This source file includes following definitions.
- sbs_read_word_data
- sbs_read_string_data
- sbs_write_word_data
- sbs_status_correct
- sbs_get_battery_presence_and_health
- sbs_get_ti_battery_presence_and_health
- sbs_get_battery_property
- sbs_get_battery_string_property
- sbs_unit_adjustment
- sbs_set_battery_mode
- sbs_get_battery_capacity
- sbs_get_battery_serial_number
- sbs_get_property_index
- sbs_get_property
- sbs_supply_changed
- sbs_irq
- sbs_alert
- sbs_external_power_changed
- sbs_delayed_work
- sbs_probe
- sbs_remove
- sbs_suspend
1
2
3
4
5
6
7
8 #include <linux/delay.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/i2c.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/power/sbs-battery.h>
19 #include <linux/power_supply.h>
20 #include <linux/slab.h>
21 #include <linux/stat.h>
22
23 enum {
24 REG_MANUFACTURER_DATA,
25 REG_TEMPERATURE,
26 REG_VOLTAGE,
27 REG_CURRENT,
28 REG_CAPACITY,
29 REG_TIME_TO_EMPTY,
30 REG_TIME_TO_FULL,
31 REG_STATUS,
32 REG_CAPACITY_LEVEL,
33 REG_CYCLE_COUNT,
34 REG_SERIAL_NUMBER,
35 REG_REMAINING_CAPACITY,
36 REG_REMAINING_CAPACITY_CHARGE,
37 REG_FULL_CHARGE_CAPACITY,
38 REG_FULL_CHARGE_CAPACITY_CHARGE,
39 REG_DESIGN_CAPACITY,
40 REG_DESIGN_CAPACITY_CHARGE,
41 REG_DESIGN_VOLTAGE_MIN,
42 REG_DESIGN_VOLTAGE_MAX,
43 REG_MANUFACTURER,
44 REG_MODEL_NAME,
45 };
46
47
48 #define BATTERY_MODE_OFFSET 0x03
49 #define BATTERY_MODE_MASK 0x8000
50 enum sbs_battery_mode {
51 BATTERY_MODE_AMPS = 0,
52 BATTERY_MODE_WATTS = 0x8000
53 };
54
55
56 #define MANUFACTURER_ACCESS_STATUS 0x0006
57 #define MANUFACTURER_ACCESS_SLEEP 0x0011
58
59
60 #define BATTERY_INITIALIZED 0x80
61 #define BATTERY_DISCHARGING 0x40
62 #define BATTERY_FULL_CHARGED 0x20
63 #define BATTERY_FULL_DISCHARGED 0x10
64
65
66 #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
67 .psp = _psp, \
68 .addr = _addr, \
69 .min_value = _min_value, \
70 .max_value = _max_value, \
71 }
72
73 static const struct chip_data {
74 enum power_supply_property psp;
75 u8 addr;
76 int min_value;
77 int max_value;
78 } sbs_data[] = {
79 [REG_MANUFACTURER_DATA] =
80 SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
81 [REG_TEMPERATURE] =
82 SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
83 [REG_VOLTAGE] =
84 SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
85 [REG_CURRENT] =
86 SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
87 [REG_CAPACITY] =
88 SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
89 [REG_REMAINING_CAPACITY] =
90 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
91 [REG_REMAINING_CAPACITY_CHARGE] =
92 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
93 [REG_FULL_CHARGE_CAPACITY] =
94 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
95 [REG_FULL_CHARGE_CAPACITY_CHARGE] =
96 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
97 [REG_TIME_TO_EMPTY] =
98 SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
99 [REG_TIME_TO_FULL] =
100 SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
101 [REG_STATUS] =
102 SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
103 [REG_CAPACITY_LEVEL] =
104 SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535),
105 [REG_CYCLE_COUNT] =
106 SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
107 [REG_DESIGN_CAPACITY] =
108 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
109 [REG_DESIGN_CAPACITY_CHARGE] =
110 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
111 [REG_DESIGN_VOLTAGE_MIN] =
112 SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535),
113 [REG_DESIGN_VOLTAGE_MAX] =
114 SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
115 [REG_SERIAL_NUMBER] =
116 SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
117
118 [REG_MANUFACTURER] =
