root/drivers/infiniband/hw/cxgb4/t4.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. t4_max_fr_depth
  2. init_wr_hdr
  3. t4_pgprot_wc
  4. t4_srq_avail
  5. t4_srq_produce
  6. t4_srq_produce_pending_wr
  7. t4_srq_consume_pending_wr
  8. t4_srq_produce_ooo
  9. t4_srq_consume_ooo
  10. t4_srq_consume
  11. t4_rqes_posted
  12. t4_rq_empty
  13. t4_rq_full
  14. t4_rq_avail
  15. t4_rq_produce
  16. t4_rq_consume
  17. t4_rq_host_wq_pidx
  18. t4_rq_wq_size
  19. t4_sq_onchip
  20. t4_sq_empty
  21. t4_sq_full
  22. t4_sq_avail
  23. t4_sq_produce
  24. t4_sq_consume
  25. t4_sq_host_wq_pidx
  26. t4_sq_wq_size
  27. pio_copy
  28. t4_ring_srq_db
  29. t4_ring_sq_db
  30. t4_ring_rq_db
  31. t4_wq_in_error
  32. t4_set_wq_in_error
  33. t4_disable_wq_db
  34. t4_enable_wq_db
  35. t4_wq_db_enabled
  36. write_gts
  37. t4_clear_cq_armed
  38. t4_arm_cq
  39. t4_swcq_produce
  40. t4_swcq_consume
  41. t4_hwcq_consume
  42. t4_valid_cqe
  43. t4_cq_notempty
  44. t4_next_hw_cqe
  45. t4_next_sw_cqe
  46. t4_next_cqe
  47. t4_cq_in_error
  48. t4_set_cq_in_error

   1 /*
   2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
   3  *
   4  * This software is available to you under a choice of one of two
   5  * licenses.  You may choose to be licensed under the terms of the GNU
   6  * General Public License (GPL) Version 2, available from the file
   7  * COPYING in the main directory of this source tree, or the
   8  * OpenIB.org BSD license below:
   9  *
  10  *     Redistribution and use in source and binary forms, with or
  11  *     without modification, are permitted provided that the following
  12  *     conditions are met:
  13  *
  14  *      - Redistributions of source code must retain the above
  15  *        copyright notice, this list of conditions and the following
  16  *        disclaimer.
  17  *      - Redistributions in binary form must reproduce the above
  18  *        copyright notice, this list of conditions and the following
  19  *        disclaimer in the documentation and/or other materials
  20  *        provided with the distribution.
  21  *
  22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29  * SOFTWARE.
  30  */
  31 #ifndef __T4_H__
  32 #define __T4_H__
  33 
  34 #include "t4_hw.h"
  35 #include "t4_regs.h"
  36 #include "t4_values.h"
  37 #include "t4_msg.h"
  38 #include "t4_tcb.h"
  39 #include "t4fw_ri_api.h"
  40 
  41 #define T4_MAX_NUM_PD 65536
  42 #define T4_MAX_MR_SIZE (~0ULL)
  43 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
  44 #define T4_STAG_UNSET 0xffffffff
  45 #define T4_FW_MAJ 0
  46 #define PCIE_MA_SYNC_A 0x30b4
  47 
  48 struct t4_status_page {
  49         __be32 rsvd1;   /* flit 0 - hw owns */
  50         __be16 rsvd2;
  51         __be16 qid;
  52         __be16 cidx;
  53         __be16 pidx;
  54         u8 qp_err;      /* flit 1 - sw owns */
  55         u8 db_off;
  56         u8 pad[2];
  57         u16 host_wq_pidx;
  58         u16 host_cidx;
  59         u16 host_pidx;
  60         u16 pad2;
  61         u32 srqidx;
  62 };
  63 
  64 #define T4_RQT_ENTRY_SHIFT 6
  65 #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
  66 #define T4_EQ_ENTRY_SIZE 64
  67 
  68 #define T4_SQ_NUM_SLOTS 5
  69 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  70 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  71                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  72 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  73                         sizeof(struct fw_ri_immd)))
  74 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  75                         sizeof(struct fw_ri_rdma_write_wr) - \
  76                         sizeof(struct fw_ri_immd)))
  77 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  78                         sizeof(struct fw_ri_rdma_write_wr) - \
  79                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  80 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  81                         sizeof(struct fw_ri_immd)) & ~31UL)
  82 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  83 #define T4_MAX_FR_DSGL 1024
  84 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  85 
  86 static inline int t4_max_fr_depth(int use_dsgl)
  87 {
  88         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  89 }
  90 
  91 #define T4_RQ_NUM_SLOTS 2
  92 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  93 #define T4_MAX_RECV_SGE 4
  94 
  95 #define T4_WRITE_CMPL_MAX_SGL 4
  96 #define T4_WRITE_CMPL_MAX_CQE 16
  97 
  98 union t4_wr {
  99         struct fw_ri_res_wr res;
 100         struct fw_ri_wr ri;
 101         struct fw_ri_rdma_write_wr write;
 102         struct fw_ri_send_wr send;
