1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _SPARC64_HYPERVISOR_H 3 #define _SPARC64_HYPERVISOR_H 4 5 /* Sun4v hypervisor interfaces and defines. 6 * 7 * Hypervisor calls are made via traps to software traps number 0x80 8 * and above. Registers %o0 to %o5 serve as argument, status, and 9 * return value registers. 10 * 11 * There are two kinds of these traps. First there are the normal 12 * "fast traps" which use software trap 0x80 and encode the function 13 * to invoke by number in register %o5. Argument and return value 14 * handling is as follows: 15 * 16 * ----------------------------------------------- 17 * | %o5 | function number | undefined | 18 * | %o0 | argument 0 | return status | 19 * | %o1 | argument 1 | return value 1 | 20 * | %o2 | argument 2 | return value 2 | 21 * | %o3 | argument 3 | return value 3 | 22 * | %o4 | argument 4 | return value 4 | 23 * ----------------------------------------------- 24 * 25 * The second type are "hyper-fast traps" which encode the function 26 * number in the software trap number itself. So these use trap 27 * numbers > 0x80. The register usage for hyper-fast traps is as 28 * follows: 29 * 30 * ----------------------------------------------- 31 * | %o0 | argument 0 | return status | 32 * | %o1 | argument 1 | return value 1 | 33 * | %o2 | argument 2 | return value 2 | 34 * | %o3 | argument 3 | return value 3 | 35 * | %o4 | argument 4 | return value 4 | 36 * ----------------------------------------------- 37 * 38 * Registers providing explicit arguments to the hypervisor calls 39 * are volatile across the call. Upon return their values are 40 * undefined unless explicitly specified as containing a particular 41 * return value by the specific call. The return status is always 42 * returned in register %o0, zero indicates a successful execution of 43 * the hypervisor call and other values indicate an error status as 44 * defined below. So, for example, if a hyper-fast trap takes 45 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across 46 * the call and %o3, %o4, and %o5 would be preserved. 47 * 48 * If the hypervisor trap is invalid, or the fast trap function number 49 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits 50 * of the argument and return values are significant. 51 */ 52 53 /* Trap numbers. */ 54 #define HV_FAST_TRAP 0x80 55 #define HV_MMU_MAP_ADDR_TRAP 0x83 56 #define HV_MMU_UNMAP_ADDR_TRAP 0x84 57 #define HV_TTRACE_ADDENTRY_TRAP 0x85 58 #define HV_CORE_TRAP 0xff 59 60 /* Error codes. */ 61 #define HV_EOK 0 /* Successful return */ 62 #define HV_ENOCPU 1 /* Invalid CPU id */ 63 #define HV_ENORADDR 2 /* Invalid real address */ 64 #define HV_ENOINTR 3 /* Invalid interrupt id */ 65 #define HV_EBADPGSZ 4 /* Invalid pagesize encoding */ 66 #define HV_EBADTSB 5 /* Invalid TSB description */ 67 #define HV_EINVAL 6 /* Invalid argument */ 68 #define HV_EBADTRAP 7 /* Invalid function number */ 69 #define HV_EBADALIGN 8 /* Invalid address alignment */ 70 #define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */ 71 #define HV_ENOACCESS 10 /* No access to resource */ 72 #define HV_EIO 11 /* I/O error */ 73 #define HV_ECPUERROR 12 /* CPU in error state */ 74 #define HV_ENOTSUPPORTED 13 /* Function not supported */ 75 #define HV_ENOMAP 14 /* No mapping found */ 76 #define HV_ETOOMANY 15 /* Too many items specified */ 77 #define HV_ECHANNEL 16 /* Invalid LDC channel */ 78 #define HV_EBUSY 17 /* Resource busy */ 79 #define HV_EUNAVAILABLE 23 /* Resource or operation not 80 * currently available, but may 81 * become available in the future 82 */ 83 84 /* mach_exit() 85 * TRAP: HV_FAST_TRAP 86 * FUNCTION: HV_FAST_MACH_EXIT 87 * ARG0: exit code 88 * ERRORS: This service does not return. 89 * 90 * Stop all CPUs in the virtual domain and place them into the stopped 91 * state. The 64-bit exit code may be passed to a service entity as 92 * the domain's exit status. On systems without a service entity, the 93 * domain will undergo a reset, and the boot firmware will be 94 * reloaded. 95 * 96 * This function will never return to the guest that invokes it. 97 * 98 * Note: By convention an exit code of zero denotes a successful exit by 99 * the guest code. A non-zero exit code denotes a guest specific 100 * error indication. 101 * 102 */ 103 #define HV_FAST_MACH_EXIT 0x00 104 105 #ifndef __ASSEMBLY__ 106 void sun4v_mach_exit(unsigned long exit_code); 107 #endif 108 109 /* Domain services. */ 110 111 /* mach_desc() 112 * TRAP: HV_FAST_TRAP 113 * FUNCTION: HV_FAST_MACH_DESC 114 * ARG0: buffer 115 * ARG1: length 116 * RET0: status 117 * RET1: length 118 * ERRORS: HV_EBADALIGN Buffer is badly aligned 119 * HV_ENORADDR Buffer is to an illegal real address. 120 * HV_EINVAL Buffer length is too small for complete 121 * machine description. 122 * 123 * Copy the most current machine description into the buffer indicated 124 * by the real address in ARG0. The buffer provided must be 16 byte 125 * aligned. Upon success or HV_EINVAL, this service returns the 126 * actual size of the machine description in the RET1 return value. 127 * 128 * Note: A method of determining the appropriate buffer size for the 129 * machine description is to first call this service with a buffer 130 * length of 0 bytes. 131 */ 132 #define HV_FAST_MACH_DESC 0x01 133 134 #ifndef __ASSEMBLY__ 135 unsigned long sun4v_mach_desc(unsigned long buffer_pa, 136 unsigned long buf_len, 137 unsigned long *real_buf_len); 138 #endif 139 140 /* mach_sir() 141 * TRAP: HV_FAST_TRAP 142 * FUNCTION: HV_FAST_MACH_SIR 143 * ERRORS: This service does not return. 144 * 145 * Perform a software initiated reset of the virtual machine domain. 146 * All CPUs are captured as soon as possible, all hardware devices are 147 * returned to the entry default state, and the domain is restarted at 148 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one 149 * of the CPUs. The single CPU restarted is selected as determined by 150 * platform specific policy. Memory is preserved across this 151 * operation. 152 */ 153 #define HV_FAST_MACH_SIR 0x02 154 155 #ifndef __ASSEMBLY__ 156 void sun4v_mach_sir(void); 157 #endif 158 159 /* mach_set_watchdog() 160 * TRAP: HV_FAST_TRAP 161 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG 162 * ARG0: timeout in milliseconds 163 * RET0: status 164 * RET1: time remaining in milliseconds 165 * 166 * A guest uses this API to set a watchdog timer. Once the gues has set 167 * the timer, it must call the timer service again either to disable or 168 * postpone the expiration. If the timer expires before being reset or 169 * disabled, then the hypervisor take a platform specific action leading 170 * to guest termination within a bounded time period. The platform action 171 * may include recovery actions such as reporting the expiration to a 172 * Service Processor, and/or automatically restarting the gues. 173 * 174 * The 'timeout' parameter is specified in milliseconds, however the 175 * implementated granularity is given by the 'watchdog-resolution' 176 * property in the 'platform' node of the guest's machine description. 177 * The largest allowed timeout value is specified by the 178 * 'watchdog-max-timeout' property of the 'platform' node. 179 * 180 * If the 'timeout' argument is not zero, the watchdog timer is set to 181 * expire after a minimum of 'timeout' milliseconds. 182 * 183 * If the 'timeout' argument is zero, the watchdog timer is disabled. 184 * 185 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout' 186 * property, the hypervisor leaves the watchdog timer state unchanged, 187 * and returns a status of EINVAL. 188 * 189 * The 'time remaining' return value is valid regardless of whether the 190 * return status is EOK or EINVAL. A non-zero return value indicates the 191 * number of milliseconds that were remaining until the timer was to expire. 192 * If less than one millisecond remains, the return value is '1'. If the 193 * watchdog timer was disabled at the time of the call, the return value is 194 * zero. 195 * 196 * If the hypervisor cannot support the exact timeout value requested, but 197 * can support a larger timeout value, the hypervisor may round the actual 198 * timeout to a value larger than the requested timeout, consequently the 199 * 'time remaining' return value may be larger than the previously requested 200 * timeout value. 201 * 202 * Any guest OS debugger should be aware that the watchdog service may be in 203 * use. Consequently, it is recommended that the watchdog service is 204 * disabled upon debugger entry (e.g. reaching a breakpoint), and then 205 * re-enabled upon returning to normal execution. The API has been designed 206 * with this in mind, and the 'time remaining' result of the disable call may 207 * be used directly as the timeout argument of the re-enable call. 208 */ 209 #define HV_FAST_MACH_SET_WATCHDOG 0x05 210 211 #ifndef __ASSEMBLY__ 212 unsigned long sun4v_mach_set_watchdog(unsigned long timeout, 213 unsigned long *orig_timeout); 214 #endif 215 216 /* CPU services. 217 * 218 * CPUs represent devices that can execute software threads. A single 219 * chip that contains multiple cores or strands is represented as 220 * multiple CPUs with unique CPU identifiers. CPUs are exported to 221 * OBP via the machine description (and to the OS via the OBP device 222 * tree). CPUs are always in one of three states: stopped, running, 223 * or error. 224 * 225 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a 226 * CPU within a logical domain. Operations that are to be performed 227 * on multiple CPUs specify them via a CPU list. A CPU list is an 228 * array in real memory, of which each 16-bit word is a CPU ID. CPU 229 * lists are passed through the API as two arguments. The first is 230 * the number of entries (16-bit words) in the CPU list, and the 231 * second is the (real address) pointer to the CPU ID list. 232 */ 233 234 /* cpu_start() 235 * TRAP: HV_FAST_TRAP 236 * FUNCTION: HV_FAST_CPU_START 237 * ARG0: CPU ID 238 * ARG1: PC 239 * ARG2: RTBA 240 * ARG3: target ARG0 241 * RET0: status 242 * ERRORS: ENOCPU Invalid CPU ID 243 * EINVAL Target CPU ID is not in the stopped state 244 * ENORADDR Invalid PC or RTBA real address 245 * EBADALIGN Unaligned PC or unaligned RTBA 246 * EWOULDBLOCK Starting resources are not available 247 * 248 * Start CPU with given CPU ID with PC in %pc and with a real trap 249 * base address value of RTBA. The indicated CPU must be in the 250 * stopped state. The supplied RTBA must be aligned on a 256 byte 251 * boundary. On successful completion, the specified CPU will be in 252 * the running state and will be supplied with "target ARG0" in %o0 253 * and RTBA in %tba. 254 */ 255 #define HV_FAST_CPU_START 0x10 256 257 #ifndef __ASSEMBLY__ 258 unsigned long sun4v_cpu_start(unsigned long cpuid, 259 unsigned long pc, 260 unsigned long rtba, 261 unsigned long arg0); 262 #endif 263 264 /* cpu_stop() 265 * TRAP: HV_FAST_TRAP 266 * FUNCTION: HV_FAST_CPU_STOP 267 * ARG0: CPU ID 268 * RET0: status 269 * ERRORS: ENOCPU Invalid CPU ID 270 * EINVAL Target CPU ID is the current cpu 271 * EINVAL Target CPU ID is not in the running state 272 * EWOULDBLOCK Stopping resources are not available 273 * ENOTSUPPORTED Not supported on this platform 274 * 275 * The specified CPU is stopped. The indicated CPU must be in the 276 * running state. On completion, it will be in the stopped state. It 277 * is not legal to stop the current CPU. 278 * 279 * Note: As this service cannot be used to stop the current cpu, this service 280 * may not be used to stop the last running CPU in a domain. To stop 281 * and exit a running domain, a guest must use the mach_exit() service. 282 */ 283 #define HV_FAST_CPU_STOP 0x11 284 285 #ifndef __ASSEMBLY__ 286 unsigned long sun4v_cpu_stop(unsigned long cpuid); 287 #endif 288 289 /* cpu_yield() 290 * TRAP: HV_FAST_TRAP 291 * FUNCTION: HV_FAST_CPU_YIELD 292 * RET0: status 293 * ERRORS: No possible error. 294 * 295 * Suspend execution on the current CPU. Execution will resume when 296 * an interrupt (device, %stick_compare, or cross-call) is targeted to 297 * the CPU. On some CPUs, this API may be used by the hypervisor to 298 * save power by disabling hardware strands. 299 */ 300 #define HV_FAST_CPU_YIELD 0x12 301 302 #ifndef __ASSEMBLY__ 303 unsigned long sun4v_cpu_yield(void); 304 #endif 305 306 /* cpu_poke() 307 * TRAP: HV_FAST_TRAP 308 * FUNCTION: HV_FAST_CPU_POKE 309 * RET0: status 310 * ERRORS: ENOCPU cpuid refers to a CPU that does not exist 311 * EINVAL cpuid is current CPU 312 * 313 * Poke CPU cpuid. If the target CPU is currently suspended having 314 * invoked the cpu-yield service, that vCPU will be resumed. 315 * Poke interrupts may only be sent to valid, non-local CPUs. 316 * It is not legal to poke the current vCPU. 317 */ 318 #define HV_FAST_CPU_POKE 0x13 319 320 #ifndef __ASSEMBLY__ 321 unsigned long sun4v_cpu_poke(unsigned long cpuid); 322 #endif 323 324 /* cpu_qconf() 325 * TRAP: HV_FAST_TRAP 326 * FUNCTION: HV_FAST_CPU_QCONF 327 * ARG0: queue 328 * ARG1: base real address 329 * ARG2: number of entries 330 * RET0: status 331 * ERRORS: ENORADDR Invalid base real address 332 * EINVAL Invalid queue or number of entries is less 333 * than 2 or too large. 334 * EBADALIGN Base real address is not correctly aligned 335 * for size. 336 * 337 * Configure the given queue to be placed at the given base real 338 * address, with the given number of entries. The number of entries 339 * must be a power of 2. The base real address must be aligned 340 * exactly to match the queue size. Each queue entry is 64 bytes 341 * long, so for example a 32 entry queue must be aligned on a 2048 342 * byte real address boundary. 343 * 344 * The specified queue is unconfigured if the number of entries is given 345 * as zero. 346 * 347 * For the current version of this API service, the argument queue is defined 348 * as follows: 349 * 350 * queue description 351 * ----- ------------------------- 352 * 0x3c cpu mondo queue 353 * 0x3d device mondo queue 354 * 0x3e resumable error queue 355 * 0x3f non-resumable error queue 356 * 357 * Note: The maximum number of entries for each queue for a specific cpu may 358 * be determined from the machine description. 359 */ 360 #define HV_FAST_CPU_QCONF 0x14 361 #define HV_CPU_QUEUE_CPU_MONDO 0x3c 362 #define HV_CPU_QUEUE_DEVICE_MONDO 0x3d 363 #define HV_CPU_QUEUE_RES_ERROR 0x3e 364 #define HV_CPU_QUEUE_NONRES_ERROR 0x3f 365 366 #ifndef __ASSEMBLY__ 367 unsigned long sun4v_cpu_qconf(unsigned long type, 368 unsigned long queue_paddr, 369 unsigned long num_queue_entries); 370 #endif 371 372 /* cpu_qinfo() 373 * TRAP: HV_FAST_TRAP 374 * FUNCTION: HV_FAST_CPU_QINFO 375 * ARG0: queue 376 * RET0: status 377 * RET1: base real address 378 * RET1: number of entries 379 * ERRORS: EINVAL Invalid queue 380 * 381 * Return the configuration info for the given queue. The base real 382 * address and number of entries of the defined queue are returned. 383 * The queue argument values are the same as for cpu_qconf() above. 384 * 385 * If the specified queue is a valid queue number, but no queue has 386 * been defined, the number of entries will be set to zero and the 387 * base real address returned is undefined. 388 */ 389 #define HV_FAST_CPU_QINFO 0x15 390 391 /* cpu_mondo_send() 392 * TRAP: HV_FAST_TRAP 393 * FUNCTION: HV_FAST_CPU_MONDO_SEND 394 * ARG0-1: CPU list 395 * ARG2: data real address 396 * RET0: status 397 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list 398 * is not 2-byte aligned. 399 * ENORADDR Invalid data mondo address, or invalid cpu list 400 * address. 401 * ENOCPU Invalid cpu in CPU list 402 * EWOULDBLOCK Some or all of the listed CPUs did not receive 403 * the mondo 404 * ECPUERROR One or more of the listed CPUs are in error 405 * state, use HV_FAST_CPU_STATE to see which ones 406 * EINVAL CPU list includes caller's CPU ID 407 * 408 * Send a mondo interrupt to the CPUs in the given CPU list with the 409 * 64-bytes at the given data real address. The data must be 64-byte 410 * aligned. The mondo data will be delivered to the cpu_mondo queues 411 * of the recipient CPUs. 412 * 413 * In all cases, error or not, the CPUs in the CPU list to which the 414 * mondo has been successfully delivered will be indicated by having 415 * their entry in CPU list updated with the value 0xffff. 