119 SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535),
120 [REG_MODEL_NAME] =
121 SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535)
122 };
123
124 static enum power_supply_property sbs_properties[] = {
125 POWER_SUPPLY_PROP_STATUS,
126 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
127 POWER_SUPPLY_PROP_HEALTH,
128 POWER_SUPPLY_PROP_PRESENT,
129 POWER_SUPPLY_PROP_TECHNOLOGY,
130 POWER_SUPPLY_PROP_CYCLE_COUNT,
131 POWER_SUPPLY_PROP_VOLTAGE_NOW,
132 POWER_SUPPLY_PROP_CURRENT_NOW,
133 POWER_SUPPLY_PROP_CAPACITY,
134 POWER_SUPPLY_PROP_TEMP,
135 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
136 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
137 POWER_SUPPLY_PROP_SERIAL_NUMBER,
138 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
139 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
140 POWER_SUPPLY_PROP_ENERGY_NOW,
141 POWER_SUPPLY_PROP_ENERGY_FULL,
142 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
143 POWER_SUPPLY_PROP_CHARGE_NOW,
144 POWER_SUPPLY_PROP_CHARGE_FULL,
145 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
146
147 POWER_SUPPLY_PROP_MANUFACTURER,
148 POWER_SUPPLY_PROP_MODEL_NAME
149 };
150
151
152 #define SBS_FLAGS_TI_BQ20Z75 BIT(0)
153
154 struct sbs_info {
155 struct i2c_client *client;
156 struct power_supply *power_supply;
157 bool is_present;
158 struct gpio_desc *gpio_detect;
159 bool enable_detection;
160 int last_state;
161 int poll_time;
162 u32 i2c_retry_count;
163 u32 poll_retry_count;
164 struct delayed_work work;
165 struct mutex mode_lock;
166 u32 flags;
167 };
168
169 static char model_name[I2C_SMBUS_BLOCK_MAX + 1];
170 static char manufacturer[I2C_SMBUS_BLOCK_MAX + 1];
171 static bool force_load;
172
173 static int sbs_read_word_data(struct i2c_client *client, u8 address)
174 {
175 struct sbs_info *chip = i2c_get_clientdata(client);
176 int retries = chip->i2c_retry_count;
177 s32 ret = 0;
178
179 while (retries > 0) {
180 ret = i2c_smbus_read_word_data(client, address);
181 if (ret >= 0)
182 break;
183 retries--;
184 }
185
186 if (ret < 0) {
187 dev_dbg(&client->dev,
188 "%s: i2c read at address 0x%x failed\n",
189 __func__, address);
190 return ret;
191 }
192
193 return ret;
194 }
195
196 static int sbs_read_string_data(struct i2c_client *client, u8 address,
197 char *values)
198 {
199 struct sbs_info *chip = i2c_get_clientdata(client);
200 s32 ret = 0, block_length = 0;
201 int retries_length, retries_block;
202 u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1];
203
204 retries_length = chip->i2c_retry_count;
205 retries_block = chip->i2c_retry_count;
206
207
208 if (!i2c_check_functionality(client->adapter,
209 I2C_FUNC_SMBUS_BYTE_DATA |
210 I2C_FUNC_SMBUS_I2C_BLOCK)){
211 return -ENODEV;
212 }
213
214
215 while (retries_length > 0) {
216 ret = i2c_smbus_read_byte_data(client, address);
217 if (ret >= 0)
218 break;
219 retries_length--;
220 }
221
222 if (ret < 0) {
223 dev_dbg(&client->dev,
224 "%s: i2c read at address 0x%x failed\n",
225 __func__, address);
226 return ret;
227 }
228
229
230 block_length = ret;
231 if (block_length > I2C_SMBUS_BLOCK_MAX) {
232 dev_err(&client->dev,
233 "%s: Returned block_length is longer than 0x%x\n",
234 __func__, I2C_SMBUS_BLOCK_MAX);
235 return -EINVAL;
236 }
237
238
239 while (retries_block > 0) {
240 ret = i2c_smbus_read_i2c_block_data(
241 client, address,
242 block_length + 1, block_buffer);
243 if (ret >= 0)
244 break;
245 retries_block--;
246 }
247
248 if (ret < 0) {
249 dev_dbg(&client->dev,
250 "%s: i2c read at address 0x%x failed\n",
251 __func__, address);
252 return ret;
253 }
254
255
256 memcpy(values, block_buffer + 1, block_length);
257 values[block_length] = '\0';
258
259 return ret;
260 }
261
262 static int sbs_write_word_data(struct i2c_client *client, u8 address,
