334                                                         intel_irq,
 335                                                         IRQF_ONESHOT,
 336                                                         "bt-host-wake", idev);
 337                         if (err) {
 338                                 BT_ERR("hu %p, unable to allocate irq-%d",
 339                                        hu, idev->irq);
 340                                 break;
 341                         }
 342 
 343                         device_wakeup_enable(&idev->pdev->dev);
 344 
 345                         pm_runtime_set_active(&idev->pdev->dev);
 346                         pm_runtime_use_autosuspend(&idev->pdev->dev);
 347                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
 348                                                          LPM_SUSPEND_DELAY_MS);
 349                         pm_runtime_enable(&idev->pdev->dev);
 350                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
 351                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
 352                         device_wakeup_disable(&idev->pdev->dev);
 353 
 354                         pm_runtime_disable(&idev->pdev->dev);
 355                 }
 356         }
 357 
 358         mutex_unlock(&intel_device_list_lock);
 359 
 360         return err;
 361 }
 362 
 363 static void intel_busy_work(struct work_struct *work)
 364 {
 365         struct list_head *p;
 366         struct intel_data *intel = container_of(work, struct intel_data,
 367                                                 busy_work);
 368 
 369         if (!intel->hu->tty->dev)
 370                 return;
 371 
 372         /* Link is busy, delay the suspend */
 373         mutex_lock(&intel_device_list_lock);
 374         list_for_each(p, &intel_device_list) {
 375                 struct intel_device *idev = list_entry(p, struct intel_device,
 376                                                        list);
 377 
 378                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
 379                         pm_runtime_get(&idev->pdev->dev);
 380                         pm_runtime_mark_last_busy(&idev->pdev->dev);
 381                         pm_runtime_put_autosuspend(&idev->pdev->dev);
 382                         break;
 383                 }
 384         }
 385         mutex_unlock(&intel_device_list_lock);
 386 }
 387 
 388 static int intel_open(struct hci_uart *hu)
 389 {
 390         struct intel_data *intel;
 391 
 392         BT_DBG("hu %p", hu);
 393 
 394         if (!hci_uart_has_flow_control(hu))
 395                 return -EOPNOTSUPP;
 396 
 397         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
 398         if (!intel)
 399                 return -ENOMEM;
 400 
 401         skb_queue_head_init(&intel->txq);
 402         INIT_WORK(&intel->busy_work, intel_busy_work);
 403 
 404         intel->hu = hu;
 405 
 406         hu->priv = intel;
 407 
 408         if (!intel_set_power(hu, true))
 409                 set_bit(STATE_BOOTING, &intel->flags);
 410 
 411         return 0;
 412 }
 413 
 414 static int intel_close(struct hci_uart *hu)
 415 {
 416         struct intel_data *intel = hu->priv;
 417 
 418         BT_DBG("hu %p", hu);
 419 
 420         cancel_work_sync(&intel->busy_work);
 421 
 422         intel_set_power(hu, false);
 423 
 424         skb_queue_purge(&intel->txq);
 425         kfree_skb(intel->rx_skb);
 426         kfree(intel);
 427 
 428         hu->priv = NULL;
 429         return 0;
 430 }
 431 
 432 static int intel_flush(struct hci_uart *hu)
 433 {
 434         struct intel_data *intel = hu->priv;
 435 
 436         BT_DBG("hu %p", hu);
 437 
 438         skb_queue_purge(&intel->txq);
 439 
 440         return 0;
 441 }
 442 
 443 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 444 {
 445         struct sk_buff *skb;
 446         struct hci_event_hdr *hdr;
 447         struct hci_ev_cmd_complete *evt;
 448 
 449         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
 450         if (!skb)
 451                 return -ENOMEM;
 452 
 453         hdr = skb_put(skb, sizeof(*hdr));
 454         hdr->evt = HCI_EV_CMD_COMPLETE;
 455         hdr->plen = sizeof(*evt) + 1;
 456 
 457         evt = skb_put(skb, sizeof(*evt));
 458         evt->ncmd = 0x01;
 459         evt->opcode = cpu_to_le16(opcode);
 460 
 461         skb_put_u8(skb, 0x00);
 462 
 463         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 464 
 465         return hci_recv_frame(hdev, skb);
 466 }
 467 
 468 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
 469 {
 470         struct intel_data *intel = hu->priv;
 471         struct hci_dev *hdev = hu->hdev;
 472         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
 473         struct sk_buff *skb;
 474         int err;
 475 
 476         /* This can be the first command sent to the chip, check
 477          * that the controller is ready.
