root/drivers/infiniband/hw/mlx4/mr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. convert_access
  2. to_mlx4_type
  3. mlx4_ib_get_dma_mr
  4. mlx4_ib_umem_write_mtt_block
  5. alignment_of
  6. mlx4_ib_umem_calc_block_mtt
  7. mlx4_ib_umem_write_mtt
  8. mlx4_ib_umem_calc_optimal_mtt_size
  9. mlx4_get_umem_mr
  10. mlx4_ib_reg_user_mr
  11. mlx4_ib_rereg_user_mr
  12. mlx4_alloc_priv_pages
  13. mlx4_free_priv_pages
  14. mlx4_ib_dereg_mr
  15. mlx4_ib_alloc_mw
  16. mlx4_ib_dealloc_mw
  17. mlx4_ib_alloc_mr
  18. mlx4_ib_fmr_alloc
  19. mlx4_ib_map_phys_fmr
  20. mlx4_ib_unmap_fmr
  21. mlx4_ib_fmr_dealloc
  22. mlx4_set_page
  23. mlx4_ib_map_mr_sg

   1 /*
   2  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
   3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
   4  *
   5  * This software is available to you under a choice of one of two
   6  * licenses.  You may choose to be licensed under the terms of the GNU
   7  * General Public License (GPL) Version 2, available from the file
   8  * COPYING in the main directory of this source tree, or the
   9  * OpenIB.org BSD license below:
  10  *
  11  *     Redistribution and use in source and binary forms, with or
  12  *     without modification, are permitted provided that the following
  13  *     conditions are met:
  14  *
  15  *      - Redistributions of source code must retain the above
  16  *        copyright notice, this list of conditions and the following
  17  *        disclaimer.
  18  *
  19  *      - Redistributions in binary form must reproduce the above
  20  *        copyright notice, this list of conditions and the following
  21  *        disclaimer in the documentation and/or other materials
  22  *        provided with the distribution.
  23  *
  24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31  * SOFTWARE.
  32  */
  33 
  34 #include <linux/slab.h>
  35 #include <rdma/ib_user_verbs.h>
  36 
  37 #include "mlx4_ib.h"
  38 
  39 static u32 convert_access(int acc)
  40 {
  41         return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
  42                (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
  43                (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
  44                (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
  45                (acc & IB_ACCESS_MW_BIND       ? MLX4_PERM_BIND_MW      : 0) |
  46                MLX4_PERM_LOCAL_READ;
  47 }
  48 
  49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
  50 {
  51         switch (type) {
  52         case IB_MW_TYPE_1:      return MLX4_MW_TYPE_1;
  53         case IB_MW_TYPE_2:      return MLX4_MW_TYPE_2;
  54         default:                return -1;
  55         }
  56 }
  57 
  58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
  59 {
  60         struct mlx4_ib_mr *mr;
  61         int err;
  62 
  63         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  64         if (!mr)
  65                 return ERR_PTR(-ENOMEM);
  66 
  67         err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
  68                             ~0ull, convert_access(acc), 0, 0, &mr->mmr);
  69         if (err)
  70                 goto err_free;
  71 
  72         err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
  73         if (err)
  74                 goto err_mr;
  75 
  76         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
  77         mr->umem = NULL;
  78 
  79         return &mr->ibmr;
  80 
  81 err_mr:
  82         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
  83 
  84 err_free:
  85         kfree(mr);
  86 
  87         return ERR_PTR(err);
  88 }
  89 
  90 enum {
  91         MLX4_MAX_MTT_SHIFT = 31
  92 };
  93 
  94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
  95                                         struct mlx4_mtt *mtt,
  96                                         u64 mtt_size, u64 mtt_shift, u64 len,
  97                                         u64 cur_start_addr, u64 *pages,
  98                                         int *start_index, int *npages)
  99 {
 100         u64 cur_end_addr = cur_start_addr + len;
 101         u64 cur_end_addr_aligned = 0;
 102         u64 mtt_entries;
 103         int err = 0;
 104         int k;
 105 
 106         len += (cur_start_addr & (mtt_size - 1ULL));
 107         cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
 108         len += (cur_end_addr_aligned - cur_end_addr);
 109         if (len & (mtt_size - 1ULL)) {
 110                 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
 111                         len, mtt_size);
 112                 return -EINVAL;
 113         }
 114 
 115         mtt_entries = (len >> mtt_shift);
 116 
 117         /*
 118          * Align the MTT start address to the mtt_size.