416 */ 417 #define HV_FAST_CPU_MONDO_SEND 0x42 418 419 #ifndef __ASSEMBLY__ 420 unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, 421 unsigned long cpu_list_pa, 422 unsigned long mondo_block_pa); 423 #endif 424 425 /* cpu_myid() 426 * TRAP: HV_FAST_TRAP 427 * FUNCTION: HV_FAST_CPU_MYID 428 * RET0: status 429 * RET1: CPU ID 430 * ERRORS: No errors defined. 431 * 432 * Return the hypervisor ID handle for the current CPU. Use by a 433 * virtual CPU to discover it's own identity. 434 */ 435 #define HV_FAST_CPU_MYID 0x16 436 437 /* cpu_state() 438 * TRAP: HV_FAST_TRAP 439 * FUNCTION: HV_FAST_CPU_STATE 440 * ARG0: CPU ID 441 * RET0: status 442 * RET1: state 443 * ERRORS: ENOCPU Invalid CPU ID 444 * 445 * Retrieve the current state of the CPU with the given CPU ID. 446 */ 447 #define HV_FAST_CPU_STATE 0x17 448 #define HV_CPU_STATE_STOPPED 0x01 449 #define HV_CPU_STATE_RUNNING 0x02 450 #define HV_CPU_STATE_ERROR 0x03 451 452 #ifndef __ASSEMBLY__ 453 long sun4v_cpu_state(unsigned long cpuid); 454 #endif 455 456 /* cpu_set_rtba() 457 * TRAP: HV_FAST_TRAP 458 * FUNCTION: HV_FAST_CPU_SET_RTBA 459 * ARG0: RTBA 460 * RET0: status 461 * RET1: previous RTBA 462 * ERRORS: ENORADDR Invalid RTBA real address 463 * EBADALIGN RTBA is incorrectly aligned for a trap table 464 * 465 * Set the real trap base address of the local cpu to the given RTBA. 466 * The supplied RTBA must be aligned on a 256 byte boundary. Upon 467 * success the previous value of the RTBA is returned in RET1. 468 * 469 * Note: This service does not affect %tba 470 */ 471 #define HV_FAST_CPU_SET_RTBA 0x18 472 473 /* cpu_set_rtba() 474 * TRAP: HV_FAST_TRAP 475 * FUNCTION: HV_FAST_CPU_GET_RTBA 476 * RET0: status 477 * RET1: previous RTBA 478 * ERRORS: No possible error. 479 * 480 * Returns the current value of RTBA in RET1. 481 */ 482 #define HV_FAST_CPU_GET_RTBA 0x19 483 484 /* MMU services. 485 * 486 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls. 487 */ 488 #ifndef __ASSEMBLY__ 489 struct hv_tsb_descr { 490 unsigned short pgsz_idx; 491 unsigned short assoc; 492 unsigned int num_ttes; /* in TTEs */ 493 unsigned int ctx_idx; 494 unsigned int pgsz_mask; 495 unsigned long tsb_base; 496 unsigned long resv; 497 }; 498 #endif 499 #define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00 500 #define HV_TSB_DESCR_ASSOC_OFFSET 0x02 501 #define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04 502 #define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08 503 #define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c 504 #define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10 505 #define HV_TSB_DESCR_RESV_OFFSET 0x18 506 507 /* Page size bitmask. */ 508 #define HV_PGSZ_MASK_8K (1 << 0) 509 #define HV_PGSZ_MASK_64K (1 << 1) 510 #define HV_PGSZ_MASK_512K (1 << 2) 511 #define HV_PGSZ_MASK_4MB (1 << 3) 512 #define HV_PGSZ_MASK_32MB (1 << 4) 513 #define HV_PGSZ_MASK_256MB (1 << 5) 514 #define HV_PGSZ_MASK_2GB (1 << 6) 515 #define HV_PGSZ_MASK_16GB (1 << 7) 516 517 /* Page size index. The value given in the TSB descriptor must correspond 518 * to the smallest page size specified in the pgsz_mask page size bitmask. 519 */ 520 #define HV_PGSZ_IDX_8K 0 521 #define HV_PGSZ_IDX_64K 1 522 #define HV_PGSZ_IDX_512K 2 523 #define HV_PGSZ_IDX_4MB 3 524 #define HV_PGSZ_IDX_32MB 4 525 #define HV_PGSZ_IDX_256MB 5 526 #define HV_PGSZ_IDX_2GB 6 527 #define HV_PGSZ_IDX_16GB 7 528 529 /* MMU fault status area. 530 * 531 * MMU related faults have their status and fault address information 532 * placed into a memory region made available by privileged code. Each 533 * virtual processor must make a mmu_fault_area_conf() call to tell the 534 * hypervisor where that processor's fault status should be stored. 535 * 536 * The fault status block is a multiple of 64-bytes and must be aligned 537 * on a 64-byte boundary. 538 */ 539 #ifndef __ASSEMBLY__ 540 struct hv_fault_status { 541 unsigned long i_fault_type; 542 unsigned long i_fault_addr; 543 unsigned long i_fault_ctx; 544 unsigned long i_reserved[5]; 545 unsigned long d_fault_type; 546 unsigned long d_fault_addr; 547 unsigned long d_fault_ctx; 548 unsigned long d_reserved[5]; 549 }; 550 #endif 551 #define HV_FAULT_I_TYPE_OFFSET 0x00 552 #define HV_FAULT_I_ADDR_OFFSET 0x08 553 #define HV_FAULT_I_CTX_OFFSET 0x10 554 #define HV_FAULT_D_TYPE_OFFSET 0x40 555 #define HV_FAULT_D_ADDR_OFFSET 0x48 556 #define HV_FAULT_D_CTX_OFFSET 0x50 557 558 #define HV_FAULT_TYPE_FAST_MISS 1 559 #define HV_FAULT_TYPE_FAST_PROT 2 560 #define HV_FAULT_TYPE_MMU_MISS 3 561 #define HV_FAULT_TYPE_INV_RA 4 562 #define HV_FAULT_TYPE_PRIV_VIOL 5 563 #define HV_FAULT_TYPE_PROT_VIOL 6 564 #define HV_FAULT_TYPE_NFO 7 565 #define HV_FAULT_TYPE_NFO_SEFF 8 566 #define HV_FAULT_TYPE_INV_VA 9 567 #define HV_FAULT_TYPE_INV_ASI 10 568 #define HV_FAULT_TYPE_NC_ATOMIC 11 569 #define HV_FAULT_TYPE_PRIV_ACT 12 570 #define HV_FAULT_TYPE_RESV1 13 571 #define HV_FAULT_TYPE_UNALIGNED 14 572 #define HV_FAULT_TYPE_INV_PGSZ 15 573 #define HV_FAULT_TYPE_MCD 17 574 #define HV_FAULT_TYPE_MCD_DIS 18 575 /* Values 16 --> -2 are reserved. */ 576 #define HV_FAULT_TYPE_MULTIPLE -1 577 578 /* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(), 579 * and mmu_{map,unmap}_perm_addr(). 580 */ 581 #define HV_MMU_DMMU 0x01 582 #define HV_MMU_IMMU 0x02 583 #define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU) 584 585 /* mmu_map_addr() 586 * TRAP: HV_MMU_MAP_ADDR_TRAP 587 * ARG0: virtual address 588 * ARG1: mmu context 589 * ARG2: TTE 590 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 591 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 592 * EBADPGSZ Invalid page size value 593 * ENORADDR Invalid real address in TTE 594 * 595 * Create a non-permanent mapping using the given TTE, virtual 596 * address, and mmu context. The flags argument determines which 597 * (data, or instruction, or both) TLB the mapping gets loaded into. 598 * 599 * The behavior is undefined if the valid bit is clear in the TTE. 600 * 601 * Note: This API call is for privileged code to specify temporary translation 602 * mappings without the need to create and manage a TSB. 603 */ 604 605 /* mmu_unmap_addr() 606 * TRAP: HV_MMU_UNMAP_ADDR_TRAP 607 * ARG0: virtual address 608 * ARG1: mmu context 609 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 610 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 611 * 612 * Demaps the given virtual address in the given mmu context on this 613 * CPU. This function is intended to be used to demap pages mapped 614 * with mmu_map_addr. This service is equivalent to invoking 615 * mmu_demap_page() with only the current CPU in the CPU list. The 616 * flags argument determines which (data, or instruction, or both) TLB 617 * the mapping gets unmapped from. 618 * 619 * Attempting to perform an unmap operation for a previously defined 620 * permanent mapping will have undefined results. 621 */ 622 623 /* mmu_tsb_ctx0() 624 * TRAP: HV_FAST_TRAP 625 * FUNCTION: HV_FAST_MMU_TSB_CTX0 626 * ARG0: number of TSB descriptions 627 * ARG1: TSB descriptions pointer 628 * RET0: status 629 * ERRORS: ENORADDR Invalid TSB descriptions pointer or 630 * TSB base within a descriptor 631 * EBADALIGN TSB descriptions pointer is not aligned 632 * to an 8-byte boundary, or TSB base 633 * within a descriptor is not aligned for 634 * the given TSB size 635 * EBADPGSZ Invalid page size in a TSB descriptor 636 * EBADTSB Invalid associativity or size in a TSB 637 * descriptor 638 * EINVAL Invalid number of TSB descriptions, or 639 * invalid context index in a TSB 640 * descriptor, or index page size not 641 * equal to smallest page size in page 642 * size bitmask field. 643 * 644 * Configures the TSBs for the current CPU for virtual addresses with 645 * context zero. The TSB descriptions pointer is a pointer to an 646 * array of the given number of TSB descriptions. 647 * 648 * Note: The maximum number of TSBs available to a virtual CPU is given by the 649 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the 650 * machine description. 651 */ 652 #define HV_FAST_MMU_TSB_CTX0 0x20 653 654 #ifndef __ASSEMBLY__ 655 unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions, 656 unsigned long tsb_desc_ra); 657 #endif 658 659 /* mmu_tsb_ctxnon0() 660 * TRAP: HV_FAST_TRAP 661 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0 662 * ARG0: number of TSB descriptions 663 * ARG1: TSB descriptions pointer 664 * RET0: status 665 * ERRORS: Same as for mmu_tsb_ctx0() above. 666 * 667 * Configures the TSBs for the current CPU for virtual addresses with 668 * non-zero contexts. The TSB descriptions pointer is a pointer to an 669 * array of the given number of TSB descriptions. 670 * 671 * Note: A maximum of 16 TSBs may be specified in the TSB description list. 672 */ 673 #define HV_FAST_MMU_TSB_CTXNON0 0x21 674 675 /* mmu_demap_page() 676 * TRAP: HV_FAST_TRAP 677 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE 678 * ARG0: reserved, must be zero 679 * ARG1: reserved, must be zero 680 * ARG2: virtual address 681 * ARG3: mmu context 682 * ARG4: flags (HV_MMU_{IMMU,DMMU}) 683 * RET0: status 684 * ERRORS: EINVAL Invalid virtual address, context, or 685 * flags value 686 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 687 * 688 * Demaps any page mapping of the given virtual address in the given 689 * mmu context for the current virtual CPU. Any virtually tagged 690 * caches are guaranteed to be kept consistent. The flags argument 691 * determines which TLB (instruction, or data, or both) participate in 692 * the operation. 693 * 694 * ARG0 and ARG1 are both reserved and must be set to zero. 695 */ 696 #define HV_FAST_MMU_DEMAP_PAGE 0x22 697 698 /* mmu_demap_ctx() 699 * TRAP: HV_FAST_TRAP 700 * FUNCTION: HV_FAST_MMU_DEMAP_CTX 701 * ARG0: reserved, must be zero 702 * ARG1: reserved, must be zero 703 * ARG2: mmu context 704 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 705 * RET0: status 706 * ERRORS: EINVAL Invalid context or flags value 707 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 708 * 709 * Demaps all non-permanent virtual page mappings previously specified 710 * for the given context for the current virtual CPU. Any virtual 711 * tagged caches are guaranteed to be kept consistent. The flags 712 * argument determines which TLB (instruction, or data, or both) 713 * participate in the operation. 714 * 715 * ARG0 and ARG1 are both reserved and must be set to zero. 716 */ 717 #define HV_FAST_MMU_DEMAP_CTX 0x23 718 719 /* mmu_demap_all() 720 * TRAP: HV_FAST_TRAP 721 * FUNCTION: HV_FAST_MMU_DEMAP_ALL 722 * ARG0: reserved, must be zero 723 * ARG1: reserved, must be zero 724 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 725 * RET0: status 726 * ERRORS: EINVAL Invalid flags value 727 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 728 * 729 * Demaps all non-permanent virtual page mappings previously specified 730 * for the current virtual CPU. Any virtual tagged caches are 731 * guaranteed to be kept consistent. The flags argument determines 732 * which TLB (instruction, or data, or both) participate in the 733 * operation. 734 * 735 * ARG0 and ARG1 are both reserved and must be set to zero. 736 */ 737 #define HV_FAST_MMU_DEMAP_ALL 0x24 738 739 #ifndef __ASSEMBLY__ 740 void sun4v_mmu_demap_all(void); 741 #endif 742 743 /* mmu_map_perm_addr() 744 * TRAP: HV_FAST_TRAP 745 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR 746 * ARG0: virtual address 747 * ARG1: reserved, must be zero 748 * ARG2: TTE 749 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 750 * RET0: status 751 * ERRORS: EINVAL Invalid virtual address or flags value 752 * EBADPGSZ Invalid page size value 753 * ENORADDR Invalid real address in TTE 754 * ETOOMANY Too many mappings (max of 8 reached) 755 * 756 * Create a permanent mapping using the given TTE and virtual address 757 * for context 0 on the calling virtual CPU. A maximum of 8 such 758 * permanent mappings may be specified by privileged code. Mappings 759 * may be removed with mmu_unmap_perm_addr(). 760 * 761 * The behavior is undefined if a TTE with the valid bit clear is given. 762 * 763 * Note: This call is used to specify address space mappings for which 764 * privileged code does not expect to receive misses. For example, 765 * this mechanism can be used to map kernel nucleus code and data. 766 */ 767 #define HV_FAST_MMU_MAP_PERM_ADDR 0x25 768 769 #ifndef __ASSEMBLY__ 770 unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr, 771 unsigned long set_to_zero, 772 unsigned long tte, 773 unsigned long flags); 774 #endif 775 776 /* mmu_fault_area_conf() 777 * TRAP: HV_FAST_TRAP 778 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF 779 * ARG0: real address 780 * RET0: status 781 * RET1: previous mmu fault area real address 782 * ERRORS: ENORADDR Invalid real address 783 * EBADALIGN Invalid alignment for fault area 784 * 785 * Configure the MMU fault status area for the calling CPU. A 64-byte 786 * aligned real address specifies where MMU fault status information 787 * is placed. The return value is the previously specified area, or 0 788 * for the first invocation. Specifying a fault area at real address 789 * 0 is not allowed. 790 */ 791 #define HV_FAST_MMU_FAULT_AREA_CONF 0x26 792 793 /* mmu_enable() 794 * TRAP: HV_FAST_TRAP 795 * FUNCTION: HV_FAST_MMU_ENABLE 796 * ARG0: enable flag 797 * ARG1: return target address 798 * RET0: status 799 * ERRORS: ENORADDR Invalid real address when disabling 800 * translation. 801 * EBADALIGN The return target address is not 802 * aligned to an instruction. 803 * EINVAL The enable flag request the current 804 * operating mode (e.g. disable if already 805 * disabled) 806 * 807 * Enable or disable virtual address translation for the calling CPU 808 * within the virtual machine domain. If the enable flag is zero, 809 * translation is disabled, any non-zero value will enable 810 * translation. 811 * 812 * When this function returns, the newly selected translation mode 813 * will be active. If the mmu is being enabled, then the return 814 * target address is a virtual address else it is a real address. 815 * 816 * Upon successful completion, control will be returned to the given 817 * return target address (ie. the cpu will jump to that address). On 818 * failure, the previous mmu mode remains and the trap simply returns 819 * as normal with the appropriate error code in RET0. 820 */ 821 #define HV_FAST_MMU_ENABLE 0x27 822 823 /* mmu_unmap_perm_addr() 824 * TRAP: HV_FAST_TRAP 825 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR 826 * ARG0: virtual address 827 * ARG1: reserved, must be zero 828 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 829 * RET0: status 830 * ERRORS: EINVAL Invalid virtual address or flags value 831 * ENOMAP Specified mapping was not found 832 * 833 * Demaps any permanent page mapping (established via 834 * mmu_map_perm_addr()) at the given virtual address for context 0 on 835 * the current virtual CPU. Any virtual tagged caches are guaranteed 836 * to be kept consistent. 837 */ 838 #define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28 839 840 /* mmu_tsb_ctx0_info() 841 * TRAP: HV_FAST_TRAP 842 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO 843 * ARG0: max TSBs 844 * ARG1: buffer pointer 845 * RET0: status 846 * RET1: number of TSBs 847 * ERRORS: EINVAL Supplied buffer is too small 848 * EBADALIGN The buffer pointer is badly aligned 849 * ENORADDR Invalid real address for buffer pointer 850 * 851 * Return the TSB configuration as previous defined by mmu_tsb_ctx0() 852 * into the provided buffer. The size of the buffer is given in ARG1 853 * in terms of the number of TSB description entries. 854 * 855 * Upon return, RET1 always contains the number of TSB descriptions 856 * previously configured. If zero TSBs were configured, EOK is 857 * returned with RET1 containing 0. 