 478          */
 479         err = intel_wait_booting(hu);
 480 
 481         clear_bit(STATE_BOOTING, &intel->flags);
 482 
 483         /* In case of timeout, try to continue anyway */
 484         if (err && err != -ETIMEDOUT)
 485                 return err;
 486 
 487         bt_dev_info(hdev, "Change controller speed to %d", speed);
 488 
 489         speed_cmd[3] = intel_convert_speed(speed);
 490         if (speed_cmd[3] == 0xff) {
 491                 bt_dev_err(hdev, "Unsupported speed");
 492                 return -EINVAL;
 493         }
 494 
 495         /* Device will not accept speed change if Intel version has not been
 496          * previously requested.
 497          */
 498         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
 499         if (IS_ERR(skb)) {
 500                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
 501                            PTR_ERR(skb));
 502                 return PTR_ERR(skb);
 503         }
 504         kfree_skb(skb);
 505 
 506         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
 507         if (!skb) {
 508                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
 509                 return -ENOMEM;
 510         }
 511 
 512         skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
 513         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 514 
 515         hci_uart_set_flow_control(hu, true);
 516 
 517         skb_queue_tail(&intel->txq, skb);
 518         hci_uart_tx_wakeup(hu);
 519 
 520         /* wait 100ms to change baudrate on controller side */
 521         msleep(100);
 522 
 523         hci_uart_set_baudrate(hu, speed);
 524         hci_uart_set_flow_control(hu, false);
 525 
 526         return 0;
 527 }
 528 
 529 static int intel_setup(struct hci_uart *hu)
 530 {
 531         struct intel_data *intel = hu->priv;
 532         struct hci_dev *hdev = hu->hdev;
 533         struct sk_buff *skb;
 534         struct intel_version ver;
 535         struct intel_boot_params params;
 536         struct list_head *p;
 537         const struct firmware *fw;
 538         char fwname[64];
 539         u32 boot_param;
 540         ktime_t calltime, delta, rettime;
 541         unsigned long long duration;
 542         unsigned int init_speed, oper_speed;
 543         int speed_change = 0;
 544         int err;
 545 
 546         bt_dev_dbg(hdev, "start intel_setup");
 547 
 548         hu->hdev->set_diag = btintel_set_diag;
 549         hu->hdev->set_bdaddr = btintel_set_bdaddr;
 550 
 551         /* Set the default boot parameter to 0x0 and it is updated to
 552          * SKU specific boot parameter after reading Intel_Write_Boot_Params
 553          * command while downloading the firmware.
 554          */
 555         boot_param = 0x00000000;
 556 
 557         calltime = ktime_get();
 558 
 559         if (hu->init_speed)
 560                 init_speed = hu->init_speed;
 561         else
 562                 init_speed = hu->proto->init_speed;
 563 
 564         if (hu->oper_speed)
 565                 oper_speed = hu->oper_speed;
 566         else
 567                 oper_speed = hu->proto->oper_speed;
 568 
 569         if (oper_speed && init_speed && oper_speed != init_speed)
 570                 speed_change = 1;
 571 
 572         /* Check that the controller is ready */
 573         err = intel_wait_booting(hu);
 574 
 575         clear_bit(STATE_BOOTING, &intel->flags);
 576 
 577         /* In case of timeout, try to continue anyway */
 578         if (err && err != -ETIMEDOUT)
 579                 return err;
 580 
 581         set_bit(STATE_BOOTLOADER, &intel->flags);
 582 
 583         /* Read the Intel version information to determine if the device
 584          * is in bootloader mode or if it already has operational firmware
 585          * loaded.