 119          * Required to handle cases when the MR starts in the middle of an MTT
 120          * record. Was not required in old code since the physical addresses
 121          * provided by the dma subsystem were page aligned, which was also the
 122          * MTT size.
 123          */
 124         cur_start_addr = round_down(cur_start_addr, mtt_size);
 125         /* A new block is started ... */
 126         for (k = 0; k < mtt_entries; ++k) {
 127                 pages[*npages] = cur_start_addr + (mtt_size * k);
 128                 (*npages)++;
 129                 /*
 130                  * Be friendly to mlx4_write_mtt() and pass it chunks of
 131                  * appropriate size.
 132                  */
 133                 if (*npages == PAGE_SIZE / sizeof(u64)) {
 134                         err = mlx4_write_mtt(dev->dev, mtt, *start_index,
 135                                              *npages, pages);
 136                         if (err)
 137                                 return err;
 138 
 139                         (*start_index) += *npages;
 140                         *npages = 0;
 141                 }
 142         }
 143 
 144         return 0;
 145 }
 146 
 147 static inline u64 alignment_of(u64 ptr)
 148 {
 149         return ilog2(ptr & (~(ptr - 1)));
 150 }
 151 
 152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
 153                                        u64 current_block_end,
 154                                        u64 block_shift)
 155 {
 156         /* Check whether the alignment of the new block is aligned as well as
 157          * the previous block.
 158          * Block address must start with zeros till size of entity_size.
 159          */
 160         if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
 161                 /*
 162                  * It is not as well aligned as the previous block-reduce the
 163                  * mtt size accordingly. Here we take the last right bit which
 164                  * is 1.
 165                  */
 166                 block_shift = alignment_of(next_block_start);
 167 
 168         /*
 169          * Check whether the alignment of the end of previous block - is it
 170          * aligned as well as the start of the block
 171          */
 172         if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
 173                 /*
 174                  * It is not as well aligned as the start of the block -
 175                  * reduce the mtt size accordingly.
 176                  */
 177                 block_shift = alignment_of(current_block_end);
 178 
 179         return block_shift;
 180 }
 181 
 182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
 183                            struct ib_umem *umem)
 184 {
 185         u64 *pages;
 186         u64 len = 0;
 187         int err = 0;
 188         u64 mtt_size;
 189         u64 cur_start_addr = 0;
 190         u64 mtt_shift;
 191         int start_index = 0;
 192         int npages = 0;
 193         struct scatterlist *sg;
 194         int i;
 195 
 196         pages = (u64 *) __get_free_page(GFP_KERNEL);
 197         if (!pages)
 198                 return -ENOMEM;
 199 
 200         mtt_shift = mtt->page_shift;
 201         mtt_size = 1ULL << mtt_shift;
 202 
 203         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
 204                 if (cur_start_addr + len == sg_dma_address(sg)) {
 205                         /* still the same block */
 206                         len += sg_dma_len(sg);
 207                         continue;
 208                 }
 209                 /*
 210                  * A new block is started ...
 211                  * If len is malaligned, write an extra mtt entry to cover the
 212                  * misaligned area (round up the division)
 213                  */
 214                 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
 215                                                    mtt_shift, len,
 216                                                    cur_start_addr,
 217                                                    pages, &start_index,
 218                                                    &npages);
 219                 if (err)
 220                         goto out;
 221 
 222                 cur_start_addr = sg_dma_address(sg);
 223                 len = sg_dma_len(sg);
 224         }
 225 
 226         /* Handle the last block */
 227         if (len > 0) {
 228                 /*
 229                  * If len is malaligned, write an extra mtt entry to cover
 230                  * the misaligned area (round up the division)
 231                  */
 232                 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
 233                                                    mtt_shift, len,
 234                                                    cur_start_addr, pages,
 235                                                    &start_index, &npages);
 236                 if (err)
 237                         goto out;
 238         }
 239 
 240         if (npages)
 241                 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
 242 
 243 out:
 244         free_page((unsigned long) pages);
 245         return err;
 246 }
 247 
 248 /*
 249  * Calculate optimal mtt size based on contiguous pages.
 250  * Function will return also the number of pages that are not aligned to the
 251  * calculated mtt_size to be added to total number of pages. For that we should
 252  * check the first chunk length & last chunk length and if not aligned to
 253  * mtt_size we should increment the non_aligned_pages number. All chunks in the
 254  * middle already handled as part of mtt shift calculation for both their start
 255  * & end addresses.