858 */ 859 #define HV_FAST_MMU_TSB_CTX0_INFO 0x29 860 861 /* mmu_tsb_ctxnon0_info() 862 * TRAP: HV_FAST_TRAP 863 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO 864 * ARG0: max TSBs 865 * ARG1: buffer pointer 866 * RET0: status 867 * RET1: number of TSBs 868 * ERRORS: EINVAL Supplied buffer is too small 869 * EBADALIGN The buffer pointer is badly aligned 870 * ENORADDR Invalid real address for buffer pointer 871 * 872 * Return the TSB configuration as previous defined by 873 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer 874 * is given in ARG1 in terms of the number of TSB description entries. 875 * 876 * Upon return, RET1 always contains the number of TSB descriptions 877 * previously configured. If zero TSBs were configured, EOK is 878 * returned with RET1 containing 0. 879 */ 880 #define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a 881 882 /* mmu_fault_area_info() 883 * TRAP: HV_FAST_TRAP 884 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO 885 * RET0: status 886 * RET1: fault area real address 887 * ERRORS: No errors defined. 888 * 889 * Return the currently defined MMU fault status area for the current 890 * CPU. The real address of the fault status area is returned in 891 * RET1, or 0 is returned in RET1 if no fault status area is defined. 892 * 893 * Note: mmu_fault_area_conf() may be called with the return value (RET1) 894 * from this service if there is a need to save and restore the fault 895 * area for a cpu. 896 */ 897 #define HV_FAST_MMU_FAULT_AREA_INFO 0x2b 898 899 /* Cache and Memory services. */ 900 901 /* mem_scrub() 902 * TRAP: HV_FAST_TRAP 903 * FUNCTION: HV_FAST_MEM_SCRUB 904 * ARG0: real address 905 * ARG1: length 906 * RET0: status 907 * RET1: length scrubbed 908 * ERRORS: ENORADDR Invalid real address 909 * EBADALIGN Start address or length are not correctly 910 * aligned 911 * EINVAL Length is zero 912 * 913 * Zero the memory contents in the range real address to real address 914 * plus length minus 1. Also, valid ECC will be generated for that 915 * memory address range. Scrubbing is started at the given real 916 * address, but may not scrub the entire given length. The actual 917 * length scrubbed will be returned in RET1. 918 * 919 * The real address and length must be aligned on an 8K boundary, or 920 * contain the start address and length from a sun4v error report. 921 * 922 * Note: There are two uses for this function. The first use is to block clear 923 * and initialize memory and the second is to scrub an u ncorrectable 924 * error reported via a resumable or non-resumable trap. The second 925 * use requires the arguments to be equal to the real address and length 926 * provided in a sun4v memory error report. 927 */ 928 #define HV_FAST_MEM_SCRUB 0x31 929 930 /* mem_sync() 931 * TRAP: HV_FAST_TRAP 932 * FUNCTION: HV_FAST_MEM_SYNC 933 * ARG0: real address 934 * ARG1: length 935 * RET0: status 936 * RET1: length synced 937 * ERRORS: ENORADDR Invalid real address 938 * EBADALIGN Start address or length are not correctly 939 * aligned 940 * EINVAL Length is zero 941 * 942 * Force the next access within the real address to real address plus 943 * length minus 1 to be fetches from main system memory. Less than 944 * the given length may be synced, the actual amount synced is 945 * returned in RET1. The real address and length must be aligned on 946 * an 8K boundary. 947 */ 948 #define HV_FAST_MEM_SYNC 0x32 949 950 /* Coprocessor services 951 * 952 * M7 and later processors provide an on-chip coprocessor which 953 * accelerates database operations, and is known internally as 954 * DAX. 955 */ 956 957 /* ccb_submit() 958 * TRAP: HV_FAST_TRAP 959 * FUNCTION: HV_CCB_SUBMIT 960 * ARG0: address of CCB array 961 * ARG1: size (in bytes) of CCB array being submitted 962 * ARG2: flags 963 * ARG3: reserved 964 * RET0: status (success or error code) 965 * RET1: size (in bytes) of CCB array that was accepted (might be less 966 * than arg1) 967 * RET2: status data 968 * if status == ENOMAP or ENOACCESS, identifies the VA in question 969 * if status == EUNAVAILBLE, unavailable code 970 * RET3: reserved 971 * 972 * ERRORS: EOK successful submission (check size) 973 * EWOULDBLOCK could not finish submissions, try again 974 * EBADALIGN array not 64B aligned or size not 64B multiple 975 * ENORADDR invalid RA for array or in CCB 976 * ENOMAP could not translate address (see status data) 977 * EINVAL invalid ccb or arguments 978 * ETOOMANY too many ccbs with all-or-nothing flag 979 * ENOACCESS guest has no access to submit ccbs or address 980 * in CCB does not have correct permissions (check 981 * status data) 982 * EUNAVAILABLE ccb operation could not be performed at this 983 * time (check status data) 984 * Status data codes: 985 * 0 - exact CCB could not be executed 986 * 1 - CCB opcode cannot be executed 987 * 2 - CCB version cannot be executed 988 * 3 - vcpu cannot execute CCBs 989 * 4 - no CCBs can be executed 990 */ 991 992 #define HV_CCB_SUBMIT 0x34 993 #ifndef __ASSEMBLY__ 994 unsigned long sun4v_ccb_submit(unsigned long ccb_buf, 995 unsigned long len, 996 unsigned long flags, 997 unsigned long reserved, 998 void *submitted_len, 999 void *status_data); 1000 #endif 1001 1002 /* flags (ARG2) */ 1003 #define HV_CCB_QUERY_CMD BIT(1) 1004 #define HV_CCB_ARG0_TYPE_REAL 0UL 1005 #define HV_CCB_ARG0_TYPE_PRIMARY BIT(4) 1006 #define HV_CCB_ARG0_TYPE_SECONDARY BIT(5) 1007 #define HV_CCB_ARG0_TYPE_NUCLEUS GENMASK(5, 4) 1008 #define HV_CCB_ARG0_PRIVILEGED BIT(6) 1009 #define HV_CCB_ALL_OR_NOTHING BIT(7) 1010 #define HV_CCB_QUEUE_INFO BIT(8) 1011 #define HV_CCB_VA_REJECT 0UL 1012 #define HV_CCB_VA_SECONDARY BIT(13) 1013 #define HV_CCB_VA_NUCLEUS GENMASK(13, 12) 1014 #define HV_CCB_VA_PRIVILEGED BIT(14) 1015 #define HV_CCB_VA_READ_ADI_DISABLE BIT(15) /* DAX2 only */ 1016 1017 /* ccb_info() 1018 * TRAP: HV_FAST_TRAP 1019 * FUNCTION: HV_CCB_INFO 1020 * ARG0: real address of CCB completion area 1021 * RET0: status (success or error code) 1022 * RET1: info array 1023 * - RET1[0]: CCB state 1024 * - RET1[1]: dax unit 1025 * - RET1[2]: queue number 1026 * - RET1[3]: queue position 1027 * 1028 * ERRORS: EOK operation successful 1029 * EBADALIGN address not 64B aligned 1030 * ENORADDR RA in address not valid 1031 * EINVAL CA not valid 1032 * EWOULDBLOCK info not available for this CCB currently, try 1033 * again 1034 * ENOACCESS guest cannot use dax 1035 */ 1036 1037 #define HV_CCB_INFO 0x35 1038 #ifndef __ASSEMBLY__ 1039 unsigned long sun4v_ccb_info(unsigned long ca, 1040 void *info_arr); 1041 #endif 1042 1043 /* info array byte offsets (RET1) */ 1044 #define CCB_INFO_OFFSET_CCB_STATE 0 1045 #define CCB_INFO_OFFSET_DAX_UNIT 2 1046 #define CCB_INFO_OFFSET_QUEUE_NUM 4 1047 #define CCB_INFO_OFFSET_QUEUE_POS 6 1048 1049 /* CCB state (RET1[0]) */ 1050 #define HV_CCB_STATE_COMPLETED 0 1051 #define HV_CCB_STATE_ENQUEUED 1 1052 #define HV_CCB_STATE_INPROGRESS 2 1053 #define HV_CCB_STATE_NOTFOUND 3 1054 1055 /* ccb_kill() 1056 * TRAP: HV_FAST_TRAP 1057 * FUNCTION: HV_CCB_KILL 1058 * ARG0: real address of CCB completion area 1059 * RET0: status (success or error code) 1060 * RET1: CCB kill status 1061 * 1062 * ERRORS: EOK operation successful 1063 * EBADALIGN address not 64B aligned 1064 * ENORADDR RA in address not valid 1065 * EINVAL CA not valid 1066 * EWOULDBLOCK kill not available for this CCB currently, try 1067 * again 1068 * ENOACCESS guest cannot use dax 1069 */ 1070 1071 #define HV_CCB_KILL 0x36 1072 #ifndef __ASSEMBLY__ 1073 unsigned long sun4v_ccb_kill(unsigned long ca, 1074 void *kill_status); 1075 #endif 1076 1077 /* CCB kill status (RET1) */ 1078 #define HV_CCB_KILL_COMPLETED 0 1079 #define HV_CCB_KILL_DEQUEUED 1 1080 #define HV_CCB_KILL_KILLED 2 1081 #define HV_CCB_KILL_NOTFOUND 3 1082 1083 /* Time of day services. 1084 * 1085 * The hypervisor maintains the time of day on a per-domain basis. 1086 * Changing the time of day in one domain does not affect the time of 1087 * day on any other domain. 1088 * 1089 * Time is described by a single unsigned 64-bit word which is the 1090 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1, 1091 * 1970). 1092 */ 1093 1094 /* tod_get() 1095 * TRAP: HV_FAST_TRAP 1096 * FUNCTION: HV_FAST_TOD_GET 1097 * RET0: status 1098 * RET1: TOD 1099 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 1100 * ENOTSUPPORTED If TOD not supported on this platform 1101 * 1102 * Return the current time of day. May block if TOD access is 1103 * temporarily not possible. 1104 */ 1105 #define HV_FAST_TOD_GET 0x50 1106 1107 #ifndef __ASSEMBLY__ 1108 unsigned long sun4v_tod_get(unsigned long *time); 1109 #endif 1110 1111 /* tod_set() 1112 * TRAP: HV_FAST_TRAP 1113 * FUNCTION: HV_FAST_TOD_SET 1114 * ARG0: TOD 1115 * RET0: status 1116 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 1117 * ENOTSUPPORTED If TOD not supported on this platform 1118 * 1119 * The current time of day is set to the value specified in ARG0. May 1120 * block if TOD access is temporarily not possible. 1121 */ 1122 #define HV_FAST_TOD_SET 0x51 1123 1124 #ifndef __ASSEMBLY__ 1125 unsigned long sun4v_tod_set(unsigned long time); 1126 #endif 1127 1128 /* Console services */ 1129 1130 /* con_getchar() 1131 * TRAP: HV_FAST_TRAP 1132 * FUNCTION: HV_FAST_CONS_GETCHAR 1133 * RET0: status 1134 * RET1: character 1135 * ERRORS: EWOULDBLOCK No character available. 1136 * 1137 * Returns a character from the console device. If no character is 1138 * available then an EWOULDBLOCK error is returned. If a character is 1139 * available, then the returned status is EOK and the character value 1140 * is in RET1. 1141 * 1142 * A virtual BREAK is represented by the 64-bit value -1. 1143 * 1144 * A virtual HUP signal is represented by the 64-bit value -2. 1145 */ 1146 #define HV_FAST_CONS_GETCHAR 0x60 1147 1148 /* con_putchar() 1149 * TRAP: HV_FAST_TRAP 1150 * FUNCTION: HV_FAST_CONS_PUTCHAR 1151 * ARG0: character 1152 * RET0: status 1153 * ERRORS: EINVAL Illegal character 1154 * EWOULDBLOCK Output buffer currently full, would block 1155 * 1156 * Send a character to the console device. Only character values 1157 * between 0 and 255 may be used. Values outside this range are 1158 * invalid except for the 64-bit value -1 which is used to send a 1159 * virtual BREAK. 1160 */ 1161 #define HV_FAST_CONS_PUTCHAR 0x61 1162 1163 /* con_read() 1164 * TRAP: HV_FAST_TRAP 1165 * FUNCTION: HV_FAST_CONS_READ 1166 * ARG0: buffer real address 1167 * ARG1: buffer size in bytes 1168 * RET0: status 1169 * RET1: bytes read or BREAK or HUP 1170 * ERRORS: EWOULDBLOCK No character available. 1171 * 1172 * Reads characters into a buffer from the console device. If no 1173 * character is available then an EWOULDBLOCK error is returned. 1174 * If a character is available, then the returned status is EOK 1175 * and the number of bytes read into the given buffer is provided 1176 * in RET1. 1177 * 1178 * A virtual BREAK is represented by the 64-bit RET1 value -1. 1179 * 1180 * A virtual HUP signal is represented by the 64-bit RET1 value -2. 1181 * 1182 * If BREAK or HUP are indicated, no bytes were read into buffer. 1183 */ 1184 #define HV_FAST_CONS_READ 0x62 1185 1186 /* con_write() 1187 * TRAP: HV_FAST_TRAP 1188 * FUNCTION: HV_FAST_CONS_WRITE 1189 * ARG0: buffer real address 1190 * ARG1: buffer size in bytes 1191 * RET0: status 1192 * RET1: bytes written 1193 * ERRORS: EWOULDBLOCK Output buffer currently full, would block 1194 * 1195 * Send a characters in buffer to the console device. Breaks must be 1196 * sent using con_putchar(). 1197 */ 1198 #define HV_FAST_CONS_WRITE 0x63 1199 1200 #ifndef __ASSEMBLY__ 1201 long sun4v_con_getchar(long *status); 1202 long sun4v_con_putchar(long c); 1203 long sun4v_con_read(unsigned long buffer, 1204 unsigned long size, 1205 unsigned long *bytes_read); 1206 unsigned long sun4v_con_write(unsigned long buffer, 1207 unsigned long size, 1208 unsigned long *bytes_written); 1209 #endif 1210 1211 /* mach_set_soft_state() 1212 * TRAP: HV_FAST_TRAP 1213 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE 1214 * ARG0: software state 1215 * ARG1: software state description pointer 1216 * RET0: status 1217 * ERRORS: EINVAL software state not valid or software state 1218 * description is not NULL terminated 1219 * ENORADDR software state description pointer is not a 1220 * valid real address 1221 * EBADALIGNED software state description is not correctly 1222 * aligned 1223 * 1224 * This allows the guest to report it's soft state to the hypervisor. There 1225 * are two primary components to this state. The first part states whether 1226 * the guest software is running or not. The second containts optional 1227 * details specific to the software. 1228 * 1229 * The software state argument is defined below in HV_SOFT_STATE_*, and 1230 * indicates whether the guest is operating normally or in a transitional 1231 * state. 1232 * 1233 * The software state description argument is a real address of a data buffer 1234 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL 1235 * terminated 7-bit ASCII string of up to 31 characters not including the 1236 * NULL termination. 1237 */ 1238 #define HV_FAST_MACH_SET_SOFT_STATE 0x70 1239 #define HV_SOFT_STATE_NORMAL 0x01 1240 #define HV_SOFT_STATE_TRANSITION 0x02 1241 1242 #ifndef __ASSEMBLY__ 1243 unsigned long sun4v_mach_set_soft_state(unsigned long soft_state, 1244 unsigned long msg_string_ra); 1245 #endif 1246 1247 /* mach_get_soft_state() 1248 * TRAP: HV_FAST_TRAP 1249 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE 1250 * ARG0: software state description pointer 1251 * RET0: status 1252 * RET1: software state 1253 * ERRORS: ENORADDR software state description pointer is not a 1254 * valid real address 1255 * EBADALIGNED software state description is not correctly 1256 * aligned 1257 * 1258 * Retrieve the current value of the guest's software state. The rules 1259 * for the software state pointer are the same as for mach_set_soft_state() 1260 * above. 1261 */ 1262 #define HV_FAST_MACH_GET_SOFT_STATE 0x71 1263 1264 /* svc_send() 1265 * TRAP: HV_FAST_TRAP 1266 * FUNCTION: HV_FAST_SVC_SEND 1267 * ARG0: service ID 1268 * ARG1: buffer real address 1269 * ARG2: buffer size 1270 * RET0: STATUS 1271 * RET1: sent_bytes 1272 * 1273 * Be careful, all output registers are clobbered by this operation, 1274 * so for example it is not possible to save away a value in %o4 1275 * across the trap. 1276 */ 1277 #define HV_FAST_SVC_SEND 0x80 1278 1279 /* svc_recv() 1280 * TRAP: HV_FAST_TRAP 1281 * FUNCTION: HV_FAST_SVC_RECV 1282 * ARG0: service ID 1283 * ARG1: buffer real address 1284 * ARG2: buffer size 1285 * RET0: STATUS 1286 * RET1: recv_bytes 1287 * 1288 * Be careful, all output registers are clobbered by this operation, 1289 * so for example it is not possible to save away a value in %o4 1290 * across the trap. 1291 */ 1292 #define HV_FAST_SVC_RECV 0x81 1293 1294 /* svc_getstatus() 1295 * TRAP: HV_FAST_TRAP 1296 * FUNCTION: HV_FAST_SVC_GETSTATUS 1297 * ARG0: service ID 1298 * RET0: STATUS 1299 * RET1: status bits 1300 */ 1301 #define HV_FAST_SVC_GETSTATUS 0x82 1302 1303 /* svc_setstatus() 1304 * TRAP: HV_FAST_TRAP 1305 * FUNCTION: HV_FAST_SVC_SETSTATUS 1306 * ARG0: service ID 1307 * ARG1: bits to set 1308 * RET0: STATUS 1309 */ 1310 #define HV_FAST_SVC_SETSTATUS 0x83 1311 1312 /* svc_clrstatus() 1313 * TRAP: HV_FAST_TRAP 1314 * FUNCTION: HV_FAST_SVC_CLRSTATUS 1315 * ARG0: service ID 1316 * ARG1: bits to clear 1317 * RET0: STATUS 1318 */ 1319 #define HV_FAST_SVC_CLRSTATUS 0x84 1320 1321 #ifndef __ASSEMBLY__ 1322 unsigned long sun4v_svc_send(unsigned long svc_id, 1323 unsigned long buffer, 1324 unsigned long buffer_size, 1325 unsigned long *sent_bytes); 1326 unsigned long sun4v_svc_recv(unsigned long svc_id, 1327 unsigned long buffer, 1328 unsigned long buffer_size, 1329 unsigned long *recv_bytes); 1330 unsigned long sun4v_svc_getstatus(unsigned long svc_id, 1331 unsigned long *status_bits); 1332 unsigned long sun4v_svc_setstatus(unsigned long svc_id, 1333 unsigned long status_bits); 1334 unsigned long sun4v_svc_clrstatus(unsigned long svc_id, 1335 unsigned long status_bits); 1336 #endif 1337 1338 /* Trap trace services. 