 586          */
 587         err = btintel_read_version(hdev, &ver);
 588         if (err)
 589                 return err;
 590 
 591         /* The hardware platform number has a fixed value of 0x37 and
 592          * for now only accept this single value.
 593          */
 594         if (ver.hw_platform != 0x37) {
 595                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
 596                            ver.hw_platform);
 597                 return -EINVAL;
 598         }
 599 
 600         /* Check for supported iBT hardware variants of this firmware
 601          * loading method.
 602          *
 603          * This check has been put in place to ensure correct forward
 604          * compatibility options when newer hardware variants come along.
 605          */
 606         switch (ver.hw_variant) {
 607         case 0x0b:      /* LnP */
 608         case 0x0c:      /* WsP */
 609         case 0x12:      /* ThP */
 610                 break;
 611         default:
 612                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 613                            ver.hw_variant);
 614                 return -EINVAL;
 615         }
 616 
 617         btintel_version_info(hdev, &ver);
 618 
 619         /* The firmware variant determines if the device is in bootloader
 620          * mode or is running operational firmware. The value 0x06 identifies
 621          * the bootloader and the value 0x23 identifies the operational
 622          * firmware.
 623          *
 624          * When the operational firmware is already present, then only
 625          * the check for valid Bluetooth device address is needed. This
 626          * determines if the device will be added as configured or
 627          * unconfigured controller.
 628          *
 629          * It is not possible to use the Secure Boot Parameters in this
 630          * case since that command is only available in bootloader mode.
 631          */
 632         if (ver.fw_variant == 0x23) {
 633                 clear_bit(STATE_BOOTLOADER, &intel->flags);
 634                 btintel_check_bdaddr(hdev);
 635                 return 0;
 636         }
 637 
 638         /* If the device is not in bootloader mode, then the only possible
 639          * choice is to return an error and abort the device initialization.
 640          */
 641         if (ver.fw_variant != 0x06) {
 642                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
 643                            ver.fw_variant);
 644                 return -ENODEV;
 645         }
 646 
 647         /* Read the secure boot parameters to identify the operating
 648          * details of the bootloader.
 649          */
 650         err = btintel_read_boot_params(hdev, &params);
 651         if (err)
 652                 return err;
 653 
 654         /* It is required that every single firmware fragment is acknowledged
 655          * with a command complete event. If the boot parameters indicate
 656          * that this bootloader does not send them, then abort the setup.
 657          */
 658         if (params.limited_cce != 0x00) {
 659                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
 660                            params.limited_cce);
 661                 return -EINVAL;
 662         }
 663 
 664         /* If the OTP has no valid Bluetooth device address, then there will
 665          * also be no valid address for the operational firmware.
 666          */
 667         if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
 668                 bt_dev_info(hdev, "No device address configured");
 669                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
 670         }
 671 
 672         /* With this Intel bootloader only the hardware variant and device
 673          * revision information are used to select the right firmware for SfP
 674          * and WsP.
 675          *
 676          * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
 677          *
 678          * Currently the supported hardware variants are:
 679          *   11 (0x0b) for iBT 3.0 (LnP/SfP)
 680          *   12 (0x0c) for iBT 3.5 (WsP)
 681          *
 682          * For ThP/JfP and for future SKU's, the FW name varies based on HW
 683          * variant, HW revision and FW revision, as these are dependent on CNVi
 684          * and RF Combination.