 103         struct fw_ri_rdma_read_wr read;
 104         struct fw_ri_bind_mw_wr bind;
 105         struct fw_ri_fr_nsmr_wr fr;
 106         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
 107         struct fw_ri_inv_lstag_wr inv;
 108         struct fw_ri_rdma_write_cmpl_wr write_cmpl;
 109         struct t4_status_page status;
 110         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
 111 };
 112 
 113 union t4_recv_wr {
 114         struct fw_ri_recv_wr recv;
 115         struct t4_status_page status;
 116         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
 117 };
 118 
 119 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
 120                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
 121 {
 122         wqe->send.opcode = (u8)opcode;
 123         wqe->send.flags = flags;
 124         wqe->send.wrid = wrid;
 125         wqe->send.r1[0] = 0;
 126         wqe->send.r1[1] = 0;
 127         wqe->send.r1[2] = 0;
 128         wqe->send.len16 = len16;
 129 }
 130 
 131 /* CQE/AE status codes */
 132 #define T4_ERR_SUCCESS                     0x0
 133 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
 134                                                 /* STAG is offlimt, being 0, */
 135                                                 /* or STAG_key mismatch */
 136 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
 137 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
 138 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
 139 #define T4_ERR_WRAP                        0x5  /* Wrap error */
 140 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
 141 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
 142                                                 /* shared memory region */
 143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
 144                                                 /* shared memory region */
 145 #define T4_ERR_ECC                         0x9  /* ECC error detected */
 146 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
 147                                                 /* reading PSTAG for a MW  */
 148                                                 /* Invalidate */
 149 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
 150                                                 /* software error */
 151 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
 152 #define T4_ERR_CRC                         0x10 /* CRC error */
 153 #define T4_ERR_MARKER                      0x11 /* Marker error */
 154 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
 155 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
 156 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
 157 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
 158 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
 159 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
 160 #define T4_ERR_MSN                         0x18 /* MSN error */
 161 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
 162 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
 163                                                 /* or READ_REQ */
 164 #define T4_ERR_MSN_GAP                     0x1B
 165 #define T4_ERR_MSN_RANGE                   0x1C
 166 #define T4_ERR_IRD_OVERFLOW                0x1D
 167 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
 168                                                 /* software error */
 169 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
 170                                                 /* mismatch) */
 171 /*
 172  * CQE defs
 173  */
 174 struct t4_cqe {
 175         __be32 header;
 176         __be32 len;
 177         union {
 178                 struct {
 179                         __be32 stag;
 180                         __be32 msn;
 181                 } rcqe;
 182                 struct {
 183                         __be32 stag;
 184                         u16 nada2;
 185                         u16 cidx;
 186                 } scqe;
 187                 struct {
 188                         __be32 wrid_hi;
 189                         __be32 wrid_low;
 190                 } gen;
 191                 struct {
 192                         __be32 stag;
 193                         __be32 msn;
 194                         __be32 reserved;
 195                         __be32 abs_rqe_idx;
 196                 } srcqe;
 197                 struct {
 198                         __be32 mo;
 199                         __be32 msn;
 200                         /*
 201                          * Use union for immediate data to be consistent with
 202                          * stack's 32 bit data and iWARP spec's 64 bit data.