1339 * 1340 * The hypervisor provides a trap tracing capability for privileged 1341 * code running on each virtual CPU. Privileged code provides a 1342 * round-robin trap trace queue within which the hypervisor writes 1343 * 64-byte entries detailing hyperprivileged traps taken n behalf of 1344 * privileged code. This is provided as a debugging capability for 1345 * privileged code. 1346 * 1347 * The trap trace control structure is 64-bytes long and placed at the 1348 * start (offset 0) of the trap trace buffer, and is described as 1349 * follows: 1350 */ 1351 #ifndef __ASSEMBLY__ 1352 struct hv_trap_trace_control { 1353 unsigned long head_offset; 1354 unsigned long tail_offset; 1355 unsigned long __reserved[0x30 / sizeof(unsigned long)]; 1356 }; 1357 #endif 1358 #define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00 1359 #define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08 1360 1361 /* The head offset is the offset of the most recently completed entry 1362 * in the trap-trace buffer. The tail offset is the offset of the 1363 * next entry to be written. The control structure is owned and 1364 * modified by the hypervisor. A guest may not modify the control 1365 * structure contents. Attempts to do so will result in undefined 1366 * behavior for the guest. 1367 * 1368 * Each trap trace buffer entry is laid out as follows: 1369 */ 1370 #ifndef __ASSEMBLY__ 1371 struct hv_trap_trace_entry { 1372 unsigned char type; /* Hypervisor or guest entry? */ 1373 unsigned char hpstate; /* Hyper-privileged state */ 1374 unsigned char tl; /* Trap level */ 1375 unsigned char gl; /* Global register level */ 1376 unsigned short tt; /* Trap type */ 1377 unsigned short tag; /* Extended trap identifier */ 1378 unsigned long tstate; /* Trap state */ 1379 unsigned long tick; /* Tick */ 1380 unsigned long tpc; /* Trap PC */ 1381 unsigned long f1; /* Entry specific */ 1382 unsigned long f2; /* Entry specific */ 1383 unsigned long f3; /* Entry specific */ 1384 unsigned long f4; /* Entry specific */ 1385 }; 1386 #endif 1387 #define HV_TRAP_TRACE_ENTRY_TYPE 0x00 1388 #define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01 1389 #define HV_TRAP_TRACE_ENTRY_TL 0x02 1390 #define HV_TRAP_TRACE_ENTRY_GL 0x03 1391 #define HV_TRAP_TRACE_ENTRY_TT 0x04 1392 #define HV_TRAP_TRACE_ENTRY_TAG 0x06 1393 #define HV_TRAP_TRACE_ENTRY_TSTATE 0x08 1394 #define HV_TRAP_TRACE_ENTRY_TICK 0x10 1395 #define HV_TRAP_TRACE_ENTRY_TPC 0x18 1396 #define HV_TRAP_TRACE_ENTRY_F1 0x20 1397 #define HV_TRAP_TRACE_ENTRY_F2 0x28 1398 #define HV_TRAP_TRACE_ENTRY_F3 0x30 1399 #define HV_TRAP_TRACE_ENTRY_F4 0x38 1400 1401 /* The type field is encoded as follows. */ 1402 #define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */ 1403 #define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */ 1404 #define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */ 1405 1406 /* ttrace_buf_conf() 1407 * TRAP: HV_FAST_TRAP 1408 * FUNCTION: HV_FAST_TTRACE_BUF_CONF 1409 * ARG0: real address 1410 * ARG1: number of entries 1411 * RET0: status 1412 * RET1: number of entries 1413 * ERRORS: ENORADDR Invalid real address 1414 * EINVAL Size is too small 1415 * EBADALIGN Real address not aligned on 64-byte boundary 1416 * 1417 * Requests hypervisor trap tracing and declares a virtual CPU's trap 1418 * trace buffer to the hypervisor. The real address supplies the real 1419 * base address of the trap trace queue and must be 64-byte aligned. 1420 * Specifying a value of 0 for the number of entries disables trap 1421 * tracing for the calling virtual CPU. The buffer allocated must be 1422 * sized for a power of two number of 64-byte trap trace entries plus 1423 * an initial 64-byte control structure. 1424 * 1425 * This may be invoked any number of times so that a virtual CPU may 1426 * relocate a trap trace buffer or create "snapshots" of information. 1427 * 1428 * If the real address is illegal or badly aligned, then trap tracing 1429 * is disabled and an error is returned. 1430 * 1431 * Upon failure with EINVAL, this service call returns in RET1 the 1432 * minimum number of buffer entries required. Upon other failures 1433 * RET1 is undefined. 1434 */ 1435 #define HV_FAST_TTRACE_BUF_CONF 0x90 1436 1437 /* ttrace_buf_info() 1438 * TRAP: HV_FAST_TRAP 1439 * FUNCTION: HV_FAST_TTRACE_BUF_INFO 1440 * RET0: status 1441 * RET1: real address 1442 * RET2: size 1443 * ERRORS: None defined. 1444 * 1445 * Returns the size and location of the previously declared trap-trace 1446 * buffer. In the event that no buffer was previously defined, or the 1447 * buffer is disabled, this call will return a size of zero bytes. 1448 */ 1449 #define HV_FAST_TTRACE_BUF_INFO 0x91 1450 1451 /* ttrace_enable() 1452 * TRAP: HV_FAST_TRAP 1453 * FUNCTION: HV_FAST_TTRACE_ENABLE 1454 * ARG0: enable 1455 * RET0: status 1456 * RET1: previous enable state 1457 * ERRORS: EINVAL No trap trace buffer currently defined 1458 * 1459 * Enable or disable trap tracing, and return the previous enabled 1460 * state in RET1. Future systems may define various flags for the 1461 * enable argument (ARG0), for the moment a guest should pass 1462 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all 1463 * tracing - which will ensure future compatibility. 1464 */ 1465 #define HV_FAST_TTRACE_ENABLE 0x92 1466 1467 /* ttrace_freeze() 1468 * TRAP: HV_FAST_TRAP 1469 * FUNCTION: HV_FAST_TTRACE_FREEZE 1470 * ARG0: freeze 1471 * RET0: status 1472 * RET1: previous freeze state 1473 * ERRORS: EINVAL No trap trace buffer currently defined 1474 * 1475 * Freeze or unfreeze trap tracing, returning the previous freeze 1476 * state in RET1. A guest should pass a non-zero value to freeze and 1477 * a zero value to unfreeze all tracing. The returned previous state 1478 * is 0 for not frozen and 1 for frozen. 1479 */ 1480 #define HV_FAST_TTRACE_FREEZE 0x93 1481 1482 /* ttrace_addentry() 1483 * TRAP: HV_TTRACE_ADDENTRY_TRAP 1484 * ARG0: tag (16-bits) 1485 * ARG1: data word 0 1486 * ARG2: data word 1 1487 * ARG3: data word 2 1488 * ARG4: data word 3 1489 * RET0: status 1490 * ERRORS: EINVAL No trap trace buffer currently defined 1491 * 1492 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0 1493 * is modified - none of the other registers holding arguments are 1494 * volatile across this hypervisor service. 1495 */ 1496 1497 /* Core dump services. 1498 * 1499 * Since the hypervisor viraulizes and thus obscures a lot of the 1500 * physical machine layout and state, traditional OS crash dumps can 1501 * be difficult to diagnose especially when the problem is a 1502 * configuration error of some sort. 1503 * 1504 * The dump services provide an opaque buffer into which the 1505 * hypervisor can place it's internal state in order to assist in 1506 * debugging such situations. The contents are opaque and extremely 1507 * platform and hypervisor implementation specific. The guest, during 1508 * a core dump, requests that the hypervisor update any information in 1509 * the dump buffer in preparation to being dumped as part of the 1510 * domain's memory image. 1511 */ 1512 1513 /* dump_buf_update() 1514 * TRAP: HV_FAST_TRAP 1515 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE 1516 * ARG0: real address 1517 * ARG1: size 1518 * RET0: status 1519 * RET1: required size of dump buffer 1520 * ERRORS: ENORADDR Invalid real address 1521 * EBADALIGN Real address is not aligned on a 64-byte 1522 * boundary 1523 * EINVAL Size is non-zero but less than minimum size 1524 * required 1525 * ENOTSUPPORTED Operation not supported on current logical 1526 * domain 1527 * 1528 * Declare a domain dump buffer to the hypervisor. The real address 1529 * provided for the domain dump buffer must be 64-byte aligned. The 1530 * size specifies the size of the dump buffer and may be larger than 1531 * the minimum size specified in the machine description. The 1532 * hypervisor will fill the dump buffer with opaque data. 1533 * 1534 * Note: A guest may elect to include dump buffer contents as part of a crash 1535 * dump to assist with debugging. This function may be called any number 1536 * of times so that a guest may relocate a dump buffer, or create 1537 * "snapshots" of any dump-buffer information. Each call to 1538 * dump_buf_update() atomically declares the new dump buffer to the 1539 * hypervisor. 1540 * 1541 * A specified size of 0 unconfigures the dump buffer. If the real 1542 * address is illegal or badly aligned, then any currently active dump 1543 * buffer is disabled and an error is returned. 1544 * 1545 * In the event that the call fails with EINVAL, RET1 contains the 1546 * minimum size requires by the hypervisor for a valid dump buffer. 1547 */ 1548 #define HV_FAST_DUMP_BUF_UPDATE 0x94 1549 1550 /* dump_buf_info() 1551 * TRAP: HV_FAST_TRAP 1552 * FUNCTION: HV_FAST_DUMP_BUF_INFO 1553 * RET0: status 1554 * RET1: real address of current dump buffer 1555 * RET2: size of current dump buffer 1556 * ERRORS: No errors defined. 1557 * 1558 * Return the currently configures dump buffer description. A 1559 * returned size of 0 bytes indicates an undefined dump buffer. In 1560 * this case the return address in RET1 is undefined. 1561 */ 1562 #define HV_FAST_DUMP_BUF_INFO 0x95 1563 1564 /* Device interrupt services. 1565 * 1566 * Device interrupts are allocated to system bus bridges by the hypervisor, 1567 * and described to OBP in the machine description. OBP then describes 1568 * these interrupts to the OS via properties in the device tree. 1569 * 1570 * Terminology: 1571 * 1572 * cpuid Unique opaque value which represents a target cpu. 1573 * 1574 * devhandle Device handle. It uniquely identifies a device, and 1575 * consistes of the lower 28-bits of the hi-cell of the 1576 * first entry of the device's "reg" property in the 1577 * OBP device tree. 1578 * 1579 * devino Device interrupt number. Specifies the relative 1580 * interrupt number within the device. The unique 1581 * combination of devhandle and devino are used to 1582 * identify a specific device interrupt. 1583 * 1584 * Note: The devino value is the same as the values in the 1585 * "interrupts" property or "interrupt-map" property 1586 * in the OBP device tree for that device. 1587 * 1588 * sysino System interrupt number. A 64-bit unsigned interger 1589 * representing a unique interrupt within a virtual 1590 * machine. 1591 * 1592 * intr_state A flag representing the interrupt state for a given 1593 * sysino. The state values are defined below. 1594 * 1595 * intr_enabled A flag representing the 'enabled' state for a given 1596 * sysino. The enable values are defined below. 1597 */ 1598 1599 #define HV_INTR_STATE_IDLE 0 /* Nothing pending */ 1600 #define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */ 1601 #define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */ 1602 1603 #define HV_INTR_DISABLED 0 /* sysino not enabled */ 1604 #define HV_INTR_ENABLED 1 /* sysino enabled */ 1605 1606 /* intr_devino_to_sysino() 1607 * TRAP: HV_FAST_TRAP 1608 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO 1609 * ARG0: devhandle 1610 * ARG1: devino 1611 * RET0: status 1612 * RET1: sysino 1613 * ERRORS: EINVAL Invalid devhandle/devino 1614 * 1615 * Converts a device specific interrupt number of the given 1616 * devhandle/devino into a system specific ino (sysino). 1617 */ 1618 #define HV_FAST_INTR_DEVINO2SYSINO 0xa0 1619 1620 #ifndef __ASSEMBLY__ 1621 unsigned long sun4v_devino_to_sysino(unsigned long devhandle, 1622 unsigned long devino); 1623 #endif 1624 1625 /* intr_getenabled() 1626 * TRAP: HV_FAST_TRAP 1627 * FUNCTION: HV_FAST_INTR_GETENABLED 1628 * ARG0: sysino 1629 * RET0: status 1630 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1631 * ERRORS: EINVAL Invalid sysino 1632 * 1633 * Returns interrupt enabled state in RET1 for the interrupt defined 1634 * by the given sysino. 1635 */ 1636 #define HV_FAST_INTR_GETENABLED 0xa1 1637 1638 #ifndef __ASSEMBLY__ 1639 unsigned long sun4v_intr_getenabled(unsigned long sysino); 1640 #endif 1641 1642 /* intr_setenabled() 1643 * TRAP: HV_FAST_TRAP 1644 * FUNCTION: HV_FAST_INTR_SETENABLED 1645 * ARG0: sysino 1646 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1647 * RET0: status 1648 * ERRORS: EINVAL Invalid sysino or intr_enabled value 1649 * 1650 * Set the 'enabled' state of the interrupt sysino. 1651 */ 1652 #define HV_FAST_INTR_SETENABLED 0xa2 1653 1654 #ifndef __ASSEMBLY__ 1655 unsigned long sun4v_intr_setenabled(unsigned long sysino, 1656 unsigned long intr_enabled); 1657 #endif 1658 1659 /* intr_getstate() 1660 * TRAP: HV_FAST_TRAP 1661 * FUNCTION: HV_FAST_INTR_GETSTATE 1662 * ARG0: sysino 1663 * RET0: status 1664 * RET1: intr_state (HV_INTR_STATE_*) 1665 * ERRORS: EINVAL Invalid sysino 1666 * 1667 * Returns current state of the interrupt defined by the given sysino. 1668 */ 1669 #define HV_FAST_INTR_GETSTATE 0xa3 1670 1671 #ifndef __ASSEMBLY__ 1672 unsigned long sun4v_intr_getstate(unsigned long sysino); 1673 #endif 1674 1675 /* intr_setstate() 1676 * TRAP: HV_FAST_TRAP 1677 * FUNCTION: HV_FAST_INTR_SETSTATE 1678 * ARG0: sysino 1679 * ARG1: intr_state (HV_INTR_STATE_*) 1680 * RET0: status 1681 * ERRORS: EINVAL Invalid sysino or intr_state value 1682 * 1683 * Sets the current state of the interrupt described by the given sysino 1684 * value. 1685 * 1686 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending 1687 * interrupt for sysino. 1688 */ 1689 #define HV_FAST_INTR_SETSTATE 0xa4 1690 1691 #ifndef __ASSEMBLY__ 1692 unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state); 1693 #endif 1694 1695 /* intr_gettarget() 1696 * TRAP: HV_FAST_TRAP 1697 * FUNCTION: HV_FAST_INTR_GETTARGET 1698 * ARG0: sysino 1699 * RET0: status 1700 * RET1: cpuid 1701 * ERRORS: EINVAL Invalid sysino 1702 * 1703 * Returns CPU that is the current target of the interrupt defined by 1704 * the given sysino. The CPU value returned is undefined if the target 1705 * has not been set via intr_settarget(). 1706 */ 1707 #define HV_FAST_INTR_GETTARGET 0xa5 1708 1709 #ifndef __ASSEMBLY__ 1710 unsigned long sun4v_intr_gettarget(unsigned long sysino); 1711 #endif 1712 1713 /* intr_settarget() 1714 * TRAP: HV_FAST_TRAP 1715 * FUNCTION: HV_FAST_INTR_SETTARGET 1716 * ARG0: sysino 1717 * ARG1: cpuid 1718 * RET0: status 1719 * ERRORS: EINVAL Invalid sysino 1720 * ENOCPU Invalid cpuid 1721 * 1722 * Set the target CPU for the interrupt defined by the given sysino. 1723 */ 1724 #define HV_FAST_INTR_SETTARGET 0xa6 1725 1726 #ifndef __ASSEMBLY__ 1727 unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid); 1728 #endif 1729 1730 /* vintr_get_cookie() 1731 * TRAP: HV_FAST_TRAP 1732 * FUNCTION: HV_FAST_VINTR_GET_COOKIE 1733 * ARG0: device handle 1734 * ARG1: device ino 1735 * RET0: status 1736 * RET1: cookie 1737 */ 1738 #define HV_FAST_VINTR_GET_COOKIE 0xa7 1739 1740 /* vintr_set_cookie() 1741 * TRAP: HV_FAST_TRAP 1742 * FUNCTION: HV_FAST_VINTR_SET_COOKIE 1743 * ARG0: device handle 1744 * ARG1: device ino 1745 * ARG2: cookie 1746 * RET0: status 1747 */ 1748 #define HV_FAST_VINTR_SET_COOKIE 0xa8 1749 1750 /* vintr_get_valid() 1751 * TRAP: HV_FAST_TRAP 1752 * FUNCTION: HV_FAST_VINTR_GET_VALID 1753 * ARG0: device handle 1754 * ARG1: device ino 1755 * RET0: status 1756 * RET1: valid state 1757 */ 1758 #define HV_FAST_VINTR_GET_VALID 0xa9 1759 1760 /* vintr_set_valid() 1761 * TRAP: HV_FAST_TRAP 1762 * FUNCTION: HV_FAST_VINTR_SET_VALID 1763 * ARG0: device handle 1764 * ARG1: device ino 1765 * ARG2: valid state 1766 * RET0: status 1767 */ 1768 #define HV_FAST_VINTR_SET_VALID 0xaa 1769 1770 /* vintr_get_state() 1771 * TRAP: HV_FAST_TRAP 1772 * FUNCTION: HV_FAST_VINTR_GET_STATE 1773 * ARG0: device handle 1774 * ARG1: device ino 1775 * RET0: status 1776 * RET1: state 1777 */ 1778 #define HV_FAST_VINTR_GET_STATE 0xab 1779 1780 /* vintr_set_state() 1781 * TRAP: HV_FAST_TRAP 1782 * FUNCTION: HV_FAST_VINTR_SET_STATE 1783 * ARG0: device handle 1784 * ARG1: device ino 1785 * ARG2: state 1786 * RET0: status 1787 */ 1788 #define HV_FAST_VINTR_SET_STATE 0xac 1789 1790 /* vintr_get_target() 1791 * TRAP: HV_FAST_TRAP 1792 * FUNCTION: HV_FAST_VINTR_GET_TARGET 1793 * ARG0: device handle 1794 * ARG1: device ino 1795 * RET0: status 1796 * RET1: cpuid 1797 */ 1798 #define HV_FAST_VINTR_GET_TARGET 0xad 1799 1800 /* vintr_set_target() 1801 * TRAP: HV_FAST_TRAP 1802 * FUNCTION: HV_FAST_VINTR_SET_TARGET 1803 * ARG0: device handle 1804 * ARG1: device ino 1805 * ARG2: cpuid 1806 * RET0: status 1807 */ 1808 #define HV_FAST_VINTR_SET_TARGET 0xae 1809 1810 #ifndef __ASSEMBLY__ 1811 unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle, 1812 unsigned long dev_ino, 1813 unsigned long *cookie); 1814 unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle, 1815 unsigned long dev_ino, 1816 unsigned long cookie); 1817 unsigned long sun4v_vintr_get_valid(unsigned long dev_handle, 1818 unsigned long dev_ino, 1819 unsigned long *valid); 1820 unsigned long sun4v_vintr_set_valid(unsigned long dev_handle, 1821 unsigned long dev_ino, 1822 unsigned long valid); 1823 unsigned long sun4v_vintr_get_state(unsigned long dev_handle, 1824 unsigned long dev_ino, 1825 unsigned long *state); 1826 unsigned long sun4v_vintr_set_state(unsigned long dev_handle, 1827 unsigned long dev_ino, 1828 unsigned long state); 1829 unsigned long sun4v_vintr_get_target(unsigned long dev_handle, 1830 unsigned long dev_ino, 1831 unsigned long *cpuid); 1832 unsigned long sun4v_vintr_set_target(unsigned long dev_handle, 1833 unsigned long dev_ino, 1834 unsigned long cpuid); 1835 #endif 1836 1837 /* PCI IO services. 