 685          *
 686          *   18 (0x12) for iBT3.5 (ThP/JfP)
 687          *
 688          * The firmware file name for these will be
 689          * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
 690          *
 691          */
 692         switch (ver.hw_variant) {
 693         case 0x0b:      /* SfP */
 694         case 0x0c:      /* WsP */
 695                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
 696                          le16_to_cpu(ver.hw_variant),
 697                          le16_to_cpu(params.dev_revid));
 698                 break;
 699         case 0x12:      /* ThP */
 700                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
 701                          le16_to_cpu(ver.hw_variant),
 702                          le16_to_cpu(ver.hw_revision),
 703                          le16_to_cpu(ver.fw_revision));
 704                 break;
 705         default:
 706                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 707                            ver.hw_variant);
 708                 return -EINVAL;
 709         }
 710 
 711         err = request_firmware(&fw, fwname, &hdev->dev);
 712         if (err < 0) {
 713                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
 714                            err);
 715                 return err;
 716         }
 717 
 718         bt_dev_info(hdev, "Found device firmware: %s", fwname);
 719 
 720         /* Save the DDC file name for later */
 721         switch (ver.hw_variant) {
 722         case 0x0b:      /* SfP */
 723         case 0x0c:      /* WsP */
 724                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
 725                          le16_to_cpu(ver.hw_variant),
 726                          le16_to_cpu(params.dev_revid));
 727                 break;
 728         case 0x12:      /* ThP */
 729                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
 730                          le16_to_cpu(ver.hw_variant),
 731                          le16_to_cpu(ver.hw_revision),
 732                          le16_to_cpu(ver.fw_revision));
 733                 break;
 734         default:
 735                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 736                            ver.hw_variant);
 737                 return -EINVAL;
 738         }
 739 
 740         if (fw->size < 644) {
 741                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
 742                            fw->size);
 743                 err = -EBADF;
 744                 goto done;
 745         }
 746 
 747         set_bit(STATE_DOWNLOADING, &intel->flags);
 748 
 749         /* Start firmware downloading and get boot parameter */
 750         err = btintel_download_firmware(hdev, fw, &boot_param);
 751         if (err < 0)
 752                 goto done;
 753 
 754         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
 755 
 756         bt_dev_info(hdev, "Waiting for firmware download to complete");
 757 
 758         /* Before switching the device into operational mode and with that
 759          * booting the loaded firmware, wait for the bootloader notification
 760          * that all fragments have been successfully received.
 761          *
 762          * When the event processing receives the notification, then the
 763          * STATE_DOWNLOADING flag will be cleared.
 764          *
 765          * The firmware loading should not take longer than 5 seconds
 766          * and thus just timeout if that happens and fail the setup
 767          * of this device.
 768          */
 769         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
 770                                   TASK_INTERRUPTIBLE,
 771                                   msecs_to_jiffies(5000));
 772         if (err == -EINTR) {
 773                 bt_dev_err(hdev, "Firmware loading interrupted");
 774                 err = -EINTR;
 775                 goto done;
 776         }
 777 
 778         if (err) {
 779                 bt_dev_err(hdev, "Firmware loading timeout");
 780                 err = -ETIMEDOUT;
 781                 goto done;
 782         }
 783 
 784         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
 785                 bt_dev_err(hdev, "Firmware loading failed");
 786                 err = -ENOEXEC;
 787                 goto done;
 788         }
 789 
 790         rettime = ktime_get();
 791         delta = ktime_sub(rettime, calltime);
 792         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 793 
 794         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
 795 
 796 done:
 797         release_firmware(fw);
 798 
 799         if (err < 0)
 800                 return err;
 801 
 802         /* We need to restore the default speed before Intel reset */
 803         if (speed_change) {
 804                 err = intel_set_baudrate(hu, init_speed);
 805                 if (err)
 806                         return err;
 807         }
 808 
 809         calltime = ktime_get();
 810 
 811         set_bit(STATE_BOOTING, &intel->flags);
 812 
 813         err = btintel_send_intel_reset(hdev, boot_param);
 814         if (err)
 815                 return err;
 816 
 817         /* The bootloader will not indicate when the device is ready. This
 818          * is done by the operational firmware sending bootup notification.
 819          *
 820          * Booting into operational firmware should not take longer than
 821          * 1 second. However if that happens, then just fail the setup
 822          * since something went wrong.
 823          */
 824         bt_dev_info(hdev, "Waiting for device to boot");
 825 
 826         err = intel_wait_booting(hu);
 827         if (err)
 828                 return err;
 829 
 830         clear_bit(STATE_BOOTING, &intel->flags);
 831 
 832         rettime = ktime_get();
 833         delta = ktime_sub(rettime, calltime);
 834         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 835 
 836         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
 837 
 838         /* Enable LPM if matching pdev with wakeup enabled, set TX active
 839          * until further LPM TX notification.