 203                          */
 204                         union {
 205                                 struct {
 206                                         __be32 imm_data32;
 207                                         u32 reserved;
 208                                 } ib_imm_data;
 209                                 __be64 imm_data64;
 210                         } iw_imm_data;
 211                 } imm_data_rcqe;
 212 
 213                 u64 drain_cookie;
 214                 __be64 flits[3];
 215         } u;
 216         __be64 reserved[3];
 217         __be64 bits_type_ts;
 218 };
 219 
 220 /* macros for flit 0 of the cqe */
 221 
 222 #define CQE_QPID_S        12
 223 #define CQE_QPID_M        0xFFFFF
 224 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
 225 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
 226 
 227 #define CQE_SWCQE_S       11
 228 #define CQE_SWCQE_M       0x1
 229 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
 230 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
 231 
 232 #define CQE_DRAIN_S       10
 233 #define CQE_DRAIN_M       0x1
 234 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
 235 #define CQE_DRAIN_V(x)    ((x)<<CQE_DRAIN_S)
 236 
 237 #define CQE_STATUS_S      5
 238 #define CQE_STATUS_M      0x1F
 239 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
 240 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
 241 
 242 #define CQE_TYPE_S        4
 243 #define CQE_TYPE_M        0x1
 244 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
 245 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
 246 
 247 #define CQE_OPCODE_S      0
 248 #define CQE_OPCODE_M      0xF
 249 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
 250 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
 251 
 252 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
 253 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
 254 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
 255 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
 256 #define SQ_TYPE(x)        (CQE_TYPE((x)))
 257 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
 258 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
 259 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
 260 
 261 #define CQE_SEND_OPCODE(x)( \
 262         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
 263         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
 264         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
 265         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
 266 
 267 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
 268 
 269 /* used for RQ completion processing */
 270 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
 271 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
 272 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
 273 #define CQE_IMM_DATA(x)( \
 274         (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
 275 
 276 /* used for SQ completion processing */
 277 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
 278 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
 279 
 280 /* generic accessor macros */
 281 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
 282 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
 283 #define CQE_DRAIN_COOKIE(x)     ((x)->u.drain_cookie)
 284 
 285 /* macros for flit 3 of the cqe */
 286 #define CQE_GENBIT_S    63
 287 #define CQE_GENBIT_M    0x1
 288 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
 289 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
 290 
 291 #define CQE_OVFBIT_S    62
 292 #define CQE_OVFBIT_M    0x1
 293 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
 294 
 295 #define CQE_IQTYPE_S    60
 296 #define CQE_IQTYPE_M    0x3
 297 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
 298 
 299 #define CQE_TS_M        0x0fffffffffffffffULL
 300 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
 301 
 302 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