1838 * 1839 * See the terminology descriptions in the device interrupt services 1840 * section above as those apply here too. Here are terminology 1841 * definitions specific to these PCI IO services: 1842 * 1843 * tsbnum TSB number. Indentifies which io-tsb is used. 1844 * For this version of the specification, tsbnum 1845 * must be zero. 1846 * 1847 * tsbindex TSB index. Identifies which entry in the TSB 1848 * is used. The first entry is zero. 1849 * 1850 * tsbid A 64-bit aligned data structure which contains 1851 * a tsbnum and a tsbindex. Bits 63:32 contain the 1852 * tsbnum and bits 31:00 contain the tsbindex. 1853 * 1854 * Use the HV_PCI_TSBID() macro to construct such 1855 * values. 1856 * 1857 * io_attributes IO attributes for IOMMU mappings. One of more 1858 * of the attritbute bits are stores in a 64-bit 1859 * value. The values are defined below. 1860 * 1861 * r_addr 64-bit real address 1862 * 1863 * pci_device PCI device address. A PCI device address identifies 1864 * a specific device on a specific PCI bus segment. 1865 * A PCI device address ia a 32-bit unsigned integer 1866 * with the following format: 1867 * 1868 * 00000000.bbbbbbbb.dddddfff.00000000 1869 * 1870 * Use the HV_PCI_DEVICE_BUILD() macro to construct 1871 * such values. 1872 * 1873 * pci_config_offset 1874 * PCI configureation space offset. For conventional 1875 * PCI a value between 0 and 255. For extended 1876 * configuration space, a value between 0 and 4095. 1877 * 1878 * Note: For PCI configuration space accesses, the offset 1879 * must be aligned to the access size. 1880 * 1881 * error_flag A return value which specifies if the action succeeded 1882 * or failed. 0 means no error, non-0 means some error 1883 * occurred while performing the service. 1884 * 1885 * io_sync_direction 1886 * Direction definition for pci_dma_sync(), defined 1887 * below in HV_PCI_SYNC_*. 1888 * 1889 * io_page_list A list of io_page_addresses, an io_page_address is 1890 * a real address. 1891 * 1892 * io_page_list_p A pointer to an io_page_list. 1893 * 1894 * "size based byte swap" - Some functions do size based byte swapping 1895 * which allows sw to access pointers and 1896 * counters in native form when the processor 1897 * operates in a different endianness than the 1898 * IO bus. Size-based byte swapping converts a 1899 * multi-byte field between big-endian and 1900 * little-endian format. 1901 */ 1902 1903 #define HV_PCI_MAP_ATTR_READ 0x01 1904 #define HV_PCI_MAP_ATTR_WRITE 0x02 1905 #define HV_PCI_MAP_ATTR_RELAXED_ORDER 0x04 1906 1907 #define HV_PCI_DEVICE_BUILD(b,d,f) \ 1908 ((((b) & 0xff) << 16) | \ 1909 (((d) & 0x1f) << 11) | \ 1910 (((f) & 0x07) << 8)) 1911 1912 #define HV_PCI_TSBID(__tsb_num, __tsb_index) \ 1913 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index))) 1914 1915 #define HV_PCI_SYNC_FOR_DEVICE 0x01 1916 #define HV_PCI_SYNC_FOR_CPU 0x02 1917 1918 /* pci_iommu_map() 1919 * TRAP: HV_FAST_TRAP 1920 * FUNCTION: HV_FAST_PCI_IOMMU_MAP 1921 * ARG0: devhandle 1922 * ARG1: tsbid 1923 * ARG2: #ttes 1924 * ARG3: io_attributes 1925 * ARG4: io_page_list_p 1926 * RET0: status 1927 * RET1: #ttes mapped 1928 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes 1929 * EBADALIGN Improperly aligned real address 1930 * ENORADDR Invalid real address 1931 * 1932 * Create IOMMU mappings in the sun4v device defined by the given 1933 * devhandle. The mappings are created in the TSB defined by the 1934 * tsbnum component of the given tsbid. The first mapping is created 1935 * in the TSB i ndex defined by the tsbindex component of the given tsbid. 1936 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex, 1937 * the second at tsbnum, tsbindex + 1, etc. 1938 * 1939 * All mappings are created with the attributes defined by the io_attributes 1940 * argument. The page mapping addresses are described in the io_page_list 1941 * defined by the given io_page_list_p, which is a pointer to the io_page_list. 1942 * The first entry in the io_page_list is the address for the first iotte, the 1943 * 2nd for the 2nd iotte, and so on. 1944 * 1945 * Each io_page_address in the io_page_list must be appropriately aligned. 1946 * #ttes must be greater than zero. For this version of the spec, the tsbnum 1947 * component of the given tsbid must be zero. 1948 * 1949 * Returns the actual number of mappings creates, which may be less than 1950 * or equal to the argument #ttes. If the function returns a value which 1951 * is less than the #ttes, the caller may continus to call the function with 1952 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are 1953 * mapped. 1954 * 1955 * Note: This function does not imply an iotte cache flush. The guest must 1956 * demap an entry before re-mapping it. 1957 */ 1958 #define HV_FAST_PCI_IOMMU_MAP 0xb0 1959 1960 /* pci_iommu_demap() 1961 * TRAP: HV_FAST_TRAP 1962 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP 1963 * ARG0: devhandle 1964 * ARG1: tsbid 1965 * ARG2: #ttes 1966 * RET0: status 1967 * RET1: #ttes demapped 1968 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1969 * 1970 * Demap and flush IOMMU mappings in the device defined by the given 1971 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum 1972 * component of the given tsbid, starting at the TSB index defined by the 1973 * tsbindex component of the given tsbid. 1974 * 1975 * For this version of the spec, the tsbnum of the given tsbid must be zero. 1976 * #ttes must be greater than zero. 1977 * 1978 * Returns the actual number of ttes demapped, which may be less than or equal 1979 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller 1980 * may continue to call this function with updated tsbid and #ttes arguments 1981 * until all pages are demapped. 1982 * 1983 * Note: Entries do not have to be mapped to be demapped. A demap of an 1984 * unmapped page will flush the entry from the tte cache. 1985 */ 1986 #define HV_FAST_PCI_IOMMU_DEMAP 0xb1 1987 1988 /* pci_iommu_getmap() 1989 * TRAP: HV_FAST_TRAP 1990 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP 1991 * ARG0: devhandle 1992 * ARG1: tsbid 1993 * RET0: status 1994 * RET1: io_attributes 1995 * RET2: real address 1996 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1997 * ENOMAP Mapping is not valid, no translation exists 1998 * 1999 * Read and return the mapping in the device described by the given devhandle 2000 * and tsbid. If successful, the io_attributes shall be returned in RET1 2001 * and the page address of the mapping shall be returned in RET2. 2002 * 2003 * For this version of the spec, the tsbnum component of the given tsbid 2004 * must be zero. 2005 */ 2006 #define HV_FAST_PCI_IOMMU_GETMAP 0xb2 2007 2008 /* pci_iommu_getbypass() 2009 * TRAP: HV_FAST_TRAP 2010 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS 2011 * ARG0: devhandle 2012 * ARG1: real address 2013 * ARG2: io_attributes 2014 * RET0: status 2015 * RET1: io_addr 2016 * ERRORS: EINVAL Invalid devhandle/io_attributes 2017 * ENORADDR Invalid real address 2018 * ENOTSUPPORTED Function not supported in this implementation. 2019 * 2020 * Create a "special" mapping in the device described by the given devhandle, 2021 * for the given real address and attributes. Return the IO address in RET1 2022 * if successful. 2023 */ 2024 #define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3 2025 2026 /* pci_config_get() 2027 * TRAP: HV_FAST_TRAP 2028 * FUNCTION: HV_FAST_PCI_CONFIG_GET 2029 * ARG0: devhandle 2030 * ARG1: pci_device 2031 * ARG2: pci_config_offset 2032 * ARG3: size 2033 * RET0: status 2034 * RET1: error_flag 2035 * RET2: data 2036 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 2037 * EBADALIGN pci_config_offset not size aligned 2038 * ENOACCESS Access to this offset is not permitted 2039 * 2040 * Read PCI configuration space for the adapter described by the given 2041 * devhandle. Read size (1, 2, or 4) bytes of data from the given 2042 * pci_device, at pci_config_offset from the beginning of the device's 2043 * configuration space. If there was no error, RET1 is set to zero and 2044 * RET2 is set to the data read. Insignificant bits in RET2 are not 2045 * guaranteed to have any specific value and therefore must be ignored. 2046 * 2047 * The data returned in RET2 is size based byte swapped. 2048 * 2049 * If an error occurs during the read, set RET1 to a non-zero value. The 2050 * given pci_config_offset must be 'size' aligned. 2051 */ 2052 #define HV_FAST_PCI_CONFIG_GET 0xb4 2053 2054 /* pci_config_put() 2055 * TRAP: HV_FAST_TRAP 2056 * FUNCTION: HV_FAST_PCI_CONFIG_PUT 2057 * ARG0: devhandle 2058 * ARG1: pci_device 2059 * ARG2: pci_config_offset 2060 * ARG3: size 2061 * ARG4: data 2062 * RET0: status 2063 * RET1: error_flag 2064 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 2065 * EBADALIGN pci_config_offset not size aligned 2066 * ENOACCESS Access to this offset is not permitted 2067 * 2068 * Write PCI configuration space for the adapter described by the given 2069 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation, 2070 * at pci_config_offset from the beginning of the device's configuration 2071 * space. The data argument contains the data to be written to configuration 2072 * space. Prior to writing, the data is size based byte swapped. 2073 * 2074 * If an error occurs during the write access, do not generate an error 2075 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero. 2076 * The given pci_config_offset must be 'size' aligned. 2077 * 2078 * This function is permitted to read from offset zero in the configuration 2079 * space described by the given pci_device if necessary to ensure that the 2080 * write access to config space completes. 2081 */ 2082 #define HV_FAST_PCI_CONFIG_PUT 0xb5 2083 2084 /* pci_peek() 2085 * TRAP: HV_FAST_TRAP 2086 * FUNCTION: HV_FAST_PCI_PEEK 2087 * ARG0: devhandle 2088 * ARG1: real address 2089 * ARG2: size 2090 * RET0: status 2091 * RET1: error_flag 2092 * RET2: data 2093 * ERRORS: EINVAL Invalid devhandle or size 2094 * EBADALIGN Improperly aligned real address 2095 * ENORADDR Bad real address 2096 * ENOACCESS Guest access prohibited 2097 * 2098 * Attempt to read the IO address given by the given devhandle, real address, 2099 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single 2100 * access operation using the given size. If an error occurs when reading 2101 * from the given location, do not generate an error report, but return a 2102 * non-zero value in RET1. If the read was successful, return zero in RET1 2103 * and return the actual data read in RET2. The data returned is size based 2104 * byte swapped. 2105 * 2106 * Non-significant bits in RET2 are not guaranteed to have any specific value 2107 * and therefore must be ignored. If RET1 is returned as non-zero, the data 2108 * value is not guaranteed to have any specific value and should be ignored. 2109 * 2110 * The caller must have permission to read from the given devhandle, real 2111 * address, which must be an IO address. The argument real address must be a 2112 * size aligned address. 2113 * 2114 * The hypervisor implementation of this function must block access to any 2115 * IO address that the guest does not have explicit permission to access. 2116 */ 2117 #define HV_FAST_PCI_PEEK 0xb6 2118 2119 /* pci_poke() 2120 * TRAP: HV_FAST_TRAP 2121 * FUNCTION: HV_FAST_PCI_POKE 2122 * ARG0: devhandle 2123 * ARG1: real address 2124 * ARG2: size 2125 * ARG3: data 2126 * ARG4: pci_device 2127 * RET0: status 2128 * RET1: error_flag 2129 * ERRORS: EINVAL Invalid devhandle, size, or pci_device 2130 * EBADALIGN Improperly aligned real address 2131 * ENORADDR Bad real address 2132 * ENOACCESS Guest access prohibited 2133 * ENOTSUPPORTED Function is not supported by implementation 2134 * 2135 * Attempt to write data to the IO address given by the given devhandle, 2136 * real address, and size. Size must be 1, 2, 4, or 8. The write is 2137 * performed as a single access operation using the given size. Prior to 2138 * writing the data is size based swapped. 2139 * 2140 * If an error occurs when writing to the given location, do not generate an 2141 * error report, but return a non-zero value in RET1. If the write was 2142 * successful, return zero in RET1. 2143 * 2144 * pci_device describes the configuration address of the device being 2145 * written to. The implementation may safely read from offset 0 with 2146 * the configuration space of the device described by devhandle and 2147 * pci_device in order to guarantee that the write portion of the operation 2148 * completes 2149 * 2150 * Any error that occurs due to the read shall be reported using the normal 2151 * error reporting mechanisms .. the read error is not suppressed. 2152 * 2153 * The caller must have permission to write to the given devhandle, real 2154 * address, which must be an IO address. The argument real address must be a 2155 * size aligned address. The caller must have permission to read from 2156 * the given devhandle, pci_device cofiguration space offset 0. 2157 * 2158 * The hypervisor implementation of this function must block access to any 2159 * IO address that the guest does not have explicit permission to access. 2160 */ 2161 #define HV_FAST_PCI_POKE 0xb7 2162 2163 /* pci_dma_sync() 2164 * TRAP: HV_FAST_TRAP 2165 * FUNCTION: HV_FAST_PCI_DMA_SYNC 2166 * ARG0: devhandle 2167 * ARG1: real address 2168 * ARG2: size 2169 * ARG3: io_sync_direction 2170 * RET0: status 2171 * RET1: #synced 2172 * ERRORS: EINVAL Invalid devhandle or io_sync_direction 2173 * ENORADDR Bad real address 2174 * 2175 * Synchronize a memory region described by the given real address and size, 2176 * for the device defined by the given devhandle using the direction(s) 2177 * defined by the given io_sync_direction. The argument size is the size of 2178 * the memory region in bytes. 2179 * 2180 * Return the actual number of bytes synchronized in the return value #synced, 2181 * which may be less than or equal to the argument size. If the return 2182 * value #synced is less than size, the caller must continue to call this 2183 * function with updated real address and size arguments until the entire 2184 * memory region is synchronized. 2185 */ 2186 #define HV_FAST_PCI_DMA_SYNC 0xb8 2187 2188 /* PCI MSI services. */ 2189 2190 #define HV_MSITYPE_MSI32 0x00 2191 #define HV_MSITYPE_MSI64 0x01 2192 2193 #define HV_MSIQSTATE_IDLE 0x00 2194 #define HV_MSIQSTATE_ERROR 0x01 2195 2196 #define HV_MSIQ_INVALID 0x00 2197 #define HV_MSIQ_VALID 0x01 2198 2199 #define HV_MSISTATE_IDLE 0x00 2200 #define HV_MSISTATE_DELIVERED 0x01 2201 2202 #define HV_MSIVALID_INVALID 0x00 2203 #define HV_MSIVALID_VALID 0x01 2204 2205 #define HV_PCIE_MSGTYPE_PME_MSG 0x18 2206 #define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b 2207 #define HV_PCIE_MSGTYPE_CORR_MSG 0x30 2208 #define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31 2209 #define HV_PCIE_MSGTYPE_FATAL_MSG 0x33 2210 2211 #define HV_MSG_INVALID 0x00 2212 #define HV_MSG_VALID 0x01 2213 2214 /* pci_msiq_conf() 2215 * TRAP: HV_FAST_TRAP 2216 * FUNCTION: HV_FAST_PCI_MSIQ_CONF 2217 * ARG0: devhandle 2218 * ARG1: msiqid 2219 * ARG2: real address 2220 * ARG3: number of entries 2221 * RET0: status 2222 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries 2223 * EBADALIGN Improperly aligned real address 2224 * ENORADDR Bad real address 2225 * 2226 * Configure the MSI queue given by the devhandle and msiqid arguments, 2227 * and to be placed at the given real address and be of the given 2228 * number of entries. The real address must be aligned exactly to match 2229 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry 2230 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ 2231 * Head and Tail are initialized so that the MSI-EQ is 'empty'. 