263 u16 value)
264 {
265 struct sbs_info *chip = i2c_get_clientdata(client);
266 int retries = chip->i2c_retry_count;
267 s32 ret = 0;
268
269 while (retries > 0) {
270 ret = i2c_smbus_write_word_data(client, address, value);
271 if (ret >= 0)
272 break;
273 retries--;
274 }
275
276 if (ret < 0) {
277 dev_dbg(&client->dev,
278 "%s: i2c write to address 0x%x failed\n",
279 __func__, address);
280 return ret;
281 }
282
283 return 0;
284 }
285
286 static int sbs_status_correct(struct i2c_client *client, int *intval)
287 {
288 int ret;
289
290 ret = sbs_read_word_data(client, sbs_data[REG_CURRENT].addr);
291 if (ret < 0)
292 return ret;
293
294 ret = (s16)ret;
295
296
297 if (ret == 0)
298 *intval = POWER_SUPPLY_STATUS_FULL;
299
300 if (*intval == POWER_SUPPLY_STATUS_FULL) {
301
302 if (ret > 0)
303 *intval = POWER_SUPPLY_STATUS_CHARGING;
304 else if (ret < 0)
305 *intval = POWER_SUPPLY_STATUS_DISCHARGING;
306 }
307
308 return 0;
309 }
310
311 static int sbs_get_battery_presence_and_health(
312 struct i2c_client *client, enum power_supply_property psp,
313 union power_supply_propval *val)
314 {
315 int ret;
316
317
318 ret = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
319
320 if (ret < 0) {
321 if (psp == POWER_SUPPLY_PROP_PRESENT) {
322 val->intval = 0;
323 return 0;
324 }
325 return ret;
326 }
327
328 if (psp == POWER_SUPPLY_PROP_PRESENT)
329 val->intval = 1;
330 else
331
332 val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
333
334 return 0;
335 }
336
337 static int sbs_get_ti_battery_presence_and_health(
338 struct i2c_client *client, enum power_supply_property psp,
339 union power_supply_propval *val)
340 {
341 s32 ret;
342
343
344
345
346
347 ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
348 MANUFACTURER_ACCESS_STATUS);
349 if (ret < 0) {
350 if (psp == POWER_SUPPLY_PROP_PRESENT)
351 val->intval = 0;
352 return ret;
353 }
354
355 ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
356 if (ret < 0) {
357 if (psp == POWER_SUPPLY_PROP_PRESENT)
358 val->intval = 0;
359 return ret;
360 }
361
362 if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
363 ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
364 val->intval = 0;
365 return 0;
366 }
367
368
369
370
371 ret &= 0x0F00;
372 ret >>= 8;
373 if (psp == POWER_SUPPLY_PROP_PRESENT) {
374 if (ret == 0x0F)
375
376 val->intval = 0;
377 else
378 val->intval = 1;
379 } else if (psp == POWER_SUPPLY_PROP_HEALTH) {
380 if (ret == 0x09)
381 val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
382 else if (ret == 0x0B)
383 val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
384 else if (ret == 0x0C)
385 val->intval = POWER_SUPPLY_HEALTH_DEAD;
386 else
387 val->intval = POWER_SUPPLY_HEALTH_GOOD;
388 }
389
390 return 0;
391 }
392
393 static int sbs_get_battery_property(struct i2c_client *client,
394 int reg_offset, enum power_supply_property psp,
395 union power_supply_propval *val)
396 {
397 struct sbs_info *chip = i2c_get_clientdata(client);
398 s32 ret;
399
400 ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
401 if (ret < 0)
402 return ret;
403
404
405 if (sbs_data[reg_offset].min_value < 0)
406 ret = (s16)ret;
407
408 if (ret >= sbs_data[reg_offset].min_value &&
409 ret <= sbs_data[reg_offset].max_value) {
410 val->intval = ret;
411 if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) {
412 if (!(ret & BATTERY_INITIALIZED))
413 val->intval =
414 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
415 else if (ret & BATTERY_FULL_CHARGED)
416 val->intval =
417 POWER_SUPPLY_CAPACITY_LEVEL_FULL;
418 else if (ret & BATTERY_FULL_DISCHARGED)
419 val->intval =
420 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
421 else
422 val->intval =