 256  */
 257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
 258                                        int *num_of_mtts)
 259 {
 260         u64 block_shift = MLX4_MAX_MTT_SHIFT;
 261         u64 min_shift = PAGE_SHIFT;
 262         u64 last_block_aligned_end = 0;
 263         u64 current_block_start = 0;
 264         u64 first_block_start = 0;
 265         u64 current_block_len = 0;
 266         u64 last_block_end = 0;
 267         struct scatterlist *sg;
 268         u64 current_block_end;
 269         u64 misalignment_bits;
 270         u64 next_block_start;
 271         u64 total_len = 0;
 272         int i;
 273 
 274         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
 275                 /*
 276                  * Initialization - save the first chunk start as the
 277                  * current_block_start - block means contiguous pages.
 278                  */
 279                 if (current_block_len == 0 && current_block_start == 0) {
 280                         current_block_start = sg_dma_address(sg);
 281                         first_block_start = current_block_start;
 282                         /*
 283                          * Find the bits that are different between the physical
 284                          * address and the virtual address for the start of the
 285                          * MR.
 286                          * umem_get aligned the start_va to a page boundary.
 287                          * Therefore, we need to align the start va to the same
 288                          * boundary.
 289                          * misalignment_bits is needed to handle the  case of a
 290                          * single memory region. In this case, the rest of the
 291                          * logic will not reduce the block size.  If we use a
 292                          * block size which is bigger than the alignment of the
 293                          * misalignment bits, we might use the virtual page
 294                          * number instead of the physical page number, resulting
 295                          * in access to the wrong data.
 296                          */
 297                         misalignment_bits =
 298                                 (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
 299                                 current_block_start;
 300                         block_shift = min(alignment_of(misalignment_bits),
 301                                           block_shift);
 302                 }
 303 
 304                 /*
 305                  * Go over the scatter entries and check if they continue the
 306                  * previous scatter entry.
 307                  */
 308                 next_block_start = sg_dma_address(sg);
 309                 current_block_end = current_block_start + current_block_len;
 310                 /* If we have a split (non-contig.) between two blocks */
 311                 if (current_block_end != next_block_start) {
 312                         block_shift = mlx4_ib_umem_calc_block_mtt
 313                                         (next_block_start,
 314                                          current_block_end,
 315                                          block_shift);
 316 
 317                         /*
 318                          * If we reached the minimum shift for 4k page we stop
 319                          * the loop.
 320                          */
 321                         if (block_shift <= min_shift)
 322                                 goto end;
 323 
 324                         /*
 325                          * If not saved yet we are in first block - we save the
 326                          * length of first block to calculate the
 327                          * non_aligned_pages number at the end.
 328                          */
 329                         total_len += current_block_len;
 330 
 331                         /* Start a new block */
 332                         current_block_start = next_block_start;
 333                         current_block_len = sg_dma_len(sg);
 334                         continue;
 335                 }
 336                 /* The scatter entry is another part of the current block,
 337                  * increase the block size.
 338                  * An entry in the scatter can be larger than 4k (page) as of
 339                  * dma mapping which merge some blocks together.
 340                  */
 341                 current_block_len += sg_dma_len(sg);
 342         }
 343 
 344         /* Account for the last block in the total len */
 345         total_len += current_block_len;
 346         /* Add to the first block the misalignment that it suffers from. */
 347         total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
 348         last_block_end = current_block_start + current_block_len;
 349         last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
 350         total_len += (last_block_aligned_end - last_block_end);
 351 
 352         if (total_len & ((1ULL << block_shift) - 1ULL))
 353                 pr_warn("misaligned total length detected (%llu, %llu)!",
 354                         total_len, block_shift);
 355 
 356         *num_of_mtts = total_len >> block_shift;
 357 end:
 358         if (block_shift < min_shift) {
 359                 /*
 360                  * If shift is less than the min we set a warning and return the
 361                  * min shift.