2232 * 2233 * Implementation Note: Certain implementations have fixed sized queues. In 2234 * that case, number of entries must contain the correct 2235 * value. 2236 */ 2237 #define HV_FAST_PCI_MSIQ_CONF 0xc0 2238 2239 /* pci_msiq_info() 2240 * TRAP: HV_FAST_TRAP 2241 * FUNCTION: HV_FAST_PCI_MSIQ_INFO 2242 * ARG0: devhandle 2243 * ARG1: msiqid 2244 * RET0: status 2245 * RET1: real address 2246 * RET2: number of entries 2247 * ERRORS: EINVAL Invalid devhandle or msiqid 2248 * 2249 * Return the configuration information for the MSI queue described 2250 * by the given devhandle and msiqid. The base address of the queue 2251 * is returned in ARG1 and the number of entries is returned in ARG2. 2252 * If the queue is unconfigured, the real address is undefined and the 2253 * number of entries will be returned as zero. 2254 */ 2255 #define HV_FAST_PCI_MSIQ_INFO 0xc1 2256 2257 /* pci_msiq_getvalid() 2258 * TRAP: HV_FAST_TRAP 2259 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2260 * ARG0: devhandle 2261 * ARG1: msiqid 2262 * RET0: status 2263 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2264 * ERRORS: EINVAL Invalid devhandle or msiqid 2265 * 2266 * Get the valid state of the MSI-EQ described by the given devhandle and 2267 * msiqid. 2268 */ 2269 #define HV_FAST_PCI_MSIQ_GETVALID 0xc2 2270 2271 /* pci_msiq_setvalid() 2272 * TRAP: HV_FAST_TRAP 2273 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID 2274 * ARG0: devhandle 2275 * ARG1: msiqid 2276 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2277 * RET0: status 2278 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid 2279 * value or MSI EQ is uninitialized 2280 * 2281 * Set the valid state of the MSI-EQ described by the given devhandle and 2282 * msiqid to the given msiqvalid. 2283 */ 2284 #define HV_FAST_PCI_MSIQ_SETVALID 0xc3 2285 2286 /* pci_msiq_getstate() 2287 * TRAP: HV_FAST_TRAP 2288 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE 2289 * ARG0: devhandle 2290 * ARG1: msiqid 2291 * RET0: status 2292 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2293 * ERRORS: EINVAL Invalid devhandle or msiqid 2294 * 2295 * Get the state of the MSI-EQ described by the given devhandle and 2296 * msiqid. 2297 */ 2298 #define HV_FAST_PCI_MSIQ_GETSTATE 0xc4 2299 2300 /* pci_msiq_getvalid() 2301 * TRAP: HV_FAST_TRAP 2302 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2303 * ARG0: devhandle 2304 * ARG1: msiqid 2305 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2306 * RET0: status 2307 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate 2308 * value or MSI EQ is uninitialized 2309 * 2310 * Set the state of the MSI-EQ described by the given devhandle and 2311 * msiqid to the given msiqvalid. 2312 */ 2313 #define HV_FAST_PCI_MSIQ_SETSTATE 0xc5 2314 2315 /* pci_msiq_gethead() 2316 * TRAP: HV_FAST_TRAP 2317 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD 2318 * ARG0: devhandle 2319 * ARG1: msiqid 2320 * RET0: status 2321 * RET1: msiqhead 2322 * ERRORS: EINVAL Invalid devhandle or msiqid 2323 * 2324 * Get the current MSI EQ queue head for the MSI-EQ described by the 2325 * given devhandle and msiqid. 2326 */ 2327 #define HV_FAST_PCI_MSIQ_GETHEAD 0xc6 2328 2329 /* pci_msiq_sethead() 2330 * TRAP: HV_FAST_TRAP 2331 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD 2332 * ARG0: devhandle 2333 * ARG1: msiqid 2334 * ARG2: msiqhead 2335 * RET0: status 2336 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead, 2337 * or MSI EQ is uninitialized 2338 * 2339 * Set the current MSI EQ queue head for the MSI-EQ described by the 2340 * given devhandle and msiqid. 2341 */ 2342 #define HV_FAST_PCI_MSIQ_SETHEAD 0xc7 2343 2344 /* pci_msiq_gettail() 2345 * TRAP: HV_FAST_TRAP 2346 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL 2347 * ARG0: devhandle 2348 * ARG1: msiqid 2349 * RET0: status 2350 * RET1: msiqtail 2351 * ERRORS: EINVAL Invalid devhandle or msiqid 2352 * 2353 * Get the current MSI EQ queue tail for the MSI-EQ described by the 2354 * given devhandle and msiqid. 2355 */ 2356 #define HV_FAST_PCI_MSIQ_GETTAIL 0xc8 2357 2358 /* pci_msi_getvalid() 2359 * TRAP: HV_FAST_TRAP 2360 * FUNCTION: HV_FAST_PCI_MSI_GETVALID 2361 * ARG0: devhandle 2362 * ARG1: msinum 2363 * RET0: status 2364 * RET1: msivalidstate 2365 * ERRORS: EINVAL Invalid devhandle or msinum 2366 * 2367 * Get the current valid/enabled state for the MSI defined by the 2368 * given devhandle and msinum. 2369 */ 2370 #define HV_FAST_PCI_MSI_GETVALID 0xc9 2371 2372 /* pci_msi_setvalid() 2373 * TRAP: HV_FAST_TRAP 2374 * FUNCTION: HV_FAST_PCI_MSI_SETVALID 2375 * ARG0: devhandle 2376 * ARG1: msinum 2377 * ARG2: msivalidstate 2378 * RET0: status 2379 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate 2380 * 2381 * Set the current valid/enabled state for the MSI defined by the 2382 * given devhandle and msinum. 2383 */ 2384 #define HV_FAST_PCI_MSI_SETVALID 0xca 2385 2386 /* pci_msi_getmsiq() 2387 * TRAP: HV_FAST_TRAP 2388 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ 2389 * ARG0: devhandle 2390 * ARG1: msinum 2391 * RET0: status 2392 * RET1: msiqid 2393 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound 2394 * 2395 * Get the MSI EQ that the MSI defined by the given devhandle and 2396 * msinum is bound to. 2397 */ 2398 #define HV_FAST_PCI_MSI_GETMSIQ 0xcb 2399 2400 /* pci_msi_setmsiq() 2401 * TRAP: HV_FAST_TRAP 2402 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ 2403 * ARG0: devhandle 2404 * ARG1: msinum 2405 * ARG2: msitype 2406 * ARG3: msiqid 2407 * RET0: status 2408 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid 2409 * 2410 * Set the MSI EQ that the MSI defined by the given devhandle and 2411 * msinum is bound to. 2412 */ 2413 #define HV_FAST_PCI_MSI_SETMSIQ 0xcc 2414 2415 /* pci_msi_getstate() 2416 * TRAP: HV_FAST_TRAP 2417 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE 2418 * ARG0: devhandle 2419 * ARG1: msinum 2420 * RET0: status 2421 * RET1: msistate 2422 * ERRORS: EINVAL Invalid devhandle or msinum 2423 * 2424 * Get the state of the MSI defined by the given devhandle and msinum. 2425 * If not initialized, return HV_MSISTATE_IDLE. 2426 */ 2427 #define HV_FAST_PCI_MSI_GETSTATE 0xcd 2428 2429 /* pci_msi_setstate() 2430 * TRAP: HV_FAST_TRAP 2431 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE 2432 * ARG0: devhandle 2433 * ARG1: msinum 2434 * ARG2: msistate 2435 * RET0: status 2436 * ERRORS: EINVAL Invalid devhandle or msinum or msistate 2437 * 2438 * Set the state of the MSI defined by the given devhandle and msinum. 2439 */ 2440 #define HV_FAST_PCI_MSI_SETSTATE 0xce 2441 2442 /* pci_msg_getmsiq() 2443 * TRAP: HV_FAST_TRAP 2444 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ 2445 * ARG0: devhandle 2446 * ARG1: msgtype 2447 * RET0: status 2448 * RET1: msiqid 2449 * ERRORS: EINVAL Invalid devhandle or msgtype 2450 * 2451 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype. 2452 */ 2453 #define HV_FAST_PCI_MSG_GETMSIQ 0xd0 2454 2455 /* pci_msg_setmsiq() 2456 * TRAP: HV_FAST_TRAP 2457 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ 2458 * ARG0: devhandle 2459 * ARG1: msgtype 2460 * ARG2: msiqid 2461 * RET0: status 2462 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid 2463 * 2464 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype. 2465 */ 2466 #define HV_FAST_PCI_MSG_SETMSIQ 0xd1 2467 2468 /* pci_msg_getvalid() 2469 * TRAP: HV_FAST_TRAP 2470 * FUNCTION: HV_FAST_PCI_MSG_GETVALID 2471 * ARG0: devhandle 2472 * ARG1: msgtype 2473 * RET0: status 2474 * RET1: msgvalidstate 2475 * ERRORS: EINVAL Invalid devhandle or msgtype 2476 * 2477 * Get the valid/enabled state of the MSG defined by the given 2478 * devhandle and msgtype. 2479 */ 2480 #define HV_FAST_PCI_MSG_GETVALID 0xd2 2481 2482 /* pci_msg_setvalid() 2483 * TRAP: HV_FAST_TRAP 2484 * FUNCTION: HV_FAST_PCI_MSG_SETVALID 2485 * ARG0: devhandle 2486 * ARG1: msgtype 2487 * ARG2: msgvalidstate 2488 * RET0: status 2489 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate 2490 * 2491 * Set the valid/enabled state of the MSG defined by the given 2492 * devhandle and msgtype. 2493 */ 2494 #define HV_FAST_PCI_MSG_SETVALID 0xd3 2495 2496 /* PCI IOMMU v2 definitions and services 2497 * 2498 * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO 2499 * definitions and services. 2500 * 2501 * CTE Clump Table Entry. First level table entry in the ATU. 2502 * 2503 * pci_device_list 2504 * A 32-bit aligned list of pci_devices. 2505 * 2506 * pci_device_listp 2507 * real address of a pci_device_list. 32-bit aligned. 2508 * 2509 * iotte IOMMU translation table entry. 2510 * 2511 * iotte_attributes 2512 * IO Attributes for IOMMU v2 mappings. In addition to 2513 * read, write IOMMU v2 supports relax ordering 2514 * 2515 * io_page_list A 64-bit aligned list of real addresses. Each real 2516 * address in an io_page_list must be properly aligned 2517 * to the pagesize of the given IOTSB. 2518 * 2519 * io_page_list_p Real address of an io_page_list, 64-bit aligned. 2520 * 2521 * IOTSB IO Translation Storage Buffer. An aligned table of 2522 * IOTTEs. Each IOTSB has a pagesize, table size, and 2523 * virtual address associated with it that must match 2524 * a pagesize and table size supported by the un-derlying 2525 * hardware implementation. The alignment requirements 2526 * for an IOTSB depend on the pagesize used for that IOTSB. 2527 * Each IOTTE in an IOTSB maps one pagesize-sized page. 2528 * The size of the IOTSB dictates how large of a virtual 2529 * address space the IOTSB is capable of mapping. 2530 * 2531 * iotsb_handle An opaque identifier for an IOTSB. A devhandle plus 2532 * iotsb_handle represents a binding of an IOTSB to a 2533 * PCI root complex. 2534 * 2535 * iotsb_index Zero-based IOTTE number within an IOTSB. 2536 */ 2537 2538 /* The index_count argument consists of two fields: 2539 * bits 63:48 #iottes and bits 47:0 iotsb_index 2540 */ 2541 #define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \ 2542 (((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index))) 2543 2544 /* pci_iotsb_conf() 2545 * TRAP: HV_FAST_TRAP 2546 * FUNCTION: HV_FAST_PCI_IOTSB_CONF 2547 * ARG0: devhandle 2548 * ARG1: r_addr 2549 * ARG2: size 2550 * ARG3: pagesize 2551 * ARG4: iova 2552 * RET0: status 2553 * RET1: iotsb_handle 2554 * ERRORS: EINVAL Invalid devhandle, size, iova, or pagesize 2555 * EBADALIGN r_addr is not properly aligned 2556 * ENORADDR r_addr is not a valid real address 2557 * ETOOMANY No further IOTSBs may be configured 2558 * EBUSY Duplicate devhandle, raddir, iova combination 2559 * 2560 * Create an IOTSB suitable for the PCI root complex identified by devhandle, 2561 * for the DMA virtual address defined by the argument iova. 2562 * 2563 * r_addr is the properly aligned base address of the IOTSB and size is the 2564 * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to 2565 * being configured. If it contains any values other than zeros then the 2566 * behavior is undefined. 2567 * 2568 * pagesize is the size of each page in the IOTSB. Note that the combination of 2569 * size (table size) and pagesize must be valid. 2570 * 2571 * virt is the DMA virtual address this IOTSB will map. 2572 * 2573 * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1. 2574 * Once configured, privileged access to the IOTSB memory is prohibited and 2575 * creates undefined behavior. The only permitted access is indirect via these 2576 * services. 2577 */ 2578 #define HV_FAST_PCI_IOTSB_CONF 0x190 2579 2580 /* pci_iotsb_info() 2581 * TRAP: HV_FAST_TRAP 2582 * FUNCTION: HV_FAST_PCI_IOTSB_INFO 2583 * ARG0: devhandle 2584 * ARG1: iotsb_handle 2585 * RET0: status 2586 * RET1: r_addr 2587 * RET2: size 2588 * RET3: pagesize 2589 * RET4: iova 2590 * RET5: #bound 2591 * ERRORS: EINVAL Invalid devhandle or iotsb_handle 2592 * 2593 * This service returns configuration information about an IOTSB previously 2594 * created with pci_iotsb_conf. 2595 * 2596 * iotsb_handle value 0 may be used with this service to inquire about the 2597 * legacy IOTSB that may or may not exist. If the service succeeds, the return 2598 * values describe the legacy IOTSB and I/O virtual addresses mapped by that 2599 * table. However, the table base address r_addr may contain the value -1 which 2600 * indicates a memory range that cannot be accessed or be reclaimed. 2601 * 2602 * The return value #bound contains the number of PCI devices that iotsb_handle 2603 * is currently bound to. 2604 */ 2605 #define HV_FAST_PCI_IOTSB_INFO 0x191 2606 2607 /* pci_iotsb_unconf() 2608 * TRAP: HV_FAST_TRAP 2609 * FUNCTION: HV_FAST_PCI_IOTSB_UNCONF 2610 * ARG0: devhandle 2611 * ARG1: iotsb_handle 2612 * RET0: status 2613 * ERRORS: EINVAL Invalid devhandle or iotsb_handle 2614 * EBUSY The IOTSB is bound and may not be unconfigured 2615 * 2616 * This service unconfigures the IOTSB identified by the devhandle and 2617 * iotsb_handle arguments, previously created with pci_iotsb_conf. 2618 * The IOTSB must not be currently bound to any device or the service will fail 2619 * 2620 * If the call succeeds, iotsb_handle is no longer valid. 2621 */ 2622 #define HV_FAST_PCI_IOTSB_UNCONF 0x192 2623 2624 /* pci_iotsb_bind() 2625 * TRAP: HV_FAST_TRAP 2626 * FUNCTION: HV_FAST_PCI_IOTSB_BIND 2627 * ARG0: devhandle 2628 * ARG1: iotsb_handle 2629 * ARG2: pci_device 2630 * RET0: status 2631 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device 2632 * EBUSY A PCI function is already bound to an IOTSB at the same 2633 * address range as specified by devhandle, iotsb_handle. 2634 * 2635 * This service binds the PCI function specified by the argument pci_device to 2636 * the IOTSB specified by the arguments devhandle and iotsb_handle. 2637 * 2638 * The PCI device function is bound to the specified IOTSB with the IOVA range 2639 * specified when the IOTSB was configured via pci_iotsb_conf. If the function 2640 * is already bound then it is unbound first. 2641 */ 2642 #define HV_FAST_PCI_IOTSB_BIND 0x193 2643 2644 /* pci_iotsb_unbind() 2645 * TRAP: HV_FAST_TRAP 2646 * FUNCTION: HV_FAST_PCI_IOTSB_UNBIND 2647 * ARG0: devhandle 2648 * ARG1: iotsb_handle 2649 * ARG2: pci_device 2650 * RET0: status 2651 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device 2652 * ENOMAP The PCI function was not bound to the specified IOTSB 2653 * 2654 * This service unbinds the PCI device specified by the argument pci_device 2655 * from the IOTSB identified * by the arguments devhandle and iotsb_handle. 2656 * 2657 * If the PCI device is not bound to the specified IOTSB then this service will 2658 * fail with status ENOMAP 2659 */ 2660 #define HV_FAST_PCI_IOTSB_UNBIND 0x194 2661 2662 /* pci_iotsb_get_binding() 2663 * TRAP: HV_FAST_TRAP 2664 * FUNCTION: HV_FAST_PCI_IOTSB_GET_BINDING 2665 * ARG0: devhandle 2666 * ARG1: iotsb_handle 2667 * ARG2: iova 2668 * RET0: status 2669 * RET1: iotsb_handle 2670 * ERRORS: EINVAL Invalid devhandle, pci_device, or iova 2671 * ENOMAP The PCI function is not bound to an IOTSB at iova 2672 * 2673 * This service returns the IOTSB binding, iotsb_handle, for a given pci_device 2674 * and DMA virtual address, iova. 2675 * 2676 * iova must be the base address of a DMA virtual address range as defined by 2677 * the iommu-address-ranges property in the root complex device node defined 2678 * by the argument devhandle. 