 840          */
 841         mutex_lock(&intel_device_list_lock);
 842         list_for_each(p, &intel_device_list) {
 843                 struct intel_device *dev = list_entry(p, struct intel_device,
 844                                                       list);
 845                 if (!hu->tty->dev)
 846                         break;
 847                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
 848                         if (device_may_wakeup(&dev->pdev->dev)) {
 849                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
 850                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
 851                         }
 852                         break;
 853                 }
 854         }
 855         mutex_unlock(&intel_device_list_lock);
 856 
 857         /* Ignore errors, device can work without DDC parameters */
 858         btintel_load_ddc_config(hdev, fwname);
 859 
 860         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
 861         if (IS_ERR(skb))
 862                 return PTR_ERR(skb);
 863         kfree_skb(skb);
 864 
 865         if (speed_change) {
 866                 err = intel_set_baudrate(hu, oper_speed);
 867                 if (err)
 868                         return err;
 869         }
 870 
 871         bt_dev_info(hdev, "Setup complete");
 872 
 873         clear_bit(STATE_BOOTLOADER, &intel->flags);
 874 
 875         return 0;
 876 }
 877 
 878 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 879 {
 880         struct hci_uart *hu = hci_get_drvdata(hdev);
 881         struct intel_data *intel = hu->priv;
 882         struct hci_event_hdr *hdr;
 883 
 884         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
 885             !test_bit(STATE_BOOTING, &intel->flags))
 886                 goto recv;
 887 
 888         hdr = (void *)skb->data;
 889 
 890         /* When the firmware loading completes the device sends
 891          * out a vendor specific event indicating the result of
 892          * the firmware loading.
 893          */
 894         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
 895             skb->data[2] == 0x06) {
 896                 if (skb->data[3] != 0x00)
 897                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
 898 
 899                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
 900                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
 901                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
 902 
 903         /* When switching to the operational firmware the device
 904          * sends a vendor specific event indicating that the bootup
 905          * completed.
 906          */
 907         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
 908                    skb->data[2] == 0x02) {
 909                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
 910                         wake_up_bit(&intel->flags, STATE_BOOTING);
 911         }
 912 recv:
 913         return hci_recv_frame(hdev, skb);
 914 }
 915 
 916 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
 917 {
 918         struct hci_uart *hu = hci_get_drvdata(hdev);
 919         struct intel_data *intel = hu->priv;
 920 
 921         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
 922 
 923         if (value) {
 924                 set_bit(STATE_TX_ACTIVE, &intel->flags);
 925                 schedule_work(&intel->busy_work);
 926         } else {
 927                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
 928         }
 929 }
 930 
 931 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
 932 {
 933         struct hci_lpm_pkt *lpm = (void *)skb->data;
 934         struct hci_uart *hu = hci_get_drvdata(hdev);
 935         struct intel_data *intel = hu->priv;
 936 
 937         switch (lpm->opcode) {
 938         case LPM_OP_TX_NOTIFY:
 939                 if (lpm->dlen < 1) {
 940                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
 941                         break;
 942                 }
 943                 intel_recv_lpm_notify(hdev, lpm->data[0]);
 944                 break;
 945         case LPM_OP_SUSPEND_ACK:
 946                 set_bit(STATE_SUSPENDED, &intel->flags);
 947                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
 948                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 949                 break;
 950         case LPM_OP_RESUME_ACK:
 951                 clear_bit(STATE_SUSPENDED, &intel->flags);
 952                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
 953                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
 954                 break;
 955         default:
 956                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
 957                 break;
 958         }
 959 
 960         kfree_skb(skb);
 961 
 962         return 0;
 963 }
 964 
 965 #define INTEL_RECV_LPM \
 966         .type = HCI_LPM_PKT, \
 967         .hlen = HCI_LPM_HDR_SIZE, \
 968         .loff = 1, \
 969         .lsize = 1, \
 970         .maxlen = HCI_LPM_MAX_SIZE
 971 
 972 static const struct h4_recv_pkt intel_recv_pkts[] = {
 973         { H4_RECV_ACL,    .recv = hci_recv_frame   },
 974         { H4_RECV_SCO,    .recv = hci_recv_frame   },
 975         { H4_RECV_EVENT,  .recv = intel_recv_event },
 976         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
 977 };
 978 
 979 static int intel_recv(struct hci_uart *hu, const void *data, int count)
 980 {
 981         struct intel_data *intel = hu->priv;
 982 
 983         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
 984                 return -EUNATCH;
 985 
 986         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
 987                                     intel_recv_pkts,
 988                                     ARRAY_SIZE(intel_recv_pkts));
 989         if (IS_ERR(intel->rx_skb)) {
 990                 int err = PTR_ERR(intel->rx_skb);
 991                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
 992                 intel->rx_skb = NULL;
 993                 return err;
 994         }
 995 
 996         return count;
 997 }
 998 
 999 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1000 {
1001         struct intel_data *intel = hu->priv;
1002         struct list_head *p;
1003 
1004         BT_DBG("hu %p skb %p", hu, skb);
1005 
1006         if (!hu->tty->dev)
1007                 goto out_enqueue;
1008 
1009         /* Be sure our controller is resumed and potential LPM transaction
1010          * completed before enqueuing any packet.