 362                  */
 363                 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
 364 
 365                 block_shift = min_shift;
 366         }
 367         return block_shift;
 368 }
 369 
 370 static struct ib_umem *mlx4_get_umem_mr(struct ib_udata *udata, u64 start,
 371                                         u64 length, int access_flags)
 372 {
 373         /*
 374          * Force registering the memory as writable if the underlying pages
 375          * are writable.  This is so rereg can change the access permissions
 376          * from readable to writable without having to run through ib_umem_get
 377          * again
 378          */
 379         if (!ib_access_writable(access_flags)) {
 380                 unsigned long untagged_start = untagged_addr(start);
 381                 struct vm_area_struct *vma;
 382 
 383                 down_read(&current->mm->mmap_sem);
 384                 /*
 385                  * FIXME: Ideally this would iterate over all the vmas that
 386                  * cover the memory, but for now it requires a single vma to
 387                  * entirely cover the MR to support RO mappings.
 388                  */
 389                 vma = find_vma(current->mm, untagged_start);
 390                 if (vma && vma->vm_end >= untagged_start + length &&
 391                     vma->vm_start <= untagged_start) {
 392                         if (vma->vm_flags & VM_WRITE)
 393                                 access_flags |= IB_ACCESS_LOCAL_WRITE;
 394                 } else {
 395                         access_flags |= IB_ACCESS_LOCAL_WRITE;
 396                 }
 397 
 398                 up_read(&current->mm->mmap_sem);
 399         }
 400 
 401         return ib_umem_get(udata, start, length, access_flags, 0);
 402 }
 403 
 404 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
 405                                   u64 virt_addr, int access_flags,
 406                                   struct ib_udata *udata)
 407 {
 408         struct mlx4_ib_dev *dev = to_mdev(pd->device);
 409         struct mlx4_ib_mr *mr;
 410         int shift;
 411         int err;
 412         int n;
 413 
 414         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 415         if (!mr)
 416                 return ERR_PTR(-ENOMEM);
 417 
 418         mr->umem = mlx4_get_umem_mr(udata, start, length, access_flags);
 419         if (IS_ERR(mr->umem)) {
 420                 err = PTR_ERR(mr->umem);
 421                 goto err_free;
 422         }
 423 
 424         n = ib_umem_page_count(mr->umem);
 425         shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
 426 
 427         err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
 428                             convert_access(access_flags), n, shift, &mr->mmr);
 429         if (err)
 430                 goto err_umem;
 431 
 432         err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
 433         if (err)
 434                 goto err_mr;
 435 
 436         err = mlx4_mr_enable(dev->dev, &mr->mmr);
 437         if (err)
 438                 goto err_mr;
 439 
 440         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 441         mr->ibmr.length = length;
 442         mr->ibmr.iova = virt_addr;
 443         mr->ibmr.page_size = 1U << shift;
 444 
 445         return &mr->ibmr;
 446 
 447 err_mr:
 448         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
 449 
 450 err_umem:
 451         ib_umem_release(mr->umem);
 452 
 453 err_free:
 454         kfree(mr);
 455 
 456         return ERR_PTR(err);
 457 }
 458 
 459 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
 460                           u64 start, u64 length, u64 virt_addr,
 461                           int mr_access_flags, struct ib_pd *pd,
 462                           struct ib_udata *udata)
 463 {
 464         struct mlx4_ib_dev *dev = to_mdev(mr->device);
 465         struct mlx4_ib_mr *mmr = to_mmr(mr);
 466         struct mlx4_mpt_entry *mpt_entry;
 467         struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
 468         int err;
 469 
 470         /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
 471          * we assume that the calls can't run concurrently. Otherwise, a
 472          * race exists.
 473          */
 474         err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
 475 
 476         if (err)
 477                 return err;
 478 
 479         if (flags & IB_MR_REREG_PD) {
 480                 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
 481                                            to_mpd(pd)->pdn);
 482 
 483                 if (err)
 484                         goto release_mpt_entry;
 485         }
 486 
 487         if (flags & IB_MR_REREG_ACCESS) {
 488                 if (ib_access_writable(mr_access_flags) &&
 489                     !mmr->umem->writable) {
 490                         err = -EPERM;
 491                         goto release_mpt_entry;
 492                 }
 493 
 494                 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
 495                                                convert_access(mr_access_flags));
 496 
 497                 if (err)
 498                         goto release_mpt_entry;
 499         }
 500 
 501         if (flags & IB_MR_REREG_TRANS) {
 502                 int shift;
 503                 int n;
 504 
 505                 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
 506                 ib_umem_release(mmr->umem);
 507                 mmr->umem = mlx4_get_umem_mr(udata, start, length,
 508                                              mr_access_flags);
 509                 if (IS_ERR(mmr->umem)) {
 510                         err = PTR_ERR(mmr->umem);
 511                         /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
 512                         mmr->umem = NULL;
 513                         goto release_mpt_entry;
 514                 }
 515                 n = ib_umem_page_count(mmr->umem);
 516                 shift = PAGE_SHIFT;
 517 
 518                 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
 519                                               virt_addr, length, n, shift,
 520                                               *pmpt_entry);
 521                 if (err) {
 522                         ib_umem_release(mmr->umem);
 523                         goto release_mpt_entry;
 524                 }
 525                 mmr->mmr.iova       = virt_addr;
 526                 mmr->mmr.size       = length;
 527 
 528                 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
 529                 if (err) {
 530                         mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
 531                         ib_umem_release(mmr->umem);
 532                         goto release_mpt_entry;
 533                 }
 534         }
 535 
 536         /* If we couldn't transfer the MR to the HCA, just remember to
 537          * return a failure. But dereg_mr will free the resources.