2679 */ 2680 #define HV_FAST_PCI_IOTSB_GET_BINDING 0x195 2681 2682 /* pci_iotsb_map() 2683 * TRAP: HV_FAST_TRAP 2684 * FUNCTION: HV_FAST_PCI_IOTSB_MAP 2685 * ARG0: devhandle 2686 * ARG1: iotsb_handle 2687 * ARG2: index_count 2688 * ARG3: iotte_attributes 2689 * ARG4: io_page_list_p 2690 * RET0: status 2691 * RET1: #mapped 2692 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, #iottes, 2693 * iotsb_index or iotte_attributes 2694 * EBADALIGN Improperly aligned io_page_list_p or I/O page 2695 * address in the I/O page list. 2696 * ENORADDR Invalid io_page_list_p or I/O page address in 2697 * the I/O page list. 2698 * 2699 * This service creates and flushes mappings in the IOTSB defined by the 2700 * arguments devhandle, iotsb. 2701 * 2702 * The index_count argument consists of two fields. Bits 63:48 contain #iotte 2703 * and bits 47:0 contain iotsb_index 2704 * 2705 * The first mapping is created in the IOTSB index specified by iotsb_index. 2706 * Subsequent mappings are created at iotsb_index+1 and so on. 2707 * 2708 * The attributes of each mapping are defined by the argument iotte_attributes. 2709 * 2710 * The io_page_list_p specifies the real address of the 64-bit-aligned list of 2711 * #iottes I/O page addresses. Each page address must be a properly aligned 2712 * real address of a page to be mapped in the IOTSB. The first entry in the I/O 2713 * page list contains the real address of the first page, the 2nd entry for the 2714 * 2nd page, and so on. 2715 * 2716 * #iottes must be greater than zero. 2717 * 2718 * The return value #mapped is the actual number of mappings created, which may 2719 * be less than or equal to the argument #iottes. If the function returns 2720 * successfully with a #mapped value less than the requested #iottes then the 2721 * caller should continue to invoke the service with updated iotsb_index, 2722 * #iottes, and io_page_list_p arguments until all pages are mapped. 2723 * 2724 * This service must not be used to demap a mapping. In other words, all 2725 * mappings must be valid and have one or both of the RW attribute bits set. 2726 * 2727 * Note: 2728 * It is implementation-defined whether I/O page real address validity checking 2729 * is done at time mappings are established or deferred until they are 2730 * accessed. 2731 */ 2732 #define HV_FAST_PCI_IOTSB_MAP 0x196 2733 2734 /* pci_iotsb_map_one() 2735 * TRAP: HV_FAST_TRAP 2736 * FUNCTION: HV_FAST_PCI_IOTSB_MAP_ONE 2737 * ARG0: devhandle 2738 * ARG1: iotsb_handle 2739 * ARG2: iotsb_index 2740 * ARG3: iotte_attributes 2741 * ARG4: r_addr 2742 * RET0: status 2743 * ERRORS: EINVAL Invalid devhandle,iotsb_handle, iotsb_index 2744 * or iotte_attributes 2745 * EBADALIGN Improperly aligned r_addr 2746 * ENORADDR Invalid r_addr 2747 * 2748 * This service creates and flushes a single mapping in the IOTSB defined by the 2749 * arguments devhandle, iotsb. 2750 * 2751 * The mapping for the page at r_addr is created at the IOTSB index specified by 2752 * iotsb_index with the attributes iotte_attributes. 2753 * 2754 * This service must not be used to demap a mapping. In other words, the mapping 2755 * must be valid and have one or both of the RW attribute bits set. 2756 * 2757 * Note: 2758 * It is implementation-defined whether I/O page real address validity checking 2759 * is done at time mappings are established or deferred until they are 2760 * accessed. 2761 */ 2762 #define HV_FAST_PCI_IOTSB_MAP_ONE 0x197 2763 2764 /* pci_iotsb_demap() 2765 * TRAP: HV_FAST_TRAP 2766 * FUNCTION: HV_FAST_PCI_IOTSB_DEMAP 2767 * ARG0: devhandle 2768 * ARG1: iotsb_handle 2769 * ARG2: iotsb_index 2770 * ARG3: #iottes 2771 * RET0: status 2772 * RET1: #unmapped 2773 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index or #iottes 2774 * 2775 * This service unmaps and flushes up to #iottes mappings starting at index 2776 * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb. 2777 * 2778 * #iottes must be greater than zero. 2779 * 2780 * The actual number of IOTTEs unmapped is returned in #unmapped and may be less 2781 * than or equal to the requested number of IOTTEs, #iottes. 2782 * 2783 * If #unmapped is less than #iottes, the caller should continue to invoke this 2784 * service with updated iotsb_index and #iottes arguments until all pages are 2785 * demapped. 2786 */ 2787 #define HV_FAST_PCI_IOTSB_DEMAP 0x198 2788 2789 /* pci_iotsb_getmap() 2790 * TRAP: HV_FAST_TRAP 2791 * FUNCTION: HV_FAST_PCI_IOTSB_GETMAP 2792 * ARG0: devhandle 2793 * ARG1: iotsb_handle 2794 * ARG2: iotsb_index 2795 * RET0: status 2796 * RET1: r_addr 2797 * RET2: iotte_attributes 2798 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or iotsb_index 2799 * ENOMAP No mapping was found 2800 * 2801 * This service returns the mapping specified by index iotsb_index from the 2802 * IOTSB defined by the arguments devhandle, iotsb. 2803 * 2804 * Upon success, the real address of the mapping shall be returned in 2805 * r_addr and thethe IOTTE mapping attributes shall be returned in 2806 * iotte_attributes. 2807 * 2808 * The return value iotte_attributes may not include optional features used in 2809 * the call to create the mapping. 2810 */ 2811 #define HV_FAST_PCI_IOTSB_GETMAP 0x199 2812 2813 /* pci_iotsb_sync_mappings() 2814 * TRAP: HV_FAST_TRAP 2815 * FUNCTION: HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 2816 * ARG0: devhandle 2817 * ARG1: iotsb_handle 2818 * ARG2: iotsb_index 2819 * ARG3: #iottes 2820 * RET0: status 2821 * RET1: #synced 2822 * ERROS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index, or #iottes 2823 * 2824 * This service synchronizes #iottes mappings starting at index iotsb_index in 2825 * the IOTSB defined by the arguments devhandle, iotsb. 2826 * 2827 * #iottes must be greater than zero. 2828 * 2829 * The actual number of IOTTEs synchronized is returned in #synced, which may 2830 * be less than or equal to the requested number, #iottes. 2831 * 2832 * Upon a successful return, #synced is less than #iottes, the caller should 2833 * continue to invoke this service with updated iotsb_index and #iottes 2834 * arguments until all pages are synchronized. 2835 */ 2836 #define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 0x19a 2837 2838 /* Logical Domain Channel services. */ 2839 2840 #define LDC_CHANNEL_DOWN 0 2841 #define LDC_CHANNEL_UP 1 2842 #define LDC_CHANNEL_RESETTING 2 2843 2844 /* ldc_tx_qconf() 2845 * TRAP: HV_FAST_TRAP 2846 * FUNCTION: HV_FAST_LDC_TX_QCONF 2847 * ARG0: channel ID 2848 * ARG1: real address base of queue 2849 * ARG2: num entries in queue 2850 * RET0: status 2851 * 2852 * Configure transmit queue for the LDC endpoint specified by the 2853 * given channel ID, to be placed at the given real address, and 2854 * be of the given num entries. Num entries must be a power of two. 2855 * The real address base of the queue must be aligned on the queue 2856 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2857 * queue must be aligned on a 2048 byte real address boundary. 2858 * 2859 * Upon configuration of a valid transmit queue the head and tail 2860 * pointers are set to a hypervisor specific identical value indicating 2861 * that the queue initially is empty. 2862 * 2863 * The endpoint's transmit queue is un-configured if num entries is zero. 2864 * 2865 * The maximum number of entries for each queue for a specific cpu may be 2866 * determined from the machine description. A transmit queue may be 2867 * specified even in the event that the LDC is down (peer endpoint has no 2868 * receive queue specified). Transmission will begin as soon as the peer 2869 * endpoint defines a receive queue. 2870 * 2871 * It is recommended that a guest wait for a transmit queue to empty prior 2872 * to reconfiguring it, or un-configuring it. Re or un-configuring of a 2873 * non-empty transmit queue behaves exactly as defined above, however it 2874 * is undefined as to how many of the pending entries in the original queue 2875 * will be delivered prior to the re-configuration taking effect. 2876 * Furthermore, as the queue configuration causes a reset of the head and 2877 * tail pointers there is no way for a guest to determine how many entries 2878 * have been sent after the configuration operation. 2879 */ 2880 #define HV_FAST_LDC_TX_QCONF 0xe0 2881 2882 /* ldc_tx_qinfo() 2883 * TRAP: HV_FAST_TRAP 2884 * FUNCTION: HV_FAST_LDC_TX_QINFO 2885 * ARG0: channel ID 2886 * RET0: status 2887 * RET1: real address base of queue 2888 * RET2: num entries in queue 2889 * 2890 * Return the configuration info for the transmit queue of LDC endpoint 2891 * defined by the given channel ID. The real address is the currently 2892 * defined real address base of the defined queue, and num entries is the 2893 * size of the queue in terms of number of entries. 2894 * 2895 * If the specified channel ID is a valid endpoint number, but no transmit 2896 * queue has been defined this service will return success, but with num 2897 * entries set to zero and the real address will have an undefined value. 2898 */ 2899 #define HV_FAST_LDC_TX_QINFO 0xe1 2900 2901 /* ldc_tx_get_state() 2902 * TRAP: HV_FAST_TRAP 2903 * FUNCTION: HV_FAST_LDC_TX_GET_STATE 2904 * ARG0: channel ID 2905 * RET0: status 2906 * RET1: head offset 2907 * RET2: tail offset 2908 * RET3: channel state 2909 * 2910 * Return the transmit state, and the head and tail queue pointers, for 2911 * the transmit queue of the LDC endpoint defined by the given channel ID. 2912 * The head and tail values are the byte offset of the head and tail 2913 * positions of the transmit queue for the specified endpoint. 2914 */ 2915 #define HV_FAST_LDC_TX_GET_STATE 0xe2 2916 2917 /* ldc_tx_set_qtail() 2918 * TRAP: HV_FAST_TRAP 2919 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL 2920 * ARG0: channel ID 2921 * ARG1: tail offset 2922 * RET0: status 2923 * 2924 * Update the tail pointer for the transmit queue associated with the LDC 2925 * endpoint defined by the given channel ID. The tail offset specified 2926 * must be aligned on a 64 byte boundary, and calculated so as to increase 2927 * the number of pending entries on the transmit queue. Any attempt to 2928 * decrease the number of pending transmit queue entires is considered 2929 * an invalid tail offset and will result in an EINVAL error. 2930 * 2931 * Since the tail of the transmit queue may not be moved backwards, the 2932 * transmit queue may be flushed by configuring a new transmit queue, 2933 * whereupon the hypervisor will configure the initial transmit head and 2934 * tail pointers to be equal. 2935 */ 2936 #define HV_FAST_LDC_TX_SET_QTAIL 0xe3 2937 2938 /* ldc_rx_qconf() 2939 * TRAP: HV_FAST_TRAP 2940 * FUNCTION: HV_FAST_LDC_RX_QCONF 2941 * ARG0: channel ID 2942 * ARG1: real address base of queue 2943 * ARG2: num entries in queue 2944 * RET0: status 2945 * 2946 * Configure receive queue for the LDC endpoint specified by the 2947 * given channel ID, to be placed at the given real address, and 2948 * be of the given num entries. Num entries must be a power of two. 2949 * The real address base of the queue must be aligned on the queue 2950 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2951 * queue must be aligned on a 2048 byte real address boundary. 2952 * 2953 * The endpoint's transmit queue is un-configured if num entries is zero. 2954 * 2955 * If a valid receive queue is specified for a local endpoint the LDC is 2956 * in the up state for the purpose of transmission to this endpoint. 2957 * 2958 * The maximum number of entries for each queue for a specific cpu may be 2959 * determined from the machine description. 2960 * 2961 * As receive queue configuration causes a reset of the queue's head and 2962 * tail pointers there is no way for a gues to determine how many entries 2963 * have been received between a preceding ldc_get_rx_state() API call 2964 * and the completion of the configuration operation. It should be noted 2965 * that datagram delivery is not guaranteed via domain channels anyway, 2966 * and therefore any higher protocol should be resilient to datagram 2967 * loss if necessary. However, to overcome this specific race potential 2968 * it is recommended, for example, that a higher level protocol be employed 2969 * to ensure either retransmission, or ensure that no datagrams are pending 2970 * on the peer endpoint's transmit queue prior to the configuration process. 2971 */ 2972 #define HV_FAST_LDC_RX_QCONF 0xe4 2973 2974 /* ldc_rx_qinfo() 2975 * TRAP: HV_FAST_TRAP 2976 * FUNCTION: HV_FAST_LDC_RX_QINFO 2977 * ARG0: channel ID 2978 * RET0: status 2979 * RET1: real address base of queue 2980 * RET2: num entries in queue 2981 * 2982 * Return the configuration info for the receive queue of LDC endpoint 2983 * defined by the given channel ID. The real address is the currently 2984 * defined real address base of the defined queue, and num entries is the 2985 * size of the queue in terms of number of entries. 2986 * 2987 * If the specified channel ID is a valid endpoint number, but no receive 2988 * queue has been defined this service will return success, but with num 2989 * entries set to zero and the real address will have an undefined value. 2990 */ 2991 #define HV_FAST_LDC_RX_QINFO 0xe5 2992 2993 /* ldc_rx_get_state() 2994 * TRAP: HV_FAST_TRAP 2995 * FUNCTION: HV_FAST_LDC_RX_GET_STATE 2996 * ARG0: channel ID 2997 * RET0: status 2998 * RET1: head offset 2999 * RET2: tail offset 3000 * RET3: channel state 3001 * 3002 * Return the receive state, and the head and tail queue pointers, for 3003 * the receive queue of the LDC endpoint defined by the given channel ID. 3004 * The head and tail values are the byte offset of the head and tail 3005 * positions of the receive queue for the specified endpoint. 3006 */ 3007 #define HV_FAST_LDC_RX_GET_STATE 0xe6 3008 3009 /* ldc_rx_set_qhead() 3010 * TRAP: HV_FAST_TRAP 3011 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD 3012 * ARG0: channel ID 3013 * ARG1: head offset 3014 * RET0: status 3015 * 3016 * Update the head pointer for the receive queue associated with the LDC 3017 * endpoint defined by the given channel ID. The head offset specified 3018 * must be aligned on a 64 byte boundary, and calculated so as to decrease 3019 * the number of pending entries on the receive queue. Any attempt to 3020 * increase the number of pending receive queue entires is considered 3021 * an invalid head offset and will result in an EINVAL error. 3022 * 3023 * The receive queue may be flushed by setting the head offset equal 3024 * to the current tail offset. 3025 */ 3026 #define HV_FAST_LDC_RX_SET_QHEAD 0xe7 3027 3028 /* LDC Map Table Entry. Each slot is defined by a translation table 3029 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit 3030 * hypervisor invalidation cookie. 