 303 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
 304 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
 305 
 306 struct t4_swsqe {
 307         u64                     wr_id;
 308         struct t4_cqe           cqe;
 309         int                     read_len;
 310         int                     opcode;
 311         int                     complete;
 312         int                     signaled;
 313         u16                     idx;
 314         int                     flushed;
 315         ktime_t                 host_time;
 316         u64                     sge_ts;
 317 };
 318 
 319 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
 320 {
 321 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
 322         return pgprot_writecombine(prot);
 323 #else
 324         return pgprot_noncached(prot);
 325 #endif
 326 }
 327 
 328 enum {
 329         T4_SQ_ONCHIP = (1<<0),
 330 };
 331 
 332 struct t4_sq {
 333         union t4_wr *queue;
 334         dma_addr_t dma_addr;
 335         DEFINE_DMA_UNMAP_ADDR(mapping);
 336         unsigned long phys_addr;
 337         struct t4_swsqe *sw_sq;
 338         struct t4_swsqe *oldest_read;
 339         void __iomem *bar2_va;
 340         u64 bar2_pa;
 341         size_t memsize;
 342         u32 bar2_qid;
 343         u32 qid;
 344         u16 in_use;
 345         u16 size;
 346         u16 cidx;
 347         u16 pidx;
 348         u16 wq_pidx;
 349         u16 wq_pidx_inc;
 350         u16 flags;
 351         short flush_cidx;
 352 };
 353 
 354 struct t4_swrqe {
 355         u64 wr_id;
 356         ktime_t host_time;
 357         u64 sge_ts;
 358         int valid;
 359 };
 360 
 361 struct t4_rq {
 362         union  t4_recv_wr *queue;
 363         dma_addr_t dma_addr;
 364         DEFINE_DMA_UNMAP_ADDR(mapping);
 365         struct t4_swrqe *sw_rq;
 366         void __iomem *bar2_va;
 367         u64 bar2_pa;
 368         size_t memsize;
 369         u32 bar2_qid;
 370         u32 qid;
 371         u32 msn;
 372         u32 rqt_hwaddr;
 373         u16 rqt_size;
 374         u16 in_use;
 375         u16 size;
 376         u16 cidx;
 377         u16 pidx;
 378         u16 wq_pidx;
 379         u16 wq_pidx_inc;
 380 };
 381 
 382 struct t4_wq {
 383         struct t4_sq sq;
 384         struct t4_rq rq;
 385         void __iomem *db;
 386         struct c4iw_rdev *rdev;
 387         int flushed;
 388         u8 *qp_errp;
 389         u32 *srqidxp;
 390 };
 391 
 392 struct t4_srq_pending_wr {
 393         u64 wr_id;
 394         union t4_recv_wr wqe;
 395         u8 len16;
 396 };
 397 
 398 struct t4_srq {
 399         union t4_recv_wr *queue;
 400         dma_addr_t dma_addr;
 401         DEFINE_DMA_UNMAP_ADDR(mapping);
 402         struct t4_swrqe *sw_rq;
 403         void __iomem *bar2_va;
 404         u64 bar2_pa;
 405         size_t memsize;
 406         u32 bar2_qid;
 407         u32 qid;
 408         u32 msn;
 409         u32 rqt_hwaddr;
 410         u32 rqt_abs_idx;
 411         u16 rqt_size;
 412         u16 size;
 413         u16 cidx;
 414         u16 pidx;
 415         u16 wq_pidx;
 416         u16 wq_pidx_inc;
 417         u16 in_use;
 418         struct t4_srq_pending_wr *pending_wrs;
 419         u16 pending_cidx;
 420         u16 pending_pidx;
 421         u16 pending_in_use;
 422         u16 ooo_count;
 423 };
 424 
 425 static inline u32 t4_srq_avail(struct t4_srq *srq)
 426 {
 427         return srq->size - 1 - srq->in_use;
 428 }
 429 
 430 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
 431 {
 432         srq->in_use++;
 433         if (++srq->pidx == srq->size)
 434                 srq->pidx = 0;
 435         srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
 436         if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
 437                 srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
 438         srq->queue[srq->size].status.host_pidx = srq->pidx;
 439 }
 440 
 441 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
 442 {
 443         srq->pending_in_use++;