423 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
424 return 0;
425 } else if (psp != POWER_SUPPLY_PROP_STATUS) {
426 return 0;
427 }
428
429 if (ret & BATTERY_FULL_CHARGED)
430 val->intval = POWER_SUPPLY_STATUS_FULL;
431 else if (ret & BATTERY_DISCHARGING)
432 val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
433 else
434 val->intval = POWER_SUPPLY_STATUS_CHARGING;
435
436 sbs_status_correct(client, &val->intval);
437
438 if (chip->poll_time == 0)
439 chip->last_state = val->intval;
440 else if (chip->last_state != val->intval) {
441 cancel_delayed_work_sync(&chip->work);
442 power_supply_changed(chip->power_supply);
443 chip->poll_time = 0;
444 }
445 } else {
446 if (psp == POWER_SUPPLY_PROP_STATUS)
447 val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
448 else if (psp == POWER_SUPPLY_PROP_CAPACITY)
449
450
451
452 val->intval = min(ret, 100);
453 else
454 val->intval = 0;
455 }
456
457 return 0;
458 }
459
460 static int sbs_get_battery_string_property(struct i2c_client *client,
461 int reg_offset, enum power_supply_property psp, char *val)
462 {
463 s32 ret;
464
465 ret = sbs_read_string_data(client, sbs_data[reg_offset].addr, val);
466
467 if (ret < 0)
468 return ret;
469
470 return 0;
471 }
472
473 static void sbs_unit_adjustment(struct i2c_client *client,
474 enum power_supply_property psp, union power_supply_propval *val)
475 {
476 #define BASE_UNIT_CONVERSION 1000
477 #define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION)
478 #define TIME_UNIT_CONVERSION 60
479 #define TEMP_KELVIN_TO_CELSIUS 2731
480 switch (psp) {
481 case POWER_SUPPLY_PROP_ENERGY_NOW:
482 case POWER_SUPPLY_PROP_ENERGY_FULL:
483 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
484
485
486
487 val->intval *= BATTERY_MODE_CAP_MULT_WATT;
488 break;
489
490 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
491 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
492 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
493 case POWER_SUPPLY_PROP_CURRENT_NOW:
494 case POWER_SUPPLY_PROP_CHARGE_NOW:
495 case POWER_SUPPLY_PROP_CHARGE_FULL:
496 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
497 val->intval *= BASE_UNIT_CONVERSION;
498 break;
499
500 case POWER_SUPPLY_PROP_TEMP:
501
502
503
504 val->intval -= TEMP_KELVIN_TO_CELSIUS;
505 break;
506
507 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
508 case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
509
510
511
512 val->intval *= TIME_UNIT_CONVERSION;
513 break;
514
515 default:
516 dev_dbg(&client->dev,
517 "%s: no need for unit conversion %d\n", __func__, psp);
518 }
519 }
520
521 static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
522 enum sbs_battery_mode mode)
523 {
524 int ret, original_val;
525
526 original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
527 if (original_val < 0)
528 return original_val;
529
530 if ((original_val & BATTERY_MODE_MASK) == mode)
531 return mode;
532
533 if (mode == BATTERY_MODE_AMPS)
534 ret = original_val & ~BATTERY_MODE_MASK;
535 else
536 ret = original_val | BATTERY_MODE_MASK;
537
538 ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
539 if (ret < 0)
540 return ret;
541
542 usleep_range(1000, 2000);
543
544 return original_val & BATTERY_MODE_MASK;
545 }
546
547 static int sbs_get_battery_capacity(struct i2c_client *client,
548 int reg_offset, enum power_supply_property psp,
549 union power_supply_propval *val)
550 {
551 s32 ret;
552 enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
553
554 if (power_supply_is_amp_property(psp))
555 mode = BATTERY_MODE_AMPS;
556
557 mode = sbs_set_battery_mode(client, mode);
558 if (mode < 0)
559 return mode;
560
561 ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
562 if (ret < 0)
563 return ret;
564