 538          */
 539         err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
 540         if (!err && flags & IB_MR_REREG_ACCESS)
 541                 mmr->mmr.access = mr_access_flags;
 542 
 543 release_mpt_entry:
 544         mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
 545 
 546         return err;
 547 }
 548 
 549 static int
 550 mlx4_alloc_priv_pages(struct ib_device *device,
 551                       struct mlx4_ib_mr *mr,
 552                       int max_pages)
 553 {
 554         int ret;
 555 
 556         /* Ensure that size is aligned to DMA cacheline
 557          * requirements.
 558          * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
 559          * so page_map_size will never cross PAGE_SIZE.
 560          */
 561         mr->page_map_size = roundup(max_pages * sizeof(u64),
 562                                     MLX4_MR_PAGES_ALIGN);
 563 
 564         /* Prevent cross page boundary allocation. */
 565         mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
 566         if (!mr->pages)
 567                 return -ENOMEM;
 568 
 569         mr->page_map = dma_map_single(device->dev.parent, mr->pages,
 570                                       mr->page_map_size, DMA_TO_DEVICE);
 571 
 572         if (dma_mapping_error(device->dev.parent, mr->page_map)) {
 573                 ret = -ENOMEM;
 574                 goto err;
 575         }
 576 
 577         return 0;
 578 
 579 err:
 580         free_page((unsigned long)mr->pages);
 581         return ret;
 582 }
 583 
 584 static void
 585 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
 586 {
 587         if (mr->pages) {
 588                 struct ib_device *device = mr->ibmr.device;
 589 
 590                 dma_unmap_single(device->dev.parent, mr->page_map,
 591                                  mr->page_map_size, DMA_TO_DEVICE);
 592                 free_page((unsigned long)mr->pages);
 593                 mr->pages = NULL;
 594         }
 595 }
 596 
 597 int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
 598 {
 599         struct mlx4_ib_mr *mr = to_mmr(ibmr);
 600         int ret;
 601 
 602         mlx4_free_priv_pages(mr);
 603 
 604         ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
 605         if (ret)
 606                 return ret;
 607         if (mr->umem)
 608                 ib_umem_release(mr->umem);
 609         kfree(mr);
 610 
 611         return 0;
 612 }
 613 
 614 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
 615                                struct ib_udata *udata)
 616 {
 617         struct mlx4_ib_dev *dev = to_mdev(pd->device);
 618         struct mlx4_ib_mw *mw;
 619         int err;
 620 
 621         mw = kmalloc(sizeof(*mw), GFP_KERNEL);
 622         if (!mw)
 623                 return ERR_PTR(-ENOMEM);
 624 
 625         err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
 626                             to_mlx4_type(type), &mw->mmw);
 627         if (err)
 628                 goto err_free;
 629 
 630         err = mlx4_mw_enable(dev->dev, &mw->mmw);
 631         if (err)
 632                 goto err_mw;
 633 
 634         mw->ibmw.rkey = mw->mmw.key;
 635 
 636         return &mw->ibmw;
 637 
 638 err_mw:
 639         mlx4_mw_free(dev->dev, &mw->mmw);
 640 
 641 err_free:
 642         kfree(mw);
 643 
 644         return ERR_PTR(err);
 645 }
 646 
 647 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
 648 {
 649         struct mlx4_ib_mw *mw = to_mmw(ibmw);
 650 
 651         mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
 652         kfree(mw);
 653 
 654         return 0;
 655 }
 656 
 657 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
 658                                u32 max_num_sg, struct ib_udata *udata)
 659 {
 660         struct mlx4_ib_dev *dev = to_mdev(pd->device);
 661         struct mlx4_ib_mr *mr;
 662         int err;
 663 
 664         if (mr_type != IB_MR_TYPE_MEM_REG ||
 665             max_num_sg > MLX4_MAX_FAST_REG_PAGES)
 666                 return ERR_PTR(-EINVAL);
 667 
 668         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 669         if (!mr)
 670                 return ERR_PTR(-ENOMEM);
 671 
 672         err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
 673                             max_num_sg, 0, &mr->mmr);
 674         if (err)
 675                 goto err_free;
 676 
 677         err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
 678         if (err)
 679                 goto err_free_mr;
 680 
 681         mr->max_pages = max_num_sg;