 444         srq->in_use++;
 445         if (++srq->pending_pidx == srq->size)
 446                 srq->pending_pidx = 0;
 447 }
 448 
 449 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
 450 {
 451         srq->pending_in_use--;
 452         srq->in_use--;
 453         if (++srq->pending_cidx == srq->size)
 454                 srq->pending_cidx = 0;
 455 }
 456 
 457 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
 458 {
 459         srq->in_use--;
 460         srq->ooo_count++;
 461 }
 462 
 463 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
 464 {
 465         srq->cidx++;
 466         if (srq->cidx == srq->size)
 467                 srq->cidx  = 0;
 468         srq->queue[srq->size].status.host_cidx = srq->cidx;
 469         srq->ooo_count--;
 470 }
 471 
 472 static inline void t4_srq_consume(struct t4_srq *srq)
 473 {
 474         srq->in_use--;
 475         if (++srq->cidx == srq->size)
 476                 srq->cidx = 0;
 477         srq->queue[srq->size].status.host_cidx = srq->cidx;
 478 }
 479 
 480 static inline int t4_rqes_posted(struct t4_wq *wq)
 481 {
 482         return wq->rq.in_use;
 483 }
 484 
 485 static inline int t4_rq_empty(struct t4_wq *wq)
 486 {
 487         return wq->rq.in_use == 0;
 488 }
 489 
 490 static inline int t4_rq_full(struct t4_wq *wq)
 491 {
 492         return wq->rq.in_use == (wq->rq.size - 1);
 493 }
 494 
 495 static inline u32 t4_rq_avail(struct t4_wq *wq)
 496 {
 497         return wq->rq.size - 1 - wq->rq.in_use;
 498 }
 499 
 500 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
 501 {
 502         wq->rq.in_use++;
 503         if (++wq->rq.pidx == wq->rq.size)
 504                 wq->rq.pidx = 0;
 505         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 506         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
 507                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
 508 }
 509 
 510 static inline void t4_rq_consume(struct t4_wq *wq)
 511 {
 512         wq->rq.in_use--;
 513         if (++wq->rq.cidx == wq->rq.size)
 514                 wq->rq.cidx = 0;
 515 }
 516 
 517 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
 518 {
 519         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
 520 }
 521 
 522 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
 523 {
 524                 return wq->rq.size * T4_RQ_NUM_SLOTS;
 525 }
 526 
 527 static inline int t4_sq_onchip(struct t4_sq *sq)
 528 {
 529         return sq->flags & T4_SQ_ONCHIP;
 530 }
 531 
 532 static inline int t4_sq_empty(struct t4_wq *wq)
 533 {
 534         return wq->sq.in_use == 0;
 535 }
 536 
 537 static inline int t4_sq_full(struct t4_wq *wq)
 538 {
 539         return wq->sq.in_use == (wq->sq.size - 1);
 540 }
 541 
 542 static inline u32 t4_sq_avail(struct t4_wq *wq)
 543 {
 544         return wq->sq.size - 1 - wq->sq.in_use;
 545 }
 546 
 547 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
 548 {
 549         wq->sq.in_use++;
 550         if (++wq->sq.pidx == wq->sq.size)
 551                 wq->sq.pidx = 0;
 552         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
 553         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
 554                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
 555 }
 556 
 557 static inline void t4_sq_consume(struct t4_wq *wq)
 558 {
 559         if (wq->sq.cidx == wq->sq.flush_cidx)
 560                 wq->sq.flush_cidx = -1;
 561         wq->sq.in_use--;
 562         if (++wq->sq.cidx == wq->sq.size)
 563                 wq->sq.cidx = 0;
 564 }
 565 
 566 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
 567 {
 568         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
 569 }
 570 
 571 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
 572 {
 573                 return wq->sq.size * T4_SQ_NUM_SLOTS;
 574 }
 575 
 576 /* This function copies 64 byte coalesced work request to memory
 577  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
 578  * from the FIFO instead of from Host.