565 val->intval = ret;
566
567 ret = sbs_set_battery_mode(client, mode);
568 if (ret < 0)
569 return ret;
570
571 return 0;
572 }
573
574 static char sbs_serial[5];
575 static int sbs_get_battery_serial_number(struct i2c_client *client,
576 union power_supply_propval *val)
577 {
578 int ret;
579
580 ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
581 if (ret < 0)
582 return ret;
583
584 sprintf(sbs_serial, "%04x", ret);
585 val->strval = sbs_serial;
586
587 return 0;
588 }
589
590 static int sbs_get_property_index(struct i2c_client *client,
591 enum power_supply_property psp)
592 {
593 int count;
594 for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
595 if (psp == sbs_data[count].psp)
596 return count;
597
598 dev_warn(&client->dev,
599 "%s: Invalid Property - %d\n", __func__, psp);
600
601 return -EINVAL;
602 }
603
604 static int sbs_get_property(struct power_supply *psy,
605 enum power_supply_property psp,
606 union power_supply_propval *val)
607 {
608 int ret = 0;
609 struct sbs_info *chip = power_supply_get_drvdata(psy);
610 struct i2c_client *client = chip->client;
611
612 if (chip->gpio_detect) {
613 ret = gpiod_get_value_cansleep(chip->gpio_detect);
614 if (ret < 0)
615 return ret;
616 if (psp == POWER_SUPPLY_PROP_PRESENT) {
617 val->intval = ret;
618 chip->is_present = val->intval;
619 return 0;
620 }
621 if (ret == 0)
622 return -ENODATA;
623 }
624
625 switch (psp) {
626 case POWER_SUPPLY_PROP_PRESENT:
627 case POWER_SUPPLY_PROP_HEALTH:
628 if (chip->flags & SBS_FLAGS_TI_BQ20Z75)
629 ret = sbs_get_ti_battery_presence_and_health(client,
630 psp, val);
631 else
632 ret = sbs_get_battery_presence_and_health(client, psp,
633 val);
634
635
636 if (psp == POWER_SUPPLY_PROP_PRESENT)
637 return 0;
638 break;
639
640 case POWER_SUPPLY_PROP_TECHNOLOGY:
641 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
642 goto done;
643
644 case POWER_SUPPLY_PROP_ENERGY_NOW:
645 case POWER_SUPPLY_PROP_ENERGY_FULL:
646 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
647 case POWER_SUPPLY_PROP_CHARGE_NOW:
648 case POWER_SUPPLY_PROP_CHARGE_FULL:
649 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
650 ret = sbs_get_property_index(client, psp);
651 if (ret < 0)
652 break;
653
654
655
656
657
658 mutex_lock(&chip->mode_lock);
659 ret = sbs_get_battery_capacity(client, ret, psp, val);
660 mutex_unlock(&chip->mode_lock);
661 break;
662
663 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
664 ret = sbs_get_battery_serial_number(client, val);
665 break;
666
667 case POWER_SUPPLY_PROP_STATUS:
668 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
669 case POWER_SUPPLY_PROP_CYCLE_COUNT:
670 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
671 case POWER_SUPPLY_PROP_CURRENT_NOW:
672 case POWER_SUPPLY_PROP_TEMP:
673 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
674 case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
675 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
676 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
677 case POWER_SUPPLY_PROP_CAPACITY:
678 ret = sbs_get_property_index(client, psp);
679 if (ret < 0)
680 break;
681
682 ret = sbs_get_battery_property(client, ret, psp, val);
683 break;
684
685 case POWER_SUPPLY_PROP_MODEL_NAME:
686 ret = sbs_get_property_index(client, psp);
687 if (ret < 0)
688 break;
689
690 ret = sbs_get_battery_string_property(client, ret, psp,
691 model_name);
692 val->strval = model_name;
693 break;
694
695 case POWER_SUPPLY_PROP_MANUFACTURER:
696 ret = sbs_get_property_index(client, psp);
697 if (ret < 0)
698 break;
699
700 ret = sbs_get_battery_string_property(client, ret, psp,
701 manufacturer);
702 val->strval = manufacturer;
703 break;
704
705 default:
706 dev_err(&client->dev,