 682         err = mlx4_mr_enable(dev->dev, &mr->mmr);
 683         if (err)
 684                 goto err_free_pl;
 685 
 686         mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 687         mr->umem = NULL;
 688 
 689         return &mr->ibmr;
 690 
 691 err_free_pl:
 692         mr->ibmr.device = pd->device;
 693         mlx4_free_priv_pages(mr);
 694 err_free_mr:
 695         (void) mlx4_mr_free(dev->dev, &mr->mmr);
 696 err_free:
 697         kfree(mr);
 698         return ERR_PTR(err);
 699 }
 700 
 701 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
 702                                  struct ib_fmr_attr *fmr_attr)
 703 {
 704         struct mlx4_ib_dev *dev = to_mdev(pd->device);
 705         struct mlx4_ib_fmr *fmr;
 706         int err = -ENOMEM;
 707 
 708         fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
 709         if (!fmr)
 710                 return ERR_PTR(-ENOMEM);
 711 
 712         err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
 713                              fmr_attr->max_pages, fmr_attr->max_maps,
 714                              fmr_attr->page_shift, &fmr->mfmr);
 715         if (err)
 716                 goto err_free;
 717 
 718         err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
 719         if (err)
 720                 goto err_mr;
 721 
 722         fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
 723 
 724         return &fmr->ibfmr;
 725 
 726 err_mr:
 727         (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
 728 
 729 err_free:
 730         kfree(fmr);
 731 
 732         return ERR_PTR(err);
 733 }
 734 
 735 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
 736                       int npages, u64 iova)
 737 {
 738         struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
 739         struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
 740 
 741         return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
 742                                  &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
 743 }
 744 
 745 int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
 746 {
 747         struct ib_fmr *ibfmr;
 748         int err;
 749         struct mlx4_dev *mdev = NULL;
 750 
 751         list_for_each_entry(ibfmr, fmr_list, list) {
 752                 if (mdev && to_mdev(ibfmr->device)->dev != mdev)
 753                         return -EINVAL;
 754                 mdev = to_mdev(ibfmr->device)->dev;
 755         }
 756 
 757         if (!mdev)
 758                 return 0;
 759 
 760         list_for_each_entry(ibfmr, fmr_list, list) {
 761                 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
 762 
 763                 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
 764         }
 765 
 766         /*
 767          * Make sure all MPT status updates are visible before issuing
 768          * SYNC_TPT firmware command.
 769          */
 770         wmb();
 771 
 772         err = mlx4_SYNC_TPT(mdev);
 773         if (err)
 774                 pr_warn("SYNC_TPT error %d when "
 775                        "unmapping FMRs\n", err);
 776 
 777         return 0;
 778 }
 779 
 780 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
 781 {
 782         struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
 783         struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
 784         int err;
 785 
 786         err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
 787 
 788         if (!err)
 789                 kfree(ifmr);
 790 
 791         return err;
 792 }
 793 
 794 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
 795 {
 796         struct mlx4_ib_mr *mr = to_mmr(ibmr);
 797 
 798         if (unlikely(mr->npages == mr->max_pages))
 799                 return -ENOMEM;
 800 
 801         mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
 802 
 803         return 0;
 804 }
 805 
 806 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
 807                       unsigned int *sg_offset)
 808 {
 809         struct mlx4_ib_mr *mr = to_mmr(ibmr);
 810         int rc;
 811 
 812         mr->npages = 0;
 813 
 814         ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
 815                                    mr->page_map_size, DMA_TO_DEVICE);
 816 
 817         rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
 818 
 819         ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
 820                                       mr->page_map_size, DMA_TO_DEVICE);
 821 
 822         return rc;
 823 }

/* [<][>][^][v][top][bottom][index][help] */