3031 */ 3032 #define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */ 3033 #define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */ 3034 #define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */ 3035 #define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */ 3036 #define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */ 3037 #define LDC_MTE_EXEC 0x0000000000000040 /* execute */ 3038 #define LDC_MTE_WRITE 0x0000000000000020 /* read */ 3039 #define LDC_MTE_READ 0x0000000000000010 /* write */ 3040 #define LDC_MTE_SZALL 0x000000000000000f /* page size bits */ 3041 #define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */ 3042 #define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */ 3043 #define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */ 3044 #define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */ 3045 #define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */ 3046 #define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */ 3047 #define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */ 3048 #define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */ 3049 3050 #ifndef __ASSEMBLY__ 3051 struct ldc_mtable_entry { 3052 unsigned long mte; 3053 unsigned long cookie; 3054 }; 3055 #endif 3056 3057 /* ldc_set_map_table() 3058 * TRAP: HV_FAST_TRAP 3059 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE 3060 * ARG0: channel ID 3061 * ARG1: table real address 3062 * ARG2: num entries 3063 * RET0: status 3064 * 3065 * Register the MTE table at the given table real address, with the 3066 * specified num entries, for the LDC indicated by the given channel 3067 * ID. 3068 */ 3069 #define HV_FAST_LDC_SET_MAP_TABLE 0xea 3070 3071 /* ldc_get_map_table() 3072 * TRAP: HV_FAST_TRAP 3073 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE 3074 * ARG0: channel ID 3075 * RET0: status 3076 * RET1: table real address 3077 * RET2: num entries 3078 * 3079 * Return the configuration of the current mapping table registered 3080 * for the given channel ID. 3081 */ 3082 #define HV_FAST_LDC_GET_MAP_TABLE 0xeb 3083 3084 #define LDC_COPY_IN 0 3085 #define LDC_COPY_OUT 1 3086 3087 /* ldc_copy() 3088 * TRAP: HV_FAST_TRAP 3089 * FUNCTION: HV_FAST_LDC_COPY 3090 * ARG0: channel ID 3091 * ARG1: LDC_COPY_* direction code 3092 * ARG2: target real address 3093 * ARG3: local real address 3094 * ARG4: length in bytes 3095 * RET0: status 3096 * RET1: actual length in bytes 3097 */ 3098 #define HV_FAST_LDC_COPY 0xec 3099 3100 #define LDC_MEM_READ 1 3101 #define LDC_MEM_WRITE 2 3102 #define LDC_MEM_EXEC 4 3103 3104 /* ldc_mapin() 3105 * TRAP: HV_FAST_TRAP 3106 * FUNCTION: HV_FAST_LDC_MAPIN 3107 * ARG0: channel ID 3108 * ARG1: cookie 3109 * RET0: status 3110 * RET1: real address 3111 * RET2: LDC_MEM_* permissions 3112 */ 3113 #define HV_FAST_LDC_MAPIN 0xed 3114 3115 /* ldc_unmap() 3116 * TRAP: HV_FAST_TRAP 3117 * FUNCTION: HV_FAST_LDC_UNMAP 3118 * ARG0: real address 3119 * RET0: status 3120 */ 3121 #define HV_FAST_LDC_UNMAP 0xee 3122 3123 /* ldc_revoke() 3124 * TRAP: HV_FAST_TRAP 3125 * FUNCTION: HV_FAST_LDC_REVOKE 3126 * ARG0: channel ID 3127 * ARG1: cookie 3128 * ARG2: ldc_mtable_entry cookie 3129 * RET0: status 3130 */ 3131 #define HV_FAST_LDC_REVOKE 0xef 3132 3133 #ifndef __ASSEMBLY__ 3134 unsigned long sun4v_ldc_tx_qconf(unsigned long channel, 3135 unsigned long ra, 3136 unsigned long num_entries); 3137 unsigned long sun4v_ldc_tx_qinfo(unsigned long channel, 3138 unsigned long *ra, 3139 unsigned long *num_entries); 3140 unsigned long sun4v_ldc_tx_get_state(unsigned long channel, 3141 unsigned long *head_off, 3142 unsigned long *tail_off, 3143 unsigned long *chan_state); 3144 unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel, 3145 unsigned long tail_off); 3146 unsigned long sun4v_ldc_rx_qconf(unsigned long channel, 3147 unsigned long ra, 3148 unsigned long num_entries); 3149 unsigned long sun4v_ldc_rx_qinfo(unsigned long channel, 3150 unsigned long *ra, 3151 unsigned long *num_entries); 3152 unsigned long sun4v_ldc_rx_get_state(unsigned long channel, 3153 unsigned long *head_off, 3154 unsigned long *tail_off, 3155 unsigned long *chan_state); 3156 unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel, 3157 unsigned long head_off); 3158 unsigned long sun4v_ldc_set_map_table(unsigned long channel, 3159 unsigned long ra, 3160 unsigned long num_entries); 3161 unsigned long sun4v_ldc_get_map_table(unsigned long channel, 3162 unsigned long *ra, 3163 unsigned long *num_entries); 3164 unsigned long sun4v_ldc_copy(unsigned long channel, 3165 unsigned long dir_code, 3166 unsigned long tgt_raddr, 3167 unsigned long lcl_raddr, 3168 unsigned long len, 3169 unsigned long *actual_len); 3170 unsigned long sun4v_ldc_mapin(unsigned long channel, 3171 unsigned long cookie, 3172 unsigned long *ra, 3173 unsigned long *perm); 3174 unsigned long sun4v_ldc_unmap(unsigned long ra); 3175 unsigned long sun4v_ldc_revoke(unsigned long channel, 3176 unsigned long cookie, 3177 unsigned long mte_cookie); 3178 #endif 3179 3180 /* Performance counter services. */ 3181 3182 #define HV_PERF_JBUS_PERF_CTRL_REG 0x00 3183 #define HV_PERF_JBUS_PERF_CNT_REG 0x01 3184 #define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02 3185 #define HV_PERF_DRAM_PERF_CNT_REG_0 0x03 3186 #define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04 3187 #define HV_PERF_DRAM_PERF_CNT_REG_1 0x05 3188 #define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06 3189 #define HV_PERF_DRAM_PERF_CNT_REG_2 0x07 3190 #define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08 3191 #define HV_PERF_DRAM_PERF_CNT_REG_3 0x09 3192 3193 /* get_perfreg() 3194 * TRAP: HV_FAST_TRAP 3195 * FUNCTION: HV_FAST_GET_PERFREG 3196 * ARG0: performance reg number 3197 * RET0: status 3198 * RET1: performance reg value 3199 * ERRORS: EINVAL Invalid performance register number 3200 * ENOACCESS No access allowed to performance counters 3201 * 3202 * Read the value of the given DRAM/JBUS performance counter/control register. 3203 */ 3204 #define HV_FAST_GET_PERFREG 0x100 3205 3206 /* set_perfreg() 3207 * TRAP: HV_FAST_TRAP 3208 * FUNCTION: HV_FAST_SET_PERFREG 3209 * ARG0: performance reg number 3210 * ARG1: performance reg value 3211 * RET0: status 3212 * ERRORS: EINVAL Invalid performance register number 3213 * ENOACCESS No access allowed to performance counters 3214 * 3215 * Write the given performance reg value to the given DRAM/JBUS 3216 * performance counter/control register. 3217 */ 3218 #define HV_FAST_SET_PERFREG 0x101 3219 3220 #define HV_N2_PERF_SPARC_CTL 0x0 3221 #define HV_N2_PERF_DRAM_CTL0 0x1 3222 #define HV_N2_PERF_DRAM_CNT0 0x2 3223 #define HV_N2_PERF_DRAM_CTL1 0x3 3224 #define HV_N2_PERF_DRAM_CNT1 0x4 3225 #define HV_N2_PERF_DRAM_CTL2 0x5 3226 #define HV_N2_PERF_DRAM_CNT2 0x6 3227 #define HV_N2_PERF_DRAM_CTL3 0x7 3228 #define HV_N2_PERF_DRAM_CNT3 0x8 3229 3230 #define HV_FAST_N2_GET_PERFREG 0x104 3231 #define HV_FAST_N2_SET_PERFREG 0x105 3232 3233 #ifndef __ASSEMBLY__ 3234 unsigned long sun4v_niagara_getperf(unsigned long reg, 3235 unsigned long *val); 3236 unsigned long sun4v_niagara_setperf(unsigned long reg, 3237 unsigned long val); 3238 unsigned long sun4v_niagara2_getperf(unsigned long reg, 3239 unsigned long *val); 3240 unsigned long sun4v_niagara2_setperf(unsigned long reg, 3241 unsigned long val); 3242 #endif 3243 3244 /* MMU statistics services. 3245 * 3246 * The hypervisor maintains MMU statistics and privileged code provides 3247 * a buffer where these statistics can be collected. It is continually 3248 * updated once configured. The layout is as follows: 3249 */ 3250 #ifndef __ASSEMBLY__ 3251 struct hv_mmu_statistics { 3252 unsigned long immu_tsb_hits_ctx0_8k_tte; 3253 unsigned long immu_tsb_ticks_ctx0_8k_tte; 3254 unsigned long immu_tsb_hits_ctx0_64k_tte; 3255 unsigned long immu_tsb_ticks_ctx0_64k_tte; 3256 unsigned long __reserved1[2]; 3257 unsigned long immu_tsb_hits_ctx0_4mb_tte; 3258 unsigned long immu_tsb_ticks_ctx0_4mb_tte; 3259 unsigned long __reserved2[2]; 3260 unsigned long immu_tsb_hits_ctx0_256mb_tte; 3261 unsigned long immu_tsb_ticks_ctx0_256mb_tte; 3262 unsigned long __reserved3[4]; 3263 unsigned long immu_tsb_hits_ctxnon0_8k_tte; 3264 unsigned long immu_tsb_ticks_ctxnon0_8k_tte; 3265 unsigned long immu_tsb_hits_ctxnon0_64k_tte; 3266 unsigned long immu_tsb_ticks_ctxnon0_64k_tte; 3267 unsigned long __reserved4[2]; 3268 unsigned long immu_tsb_hits_ctxnon0_4mb_tte; 3269 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte; 3270 unsigned long __reserved5[2]; 3271 unsigned long immu_tsb_hits_ctxnon0_256mb_tte; 3272 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte; 3273 unsigned long __reserved6[4]; 3274 unsigned long dmmu_tsb_hits_ctx0_8k_tte; 3275 unsigned long dmmu_tsb_ticks_ctx0_8k_tte; 3276 unsigned long dmmu_tsb_hits_ctx0_64k_tte; 3277 unsigned long dmmu_tsb_ticks_ctx0_64k_tte; 3278 unsigned long __reserved7[2]; 3279 unsigned long dmmu_tsb_hits_ctx0_4mb_tte; 3280 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte; 3281 unsigned long __reserved8[2]; 3282 unsigned long dmmu_tsb_hits_ctx0_256mb_tte; 3283 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte; 3284 unsigned long __reserved9[4]; 3285 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte; 3286 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte; 3287 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte; 3288 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte; 3289 unsigned long __reserved10[2]; 3290 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte; 3291 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte; 3292 unsigned long __reserved11[2]; 3293 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte; 3294 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte; 3295 unsigned long __reserved12[4]; 3296 }; 3297 #endif 3298 3299 /* mmustat_conf() 3300 * TRAP: HV_FAST_TRAP 3301 * FUNCTION: HV_FAST_MMUSTAT_CONF 3302 * ARG0: real address 3303 * RET0: status 3304 * RET1: real address 3305 * ERRORS: ENORADDR Invalid real address 3306 * EBADALIGN Real address not aligned on 64-byte boundary 3307 * EBADTRAP API not supported on this processor 3308 * 3309 * Enable MMU statistic gathering using the buffer at the given real 3310 * address on the current virtual CPU. The new buffer real address 3311 * is given in ARG1, and the previously specified buffer real address 3312 * is returned in RET1, or is returned as zero for the first invocation. 3313 * 3314 * If the passed in real address argument is zero, this will disable 3315 * MMU statistic collection on the current virtual CPU. If an error is 3316 * returned then no statistics are collected. 3317 * 3318 * The buffer contents should be initialized to all zeros before being 3319 * given to the hypervisor or else the statistics will be meaningless. 3320 */ 3321 #define HV_FAST_MMUSTAT_CONF 0x102 3322 3323 /* mmustat_info() 3324 * TRAP: HV_FAST_TRAP 3325 * FUNCTION: HV_FAST_MMUSTAT_INFO 3326 * RET0: status 3327 * RET1: real address 3328 * ERRORS: EBADTRAP API not supported on this processor 3329 * 3330 * Return the current state and real address of the currently configured 3331 * MMU statistics buffer on the current virtual CPU. 3332 */ 3333 #define HV_FAST_MMUSTAT_INFO 0x103 3334 3335 #ifndef __ASSEMBLY__ 3336 unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra); 3337 unsigned long sun4v_mmustat_info(unsigned long *ra); 3338 #endif 3339 3340 /* NCS crypto services */ 3341 3342 /* ncs_request() sub-function numbers */ 3343 #define HV_NCS_QCONF 0x01 3344 #define HV_NCS_QTAIL_UPDATE 0x02 3345 3346 #ifndef __ASSEMBLY__ 3347 struct hv_ncs_queue_entry { 3348 /* MAU Control Register */ 3349 unsigned long mau_control; 3350 #define MAU_CONTROL_INV_PARITY 0x0000000000002000 3351 #define MAU_CONTROL_STRAND 0x0000000000001800 3352 #define MAU_CONTROL_BUSY 0x0000000000000400 3353 #define MAU_CONTROL_INT 0x0000000000000200 3354 #define MAU_CONTROL_OP 0x00000000000001c0 3355 #define MAU_CONTROL_OP_SHIFT 6 3356 #define MAU_OP_LOAD_MA_MEMORY 0x0 3357 #define MAU_OP_STORE_MA_MEMORY 0x1 3358 #define MAU_OP_MODULAR_MULT 0x2 3359 #define MAU_OP_MODULAR_REDUCE 0x3 3360 #define MAU_OP_MODULAR_EXP_LOOP 0x4 3361 #define MAU_CONTROL_LEN 0x000000000000003f 3362 #define MAU_CONTROL_LEN_SHIFT 0 3363 3364 /* Real address of bytes to load or store bytes 3365 * into/out-of the MAU. 3366 */ 3367 unsigned long mau_mpa; 3368 3369 /* Modular Arithmetic MA Offset Register. */ 3370 unsigned long mau_ma; 3371 3372 /* Modular Arithmetic N Prime Register. */ 3373 unsigned long mau_np; 3374 }; 3375 3376 struct hv_ncs_qconf_arg { 3377 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 3378 unsigned long base; /* Real address base of queue */ 3379 unsigned long end; /* Real address end of queue */ 3380 unsigned long num_ents; /* Number of entries in queue */ 3381 }; 3382 3383 struct hv_ncs_qtail_update_arg { 3384 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 3385 unsigned long tail; /* New tail index to use */ 3386 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */ 3387 #define HV_NCS_SYNCFLAG_SYNC 0x00 3388 #define HV_NCS_SYNCFLAG_ASYNC 0x01 3389 }; 3390 #endif 3391 3392 /* ncs_request() 3393 * TRAP: HV_FAST_TRAP 3394 * FUNCTION: HV_FAST_NCS_REQUEST 3395 * ARG0: NCS sub-function 3396 * ARG1: sub-function argument real address 3397 * ARG2: size in bytes of sub-function argument 3398 * RET0: status 3399 * 3400 * The MAU chip of the Niagara processor is not directly accessible 3401 * to privileged code, instead it is programmed indirectly via this 3402 * hypervisor API. 3403 * 3404 * The interfaces defines a queue of MAU operations to perform. 3405 * Privileged code registers a queue with the hypervisor by invoking 3406 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the 3407 * base, end, and number of entries of the queue. Each queue entry 3408 * contains a MAU register struct block. 3409 * 3410 * The privileged code then proceeds to add entries to the queue and 3411 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only 3412 * synchronous operations are supported by the current hypervisor, 3413 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to 3414 * completion and return HV_EOK, or return an error code. 3415 * 3416 * The real address of the sub-function argument must be aligned on at 3417 * least an 8-byte boundary. 3418 * 3419 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte 3420 * offset, into the queue and must be less than or equal the 'num_ents' 3421 * argument given in the HV_NCS_QCONF call. 3422 */ 3423 #define HV_FAST_NCS_REQUEST 0x110 3424 3425 #ifndef __ASSEMBLY__ 3426 unsigned long sun4v_ncs_request(unsigned long request, 3427 unsigned long arg_ra, 3428 unsigned long arg_size); 3429 #endif 3430 3431 #define HV_FAST_FIRE_GET_PERFREG 0x120 3432 #define HV_FAST_FIRE_SET_PERFREG 0x121 3433 3434 #define HV_FAST_REBOOT_DATA_SET 0x172 3435 3436 #ifndef __ASSEMBLY__ 3437 unsigned long sun4v_reboot_data_set(unsigned long ra, 3438 unsigned long len); 3439 #endif 3440 3441 #define HV_FAST_VT_GET_PERFREG 0x184 3442 #define HV_FAST_VT_SET_PERFREG 0x185 3443 3444 #ifndef __ASSEMBLY__ 3445 unsigned long sun4v_vt_get_perfreg(unsigned long reg_num, 3446 unsigned long *reg_val); 3447 unsigned long sun4v_vt_set_perfreg(unsigned long reg_num, 3448 unsigned long reg_val); 3449 #endif 3450 3451 #define HV_FAST_T5_GET_PERFREG 0x1a8 3452 #define HV_FAST_T5_SET_PERFREG 0x1a9 3453 3454 #ifndef __ASSEMBLY__ 3455 unsigned long sun4v_t5_get_perfreg(unsigned long reg_num, 3456 unsigned long *reg_val); 3457 unsigned long sun4v_t5_set_perfreg(unsigned long reg_num, 3458 unsigned long reg_val); 3459 #endif 3460 3461 3462 #define HV_FAST_M7_GET_PERFREG 0x43 3463 #define HV_FAST_M7_SET_PERFREG 0x44 3464 3465 #ifndef __ASSEMBLY__ 3466 unsigned long sun4v_m7_get_perfreg(unsigned long reg_num, 3467 unsigned long *reg_val); 3468 unsigned long sun4v_m7_set_perfreg(unsigned long reg_num, 3469 unsigned long reg_val); 3470 #endif 3471 3472 /* Function numbers for HV_CORE_TRAP. */ 3473 #define HV_CORE_SET_VER 0x00 3474 #define HV_CORE_PUTCHAR 0x01 3475 #define HV_CORE_EXIT 0x02 3476 #define HV_CORE_GET_VER 0x03 3477 3478 /* Hypervisor API groups for use with HV_CORE_SET_VER and 3479 * HV_CORE_GET_VER. 3480 */ 3481 #define HV_GRP_SUN4V 0x0000 3482 #define HV_GRP_CORE 0x0001 3483 #define HV_GRP_INTR 0x0002 3484 #define HV_GRP_SOFT_STATE 0x0003 3485 #define HV_GRP_TM 0x0080 3486 #define HV_GRP_PCI 0x0100 3487 #define HV_GRP_LDOM 0x0101 3488 #define HV_GRP_SVC_CHAN 0x0102 3489 #define HV_GRP_NCS 0x0103 3490 #define HV_GRP_RNG 0x0104 3491 #define HV_GRP_PBOOT 0x0105 3492 #define HV_GRP_TPM 0x0107 3493 #define HV_GRP_SDIO 0x0108 3494 #define HV_GRP_SDIO_ERR 0x0109 3495 #define HV_GRP_REBOOT_DATA 0x0110 3496 #define HV_GRP_ATU 0x0111 3497 #define HV_GRP_DAX 0x0113 3498 #define HV_GRP_M7_PERF 0x0114 3499 #define HV_GRP_NIAG_PERF 0x0200 3500 #define HV_GRP_FIRE_PERF 0x0201 3501 #define HV_GRP_N2_CPU 0x0202 3502 #define HV_GRP_NIU 0x0204 3503 #define HV_GRP_VF_CPU 0x0205 3504 #define HV_GRP_KT_CPU 0x0209 3505 #define HV_GRP_VT_CPU 0x020c 3506 #define HV_GRP_T5_CPU 0x0211 3507 #define HV_GRP_DIAG 0x0300 3508 3509 #ifndef __ASSEMBLY__ 3510 unsigned long sun4v_get_version(unsigned long group, 3511 unsigned long *major, 3512 unsigned long *minor); 3513 unsigned long sun4v_set_version(unsigned long group, 3514 unsigned long major, 3515 unsigned long minor, 3516 unsigned long *actual_minor); 3517 3518 int sun4v_hvapi_register(unsigned long group, unsigned long major, 3519 unsigned long *minor); 3520 void sun4v_hvapi_unregister(unsigned long group); 3521 int sun4v_hvapi_get(unsigned long group, 3522 unsigned long *major, 3523 unsigned long *minor); 3524 void sun4v_hvapi_init(void); 3525 #endif 3526 3527 #endif /* !(_SPARC64_HYPERVISOR_H) */