 579  */
 580 static inline void pio_copy(u64 __iomem *dst, u64 *src)
 581 {
 582         int count = 8;
 583 
 584         while (count) {
 585                 writeq(*src, dst);
 586                 src++;
 587                 dst++;
 588                 count--;
 589         }
 590 }
 591 
 592 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
 593                                   union t4_recv_wr *wqe)
 594 {
 595         /* Flush host queue memory writes. */
 596         wmb();
 597         if (inc == 1 && srq->bar2_qid == 0 && wqe) {
 598                 pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
 599                          __func__, srq->pidx, len16);
 600                 pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
 601         } else {
 602                 pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
 603                          __func__, srq->pidx, len16);
 604                 writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
 605                        srq->bar2_va + SGE_UDB_KDOORBELL);
 606         }
 607         /* Flush user doorbell area writes. */
 608         wmb();
 609 }
 610 
 611 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
 612 {
 613 
 614         /* Flush host queue memory writes. */
 615         wmb();
 616         if (wq->sq.bar2_va) {
 617                 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
 618                         pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
 619                         pio_copy((u64 __iomem *)
 620                                  (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
 621                                  (u64 *)wqe);
 622                 } else {
 623                         pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
 624                         writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
 625                                wq->sq.bar2_va + SGE_UDB_KDOORBELL);
 626                 }
 627 
 628                 /* Flush user doorbell area writes. */
 629                 wmb();
 630                 return;
 631         }
 632         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
 633 }
 634 
 635 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
 636                                  union t4_recv_wr *wqe)
 637 {
 638 
 639         /* Flush host queue memory writes. */
 640         wmb();
 641         if (wq->rq.bar2_va) {
 642                 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
 643                         pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
 644                         pio_copy((u64 __iomem *)
 645                                  (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
 646                                  (void *)wqe);
 647                 } else {
 648                         pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
 649                         writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
 650                                wq->rq.bar2_va + SGE_UDB_KDOORBELL);
 651                 }
 652 
 653                 /* Flush user doorbell area writes. */
 654                 wmb();
 655                 return;
 656         }
 657         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
 658 }
 659 
 660 static inline int t4_wq_in_error(struct t4_wq *wq)
 661 {
 662         return *wq->qp_errp;
 663 }
 664 
 665 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
 666 {
 667         if (srqidx)
 668                 *wq->srqidxp = srqidx;
 669         *wq->qp_errp = 1;
 670 }
 671 
 672 static inline void t4_disable_wq_db(struct t4_wq *wq)
 673 {
 674         wq->rq.queue[wq->rq.size].status.db_off = 1;
 675 }
 676 
 677 static inline void t4_enable_wq_db(struct t4_wq *wq)
 678 {
 679         wq->rq.queue[wq->rq.size].status.db_off = 0;
 680 }
 681 
 682 static inline int t4_wq_db_enabled(struct t4_wq *wq)
 683 {
 684         return !wq->rq.queue[wq->rq.size].status.db_off;
 685 }
 686 
 687 enum t4_cq_flags {
 688         CQ_ARMED        = 1,
 689 };
 690 
 691 struct t4_cq {
 692         struct t4_cqe *queue;
 693         dma_addr_t dma_addr;
 694         DEFINE_DMA_UNMAP_ADDR(mapping);
 695         struct t4_cqe *sw_queue;
 696         void __iomem *gts;
 697         void __iomem *bar2_va;
 698         u64 bar2_pa;
 699         u32 bar2_qid;
 700         struct c4iw_rdev *rdev;
 701         size_t memsize;
 702         __be64 bits_type_ts;
 703         u32 cqid;
 704         u32 qid_mask;
 705         int vector;
 706         u16 size; /* including status page */
 707         u16 cidx;
 708         u16 sw_pidx;
 709         u16 sw_cidx;
 710         u16 sw_in_use;
 711         u16 cidx_inc;