1011          */
1012         mutex_lock(&intel_device_list_lock);
1013         list_for_each(p, &intel_device_list) {
1014                 struct intel_device *idev = list_entry(p, struct intel_device,
1015                                                        list);
1016 
1017                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1018                         pm_runtime_get_sync(&idev->pdev->dev);
1019                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1020                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1021                         break;
1022                 }
1023         }
1024         mutex_unlock(&intel_device_list_lock);
1025 out_enqueue:
1026         skb_queue_tail(&intel->txq, skb);
1027 
1028         return 0;
1029 }
1030 
1031 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1032 {
1033         struct intel_data *intel = hu->priv;
1034         struct sk_buff *skb;
1035 
1036         skb = skb_dequeue(&intel->txq);
1037         if (!skb)
1038                 return skb;
1039 
1040         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1041             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1042                 struct hci_command_hdr *cmd = (void *)skb->data;
1043                 __u16 opcode = le16_to_cpu(cmd->opcode);
1044 
1045                 /* When the 0xfc01 command is issued to boot into
1046                  * the operational firmware, it will actually not
1047                  * send a command complete event. To keep the flow
1048                  * control working inject that event here.
1049                  */
1050                 if (opcode == 0xfc01)
1051                         inject_cmd_complete(hu->hdev, opcode);
1052         }
1053 
1054         /* Prepend skb with frame type */
1055         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1056 
1057         return skb;
1058 }
1059 
1060 static const struct hci_uart_proto intel_proto = {
1061         .id             = HCI_UART_INTEL,
1062         .name           = "Intel",
1063         .manufacturer   = 2,
1064         .init_speed     = 115200,
1065         .oper_speed     = 3000000,
1066         .open           = intel_open,
1067         .close          = intel_close,
1068         .flush          = intel_flush,
1069         .setup          = intel_setup,
1070         .set_baudrate   = intel_set_baudrate,
1071         .recv           = intel_recv,
1072         .enqueue        = intel_enqueue,
1073         .dequeue        = intel_dequeue,
1074 };
1075 
1076 #ifdef CONFIG_ACPI
1077 static const struct acpi_device_id intel_acpi_match[] = {
1078         { "INT33E1", 0 },
1079         { },
1080 };
1081 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1082 #endif
1083 
1084 #ifdef CONFIG_PM
1085 static int intel_suspend_device(struct device *dev)
1086 {
1087         struct intel_device *idev = dev_get_drvdata(dev);
1088 
1089         mutex_lock(&idev->hu_lock);
1090         if (idev->hu)
1091                 intel_lpm_suspend(idev->hu);
1092         mutex_unlock(&idev->hu_lock);
1093 
1094         return 0;
1095 }
1096 
1097 static int intel_resume_device(struct device *dev)
1098 {
1099         struct intel_device *idev = dev_get_drvdata(dev);
1100 
1101         mutex_lock(&idev->hu_lock);
1102         if (idev->hu)
1103                 intel_lpm_resume(idev->hu);
1104         mutex_unlock(&idev->hu_lock);
1105 
1106         return 0;
1107 }
1108 #endif
1109 
1110 #ifdef CONFIG_PM_SLEEP
1111 static int intel_suspend(struct device *dev)
1112 {
1113         struct intel_device *idev = dev_get_drvdata(dev);
1114 
1115         if (device_may_wakeup(dev))
1116                 enable_irq_wake(idev->irq);
1117 
1118         return intel_suspend_device(dev);
1119 }
1120 
1121 static int intel_resume(struct device *dev)
1122 {
1123         struct intel_device *idev = dev_get_drvdata(dev);
1124 
1125         if (device_may_wakeup(dev))
