This source file includes following definitions.
- h4_open
- h4_flush
- h4_close
- h4_enqueue
- h4_recv
- h4_dequeue
- h4_init
- h4_deinit
- h4_recv_buf
1
2
3
4
5
6
7
8
9
10
11 #include <linux/module.h>
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/poll.h>
20
21 #include <linux/slab.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/signal.h>
26 #include <linux/ioctl.h>
27 #include <linux/skbuff.h>
28 #include <asm/unaligned.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32
33 #include "hci_uart.h"
34
35 struct h4_struct {
36 struct sk_buff *rx_skb;
37 struct sk_buff_head txq;
38 };
39
40
41 static int h4_open(struct hci_uart *hu)
42 {
43 struct h4_struct *h4;
44
45 BT_DBG("hu %p", hu);
46
47 h4 = kzalloc(sizeof(*h4), GFP_KERNEL);
48 if (!h4)
49 return -ENOMEM;
50
51 skb_queue_head_init(&h4->txq);
52
53 hu->priv = h4;
54 return 0;
55 }
56
57
58 static int h4_flush(struct hci_uart *hu)
59 {
60 struct h4_struct *h4 = hu->priv;
61
62 BT_DBG("hu %p", hu);
63
64 skb_queue_purge(&h4->txq);
65
66 return 0;
67 }
68
69
70 static int h4_close(struct hci_uart *hu)
71 {
72 struct h4_struct *h4 = hu->priv;
73
74 hu->priv = NULL;
75
76 BT_DBG("hu %p", hu);
77
78 skb_queue_purge(&h4->txq);
79
80 kfree_skb(h4->rx_skb);
81
82 hu->priv = NULL;
83 kfree(h4);
84
85 return 0;
86 }
87
88
89 static int h4_enqueue(struct hci_uart *hu, struct sk_buff *skb)
90 {
91 struct h4_struct *h4 = hu->priv;
92
93 BT_DBG("hu %p skb %p", hu, skb);
94
95
96 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
97 skb_queue_tail(&h4->txq, skb);
98
99 return 0;
100 }
101
102 static const struct h4_recv_pkt h4_recv_pkts[] = {
103 { H4_RECV_ACL, .recv = hci_recv_frame },
104 { H4_RECV_SCO, .recv = hci_recv_frame },
105 { H4_RECV_EVENT, .recv = hci_recv_frame },
106 };
107
108
109 static int h4_recv(struct hci_uart *hu, const void *data, int count)
110 {
111 struct h4_struct *h4 = hu->priv;
112
113 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
114 return -EUNATCH;
115
116 h4->rx_skb = h4_recv_buf(hu->hdev, h4->rx_skb, data, count,
117 h4_recv_pkts, ARRAY_SIZE(h4_recv_pkts));
118 if (IS_ERR(h4->rx_skb)) {
119 int err = PTR_ERR(h4->rx_skb);
120 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
121 h4->rx_skb = NULL;
122 return err;
123 }
124
125 return count;
126 }
127
128 static struct sk_buff *h4_dequeue(struct hci_uart *hu)
129 {
130 struct h4_struct *h4 = hu->priv;
131 return skb_dequeue(&h4->txq);
132 }
133
134 static const struct hci_uart_proto h4p = {
135 .id = HCI_UART_H4,
136 .name = "H4",
137 .open = h4_open,
138 .close = h4_close,
139 .recv = h4_recv,
140 .enqueue = h4_enqueue,
141 .dequeue = h4_dequeue,
142 .flush = h4_flush,
143 };
144
145 int __init h4_init(void)
146 {
147 return hci_uart_register_proto(&h4p);
148 }
149
150 int __exit h4_deinit(void)
151 {
152 return hci_uart_unregister_proto(&h4p);
153 }
154
155 struct sk_buff *h4_recv_buf(struct hci_dev *hdev, struct sk_buff *skb,
156 const unsigned char *buffer, int count,
157 const struct h4_recv_pkt *pkts, int pkts_count)
158 {
159 struct hci_uart *hu = hci_get_drvdata(hdev);
160 u8 alignment = hu->alignment ? hu->alignment : 1;
161
162
163 if (IS_ERR(skb))
164 skb = NULL;
165
166 while (count) {
167 int i, len;
168
169
170 for (; hu->padding && count > 0; hu->padding--) {
171 count--;
172 buffer++;
173 }
174 if (!count)
175 break;
176
177 if (!skb) {
178 for (i = 0; i < pkts_count; i++) {
179 if (buffer[0] != (&pkts[i])->type)
180 continue;
181
182 skb = bt_skb_alloc((&pkts[i])->maxlen,
183 GFP_ATOMIC);
184 if (!skb)
185 return ERR_PTR(-ENOMEM);
186
187 hci_skb_pkt_type(skb) = (&pkts[i])->type;
188 hci_skb_expect(skb) = (&pkts[i])->hlen;
189 break;
190 }
191
192
193 if (!skb)
194 return ERR_PTR(-EILSEQ);
195
196 count -= 1;
197 buffer += 1;
198 }
199
200 len = min_t(uint, hci_skb_expect(skb) - skb->len, count);
201 skb_put_data(skb, buffer, len);
202
203 count -= len;
204 buffer += len;
205
206
207 if (skb->len < hci_skb_expect(skb))
208 continue;
209
210 for (i = 0; i < pkts_count; i++) {
211 if (hci_skb_pkt_type(skb) == (&pkts[i])->type)
212 break;
213 }
214
215 if (i >= pkts_count) {
216 kfree_skb(skb);
217 return ERR_PTR(-EILSEQ);
218 }
219
220 if (skb->len == (&pkts[i])->hlen) {
221 u16 dlen;
222
223 switch ((&pkts[i])->lsize) {
224 case 0:
225
226 dlen = 0;
227 break;
228 case 1:
229
230 dlen = skb->data[(&pkts[i])->loff];
231 hci_skb_expect(skb) += dlen;
232
233 if (skb_tailroom(skb) < dlen) {
234 kfree_skb(skb);
235 return ERR_PTR(-EMSGSIZE);
236 }
237 break;
238 case 2:
239
240 dlen = get_unaligned_le16(skb->data +
241 (&pkts[i])->loff);
242 hci_skb_expect(skb) += dlen;
243
244 if (skb_tailroom(skb) < dlen) {
245 kfree_skb(skb);
246 return ERR_PTR(-EMSGSIZE);
247 }
248 break;
249 default:
250
251 kfree_skb(skb);
252 return ERR_PTR(-EILSEQ);
253 }
254
255 if (!dlen) {
256 hu->padding = (skb->len - 1) % alignment;
257 hu->padding = (alignment - hu->padding) % alignment;
258
259
260 (&pkts[i])->recv(hdev, skb);
261 skb = NULL;
262 }
263 } else {
264 hu->padding = (skb->len - 1) % alignment;
265 hu->padding = (alignment - hu->padding) % alignment;
266
267
268 (&pkts[i])->recv(hdev, skb);
269 skb = NULL;
270 }
271 }
272
273 return skb;
274 }
275 EXPORT_SYMBOL_GPL(h4_recv_buf);