707 "%s: INVALID property\n", __func__);
708 return -EINVAL;
709 }
710
711 if (!chip->enable_detection)
712 goto done;
713
714 if (!chip->gpio_detect &&
715 chip->is_present != (ret >= 0)) {
716 chip->is_present = (ret >= 0);
717 power_supply_changed(chip->power_supply);
718 }
719
720 done:
721 if (!ret) {
722
723 sbs_unit_adjustment(client, psp, val);
724 }
725
726 dev_dbg(&client->dev,
727 "%s: property = %d, value = %x\n", __func__, psp, val->intval);
728
729 if (ret && chip->is_present)
730 return ret;
731
732
733 if (ret)
734 return -ENODATA;
735
736 return 0;
737 }
738
739 static void sbs_supply_changed(struct sbs_info *chip)
740 {
741 struct power_supply *battery = chip->power_supply;
742 int ret;
743
744 ret = gpiod_get_value_cansleep(chip->gpio_detect);
745 if (ret < 0)
746 return;
747 chip->is_present = ret;
748 power_supply_changed(battery);
749 }
750
751 static irqreturn_t sbs_irq(int irq, void *devid)
752 {
753 sbs_supply_changed(devid);
754 return IRQ_HANDLED;
755 }
756
757 static void sbs_alert(struct i2c_client *client, enum i2c_alert_protocol prot,
758 unsigned int data)
759 {
760 sbs_supply_changed(i2c_get_clientdata(client));
761 }
762
763 static void sbs_external_power_changed(struct power_supply *psy)
764 {
765 struct sbs_info *chip = power_supply_get_drvdata(psy);
766
767
768 cancel_delayed_work_sync(&chip->work);
769
770 schedule_delayed_work(&chip->work, HZ);
771 chip->poll_time = chip->poll_retry_count;
772 }
773
774 static void sbs_delayed_work(struct work_struct *work)
775 {
776 struct sbs_info *chip;
777 s32 ret;
778
779 chip = container_of(work, struct sbs_info, work.work);
780
781 ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
782
783 if (ret < 0) {
784 chip->poll_time = 0;
785 return;
786 }
787
788 if (ret & BATTERY_FULL_CHARGED)
789 ret = POWER_SUPPLY_STATUS_FULL;
790 else if (ret & BATTERY_DISCHARGING)
791 ret = POWER_SUPPLY_STATUS_DISCHARGING;
792 else
793 ret = POWER_SUPPLY_STATUS_CHARGING;
794
795 sbs_status_correct(chip->client, &ret);
796
797 if (chip->last_state != ret) {
798 chip->poll_time = 0;
799 power_supply_changed(chip->power_supply);
800 return;
801 }
802 if (chip->poll_time > 0) {
803 schedule_delayed_work(&chip->work, HZ);
804 chip->poll_time--;
805 return;
806 }
807 }
808
809 static const struct power_supply_desc sbs_default_desc = {
810 .type = POWER_SUPPLY_TYPE_BATTERY,
811 .properties = sbs_properties,
812 .num_properties = ARRAY_SIZE(sbs_properties),
813 .get_property = sbs_get_property,
814 .external_power_changed = sbs_external_power_changed,
815 };
816
817 static int sbs_probe(struct i2c_client *client,
818 const struct i2c_device_id *id)
819 {
820 struct sbs_info *chip;
821 struct power_supply_desc *sbs_desc;
822 struct sbs_platform_data *pdata = client->dev.platform_data;
823 struct power_supply_config psy_cfg = {};
824 int rc;
825 int irq;
826
827 sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc,
828 sizeof(*sbs_desc), GFP_KERNEL);
829 if (!sbs_desc)
830 return -ENOMEM;
831
832 sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s",
833 dev_name(&client->dev));
834 if (!sbs_desc->name)
835 return -ENOMEM;
836
837 chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL);
838 if (!chip)
839 return -ENOMEM;
840
841 chip->flags = (u32)(uintptr_t)of_device_get_match_data(&client->dev);
842 chip->client = client;
843 chip->enable_detection = false;
844 psy_cfg.of_node = client->dev.of_node;
845 psy_cfg.drv_data = chip;
846 chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
847 mutex_init(&chip->mode_lock);
848
849
850
851
852 rc = of_property_read_u32(client->dev.of_node, "sbs,i2c-retry-count",
853 &chip->i2c_retry_count);
854 if (rc)
855 chip->i2c_retry_count = 0;
856
857 rc = of_property_read_u32(client->dev.of_node, "sbs,poll-retry-count",