1126                 disable_irq_wake(idev->irq);
1127 
1128         return intel_resume_device(dev);
1129 }
1130 #endif
1131 
1132 static const struct dev_pm_ops intel_pm_ops = {
1133         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1134         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1135 };
1136 
1137 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1138 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1139 
1140 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1141         { "reset-gpios", &reset_gpios, 1 },
1142         { "host-wake-gpios", &host_wake_gpios, 1 },
1143         { },
1144 };
1145 
1146 static int intel_probe(struct platform_device *pdev)
1147 {
1148         struct intel_device *idev;
1149         int ret;
1150 
1151         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1152         if (!idev)
1153                 return -ENOMEM;
1154 
1155         mutex_init(&idev->hu_lock);
1156 
1157         idev->pdev = pdev;
1158 
1159         ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1160         if (ret)
1161                 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1162 
1163         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1164         if (IS_ERR(idev->reset)) {
1165                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1166                 return PTR_ERR(idev->reset);
1167         }
1168 
1169         idev->irq = platform_get_irq(pdev, 0);
1170         if (idev->irq < 0) {
1171                 struct gpio_desc *host_wake;
1172 
1173                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1174 
1175                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1176                 if (IS_ERR(host_wake)) {
1177                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1178                         goto no_irq;
1179                 }
1180 
1181                 idev->irq = gpiod_to_irq(host_wake);
1182                 if (idev->irq < 0) {
1183                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1184                         goto no_irq;
1185                 }
1186         }
1187 
1188         /* Only enable wake-up/irq when controller is powered */
1189         device_set_wakeup_capable(&pdev->dev, true);
1190         device_wakeup_disable(&pdev->dev);
1191 
1192 no_irq:
1193         platform_set_drvdata(pdev, idev);
1194 
1195         /* Place this instance on the device list */
1196         mutex_lock(&intel_device_list_lock);
1197         list_add_tail(&idev->list, &intel_device_list);
1198         mutex_unlock(&intel_device_list_lock);
1199 
1200         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1201                  desc_to_gpio(idev->reset), idev->irq);
1202 
1203         return 0;
1204 }
1205 
1206 static int intel_remove(struct platform_device *pdev)
1207 {
1208         struct intel_device *idev = platform_get_drvdata(pdev);
1209 
1210         device_wakeup_disable(&pdev->dev);
1211 
1212         mutex_lock(&intel_device_list_lock);
1213         list_del(&idev->list);
1214         mutex_unlock(&intel_device_list_lock);
1215 
1216         dev_info(&pdev->dev, "unregistered.\n");
1217 
1218         return 0;
1219 }
1220 
1221 static struct platform_driver intel_driver = {
1222         .probe = intel_probe,
1223         .remove = intel_remove,
1224         .driver = {
1225                 .name = "hci_intel",
1226                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1227                 .pm = &intel_pm_ops,
1228         },
1229 };
1230 
1231 int __init intel_init(void)
1232 {
1233         platform_driver_register(&intel_driver);
1234 
1235         return hci_uart_register_proto(&intel_proto);
1236 }
1237 
1238 int __exit intel_deinit(void)
1239 {
1240         platform_driver_unregister(&intel_driver);
1241 
1242         return hci_uart_unregister_proto(&intel_proto);
1243 }

/* [<][>][^][v][top][bottom][index][help] */