 712         u8 gen;
 713         u8 error;
 714         u8 *qp_errp;
 715         unsigned long flags;
 716 };
 717 
 718 static inline void write_gts(struct t4_cq *cq, u32 val)
 719 {
 720         if (cq->bar2_va)
 721                 writel(val | INGRESSQID_V(cq->bar2_qid),
 722                        cq->bar2_va + SGE_UDB_GTS);
 723         else
 724                 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
 725 }
 726 
 727 static inline int t4_clear_cq_armed(struct t4_cq *cq)
 728 {
 729         return test_and_clear_bit(CQ_ARMED, &cq->flags);
 730 }
 731 
 732 static inline int t4_arm_cq(struct t4_cq *cq, int se)
 733 {
 734         u32 val;
 735 
 736         set_bit(CQ_ARMED, &cq->flags);
 737         while (cq->cidx_inc > CIDXINC_M) {
 738                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
 739                 write_gts(cq, val);
 740                 cq->cidx_inc -= CIDXINC_M;
 741         }
 742         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
 743         write_gts(cq, val);
 744         cq->cidx_inc = 0;
 745         return 0;
 746 }
 747 
 748 static inline void t4_swcq_produce(struct t4_cq *cq)
 749 {
 750         cq->sw_in_use++;
 751         if (cq->sw_in_use == cq->size) {
 752                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
 753                         __func__, cq->cqid);
 754                 cq->error = 1;
 755                 cq->sw_in_use--;
 756                 return;
 757         }
 758         if (++cq->sw_pidx == cq->size)
 759                 cq->sw_pidx = 0;
 760 }
 761 
 762 static inline void t4_swcq_consume(struct t4_cq *cq)
 763 {
 764         cq->sw_in_use--;
 765         if (++cq->sw_cidx == cq->size)
 766                 cq->sw_cidx = 0;
 767 }
 768 
 769 static inline void t4_hwcq_consume(struct t4_cq *cq)
 770 {
 771         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
 772         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
 773                 u32 val;
 774 
 775                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
 776                 write_gts(cq, val);
 777                 cq->cidx_inc = 0;
 778         }
 779         if (++cq->cidx == cq->size) {
 780                 cq->cidx = 0;
 781                 cq->gen ^= 1;
 782         }
 783 }
 784 
 785 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
 786 {
 787         return (CQE_GENBIT(cqe) == cq->gen);
 788 }
 789 
 790 static inline int t4_cq_notempty(struct t4_cq *cq)
 791 {
 792         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
 793 }
 794 
 795 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 796 {
 797         int ret;
 798         u16 prev_cidx;
 799 
 800         if (cq->cidx == 0)
 801                 prev_cidx = cq->size - 1;
 802         else
 803                 prev_cidx = cq->cidx - 1;
 804 
 805         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
 806                 ret = -EOVERFLOW;
 807                 cq->error = 1;
 808                 pr_err("cq overflow cqid %u\n", cq->cqid);
 809         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
 810 
 811                 /* Ensure CQE is flushed to memory */
 812                 rmb();
 813                 *cqe = &cq->queue[cq->cidx];
 814                 ret = 0;
 815         } else
 816                 ret = -ENODATA;
 817         return ret;
 818 }
 819 
 820 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
 821 {
 822         if (cq->sw_in_use == cq->size) {
 823                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
 824                         __func__, cq->cqid);
 825                 cq->error = 1;
 826                 return NULL;
 827         }
 828         if (cq->sw_in_use)
 829                 return &cq->sw_queue[cq->sw_cidx];
 830         return NULL;
 831 }
 832 
 833 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
 834 {
 835         int ret = 0;
 836 
 837         if (cq->error)
 838                 ret = -ENODATA;
 839         else if (cq->sw_in_use)
 840                 *cqe = &cq->sw_queue[cq->sw_cidx];
 841         else
 842                 ret = t4_next_hw_cqe(cq, cqe);
 843         return ret;
 844 }
 845 
 846 static inline int t4_cq_in_error(struct t4_cq *cq)
 847 {
 848         return *cq->qp_errp;
 849 }
 850 
 851 static inline void t4_set_cq_in_error(struct t4_cq *cq)
 852 {
 853         *cq->qp_errp = 1;
 854 }
 855 #endif
 856 
 857 struct t4_dev_status_page {
 858         u8 db_off;
 859         u8 write_cmpl_supported;
 860         u16 pad2;
 861         u32 pad3;
 862         u64 qp_start;
 863         u64 qp_size;
 864         u64 cq_start;
 865         u64 cq_size;
 866 };

/* [<][>][^][v][top][bottom][index][help] */