858 &chip->poll_retry_count);
859 if (rc)
860 chip->poll_retry_count = 0;
861
862 if (pdata) {
863 chip->poll_retry_count = pdata->poll_retry_count;
864 chip->i2c_retry_count = pdata->i2c_retry_count;
865 }
866 chip->i2c_retry_count = chip->i2c_retry_count + 1;
867
868 chip->gpio_detect = devm_gpiod_get_optional(&client->dev,
869 "sbs,battery-detect", GPIOD_IN);
870 if (IS_ERR(chip->gpio_detect)) {
871 dev_err(&client->dev, "Failed to get gpio: %ld\n",
872 PTR_ERR(chip->gpio_detect));
873 return PTR_ERR(chip->gpio_detect);
874 }
875
876 i2c_set_clientdata(client, chip);
877
878 if (!chip->gpio_detect)
879 goto skip_gpio;
880
881 irq = gpiod_to_irq(chip->gpio_detect);
882 if (irq <= 0) {
883 dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
884 goto skip_gpio;
885 }
886
887 rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq,
888 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
889 dev_name(&client->dev), chip);
890 if (rc) {
891 dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
892 goto skip_gpio;
893 }
894
895 skip_gpio:
896
897
898
899
900 if (!(force_load || chip->gpio_detect)) {
901 rc = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
902
903 if (rc < 0) {
904 dev_err(&client->dev, "%s: Failed to get device status\n",
905 __func__);
906 goto exit_psupply;
907 }
908 }
909
910 chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc,
911 &psy_cfg);
912 if (IS_ERR(chip->power_supply)) {
913 dev_err(&client->dev,
914 "%s: Failed to register power supply\n", __func__);
915 rc = PTR_ERR(chip->power_supply);
916 goto exit_psupply;
917 }
918
919 dev_info(&client->dev,
920 "%s: battery gas gauge device registered\n", client->name);
921
922 INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
923
924 chip->enable_detection = true;
925
926 return 0;
927
928 exit_psupply:
929 return rc;
930 }
931
932 static int sbs_remove(struct i2c_client *client)
933 {
934 struct sbs_info *chip = i2c_get_clientdata(client);
935
936 cancel_delayed_work_sync(&chip->work);
937
938 return 0;
939 }
940
941 #if defined CONFIG_PM_SLEEP
942
943 static int sbs_suspend(struct device *dev)
944 {
945 struct i2c_client *client = to_i2c_client(dev);
946 struct sbs_info *chip = i2c_get_clientdata(client);
947 int ret;
948
949 if (chip->poll_time > 0)
950 cancel_delayed_work_sync(&chip->work);
951
952 if (chip->flags & SBS_FLAGS_TI_BQ20Z75) {
953
954 ret = sbs_write_word_data(client,
955 sbs_data[REG_MANUFACTURER_DATA].addr,
956 MANUFACTURER_ACCESS_SLEEP);
957 if (chip->is_present && ret < 0)
958 return ret;
959 }
960
961 return 0;
962 }
963
964 static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL);
965 #define SBS_PM_OPS (&sbs_pm_ops)
966
967 #else
968 #define SBS_PM_OPS NULL
969 #endif
970
971 static const struct i2c_device_id sbs_id[] = {
972 { "bq20z75", 0 },
973 { "sbs-battery", 1 },
974 {}
975 };
976 MODULE_DEVICE_TABLE(i2c, sbs_id);
977
978 static const struct of_device_id sbs_dt_ids[] = {
979 { .compatible = "sbs,sbs-battery" },
980 {
981 .compatible = "ti,bq20z75",
982 .data = (void *)SBS_FLAGS_TI_BQ20Z75,
983 },
984 { }
985 };
986 MODULE_DEVICE_TABLE(of, sbs_dt_ids);
987
988 static struct i2c_driver sbs_battery_driver = {
989 .probe = sbs_probe,
990 .remove = sbs_remove,
991 .alert = sbs_alert,
992 .id_table = sbs_id,
993 .driver = {
994 .name = "sbs-battery",
995 .of_match_table = sbs_dt_ids,
996 .pm = SBS_PM_OPS,
997 },
998 };
999 module_i2c_driver(sbs_battery_driver);
1000
1001 MODULE_DESCRIPTION("SBS battery monitor driver");
1002 MODULE_LICENSE("GPL");
1003
1004 module_param(force_load, bool, S_IRUSR | S_IRGRP | S_IROTH);
1005 MODULE_PARM_DESC(force_load,
1006 "Attempt to load the driver even if no battery is connected");